cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 4208 results. Next

A131428 a(n) = 2*C(n) - 1, where C(n) = A000108(n) are the Catalan numbers.

Original entry on oeis.org

1, 1, 3, 9, 27, 83, 263, 857, 2859, 9723, 33591, 117571, 416023, 1485799, 5348879, 19389689, 70715339, 259289579, 955277399, 3534526379, 13128240839, 48932534039, 182965127279, 686119227299, 2579808294647, 9723892802903, 36734706144303, 139067101832007
Offset: 0

Views

Author

Gary W. Adamson, Jul 10 2007

Keywords

Comments

Starting (1, 3, 9, 27, 83, ...), = row sums of triangle A136522. - Gary W. Adamson, Jan 02 2008
Hankel transform is A171552. - Paul Barry, Dec 11 2009
Apparently, for n >= 1, the maximum peak height minus the maximum valley height summed over all Dyck n-paths (with max valley height deemed zero if no valleys). - David Scambler, Oct 05 2012
Apparently for n > 1 the number of fixed points in all Dyck (n-1)-paths. A fixed point occurs when a vertex of a Dyck k-path is also a vertex of the path U^kD^k. - David Scambler, May 01 2013

Examples

			a(3) = 9 = 2*C(3) - 1 = 2*5 - 1, where C refers to the Catalan numbers, A000108.
		

Crossrefs

Programs

  • GAP
    List([0..25], n-> 2*Binomial(2*n,n)/(n+1) - 1); # G. C. Greubel, Aug 12 2019
  • Magma
    [2*Catalan(n) -1: n in [0..25]]; // G. C. Greubel, Aug 12 2019
    
  • Maple
    seq(2*binomial(2*n,n)/(n+1)-1, n=0..25); # Emeric Deutsch, Jul 25 2007
  • Mathematica
    2CatalanNumber[Range[0,25]]-1  (* Harvey P. Dale, Apr 17 2011 *)
  • PARI
    vector(25, n, n--; 2*binomial(2*n,n)/(n+1) - 1) \\ G. C. Greubel, Aug 12 2019
    
  • Sage
    [2*catalan_number(n) -1 for n in (0..25)] # G. C. Greubel, Aug 12 2019
    

Formula

Right border of triangle A131429.
From Emeric Deutsch, Jul 25 2007: (Start)
a(n) = 2*binomial(2*n,n)/(n+1) - 1.
G.f.: (1-sqrt(1-4*x))/x - 1/(1-x). (End)
(1, 3, 9, 27, 83, ...) = row sums of A118976. - Gary W. Adamson, Aug 31 2007
Row sums of triangle A131428 starting (1, 3, 9, 27, 83, ...). - Gary W. Adamson, Aug 31 2007
Starting with offset 1 = Narayana transform (A001263) of [1,2,2,2,...]. - Gary W. Adamson, Jul 29 2011
D-finite with recurrence (n+1)*a(n) +2*(-2*n+1)*a(n-1) +3*(-n+1)=0. - R. J. Mathar, Nov 22 2024
a(n) = Sum_{k=0..n} ( binomial(n,k) - binomial(n,k-1) )^2 = Sum_{k=0..n} A080233(n,k)^2 = Sum_{k=0..n} A156644(n,k)^2. - Seiichi Manyama, Mar 25 2025

Extensions

More terms from Emeric Deutsch, Jul 25 2007

A076025 Expansion of g.f.: (1-3*x*C)/(1-4*x*C) where C = (1 - sqrt(1-4*x))/(2*x) = g.f. for Catalan numbers A000108.

Original entry on oeis.org

1, 1, 5, 26, 137, 726, 3858, 20532, 109361, 582782, 3106550, 16562668, 88314634, 470942044, 2511443268, 13393472616, 71428622337, 380940866574, 2031641406798, 10835261623356, 57787472903502, 308197667445204, 1643712737618748, 8766437439778776, 46754218658948922
Offset: 0

Views

Author

N. J. A. Sloane, Oct 29 2002

Keywords

Comments

From Paul Barry, Sep 23 2009: (Start)
The Hankel transform of this sequence is 3n+1 or 1,4,7,10,... (A016777).
The Hankel transform of the aeration of this sequence is A016777 doubled, that is, 1,1,4,4,7,7,...
In general, the Hankel transform of [x^n](1-r*xc(x))/(1-(r+1)*xc(x)) is rn+1, and that of the corresponding aerated sequence is the doubled sequence of rn+1. (End)

References

  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1- 3*Sqrt(1-4*x))/(2-4*Sqrt(1-4*x)) )); // G. C. Greubel, May 04 2019
    
  • Mathematica
    CoefficientList[Series[(1-3*Sqrt[1-4*x])/(2-4*Sqrt[1-4*x]),{x,0,30}],x] (* Vaclav Kotesovec, Dec 09 2013 *)
    Flatten[{1,Table[FullSimplify[(2*n)! * Hypergeometric2F1Regularized[1, n+1/2, n+2, 3/4] / (16*n!) + 2^(4*n-1)/3^(n+1)], {n,1,30}]}] (* Vaclav Kotesovec, Dec 09 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-3*sqrt(1-4*x))/(2-4*sqrt(1-4*x))) \\ G. C. Greubel, May 04 2019
    
  • Sage
    ((1-3*sqrt(1-4*x))/(2-4*sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 04 2019

Formula

a(n+1) = Sum_{k=0..n} 3^k*binomial(2n+1, n-k)*2*(k+1)/(n+k+2). - Paul Barry, Jun 22 2004
a(n+1) = Sum_{k=0..n} A039598(n,k)*3^k. - Philippe Deléham, Mar 21 2007
a(n) = Sum_{k=0..n} A039599(n,k)*A015518(k), for n >= 1. - Philippe Deléham, Nov 22 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=1, a(n+1)=(-1)^n*charpoly(A,-4). - Milan Janjic, Jul 08 2010
From Gary W. Adamson, Jul 25 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows:
5, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
... (End)
D-finite with recurrence: 3*n*a(n) +2*(9-14*n)*a(n-1) +32*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 14 2011
a(n) ~ 2^(4*n-1)/3^(n+1). - Vaclav Kotesovec, Dec 09 2013
The sequence is the INVERT transform of A049027: (1, 4, 17, 74, 326, ...) and the third INVERT transform of the Catalan sequence (1, 2, 5, ...). - Gary W. Adamson, Jun 23 2015
O.g.f.: A(x) = (1 - 1/2*Sum_{n >= 1} binomial(2*n,n)*x^n)/(1 - Sum_{n >= 1} binomial(2*n,n)*x^n). - Peter Bala, Sep 01 2016

A076035 G.f.: 1/(1-4*x*C) where C = (1/2-1/2*(1-4*x)^(1/2))/x = g.f. for Catalan numbers A000108.

Original entry on oeis.org

1, 4, 20, 104, 548, 2904, 15432, 82128, 437444, 2331128, 12426200, 66250672, 353258536, 1883768176, 10045773072, 53573890464, 285714489348, 1523763466296, 8126565627192, 43341046493424, 231149891614008, 1232790669780816, 6574850950474992, 35065749759115104
Offset: 0

Views

Author

N. J. A. Sloane, Oct 29 2002

Keywords

Comments

The Hankel transform of this sequence and that of the aerated sequence with g.f. 1/(1-4x^2*c(x^2)) is 4^n. In general, the expansions of 1/(1-k*x*c(x)) and 1/(1-k*x^2*c(x^2)) have Hankel transform k^n. - Paul Barry, Jan 20 2007

Crossrefs

Programs

  • Maple
    CatalanNumber := n -> binomial(2*n,n)/(n+1):
    h := (n, m) -> hypergeom([1+m, m-n], [m+n+2], -3):
    a := n -> CatalanNumber(n)*(h(n,0) + 6*n/(n+2)*h(n,1)):
    seq(simplify(a(n)), n=0..23); # Peter Luschny, Dec 09 2018
  • Mathematica
    CoefficientList[Series[1/(1-4*x*(1-Sqrt[1-4*x])/(2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)

Formula

a(n) = sum{k=0..n, 3^k*C(2n, n-k)(2k+1)/(n+k+1)}. - Paul Barry, Jun 22 2004
a(n) = Sum_{k, 0<=k<=n} A106566(n, k)*4^k. - Philippe Deléham, Sep 01 2005
a(n) = if(n=0,1,sum{k=1..n, C(2n-k-1,n-k)*k*4^k/n}). - Paul Barry, Jan 20 2007
a(n) = Sum{k, 0<=k<=n}A039599(n,k)*3^k. - Philippe Deléham, Sep 08 2007
a(0)=1, a(n)=(16*a(n-1)-4*A000108(n-1))/3. - Philippe Deléham, Nov 27 2007
3*n*a(n) +2*(9-14*n)*a(n-1) +32*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011 [proved by Ekhad & Yang, see link]
a(n) ~ 2^(4*n+1) / 3^(n+1). - Vaclav Kotesovec, Feb 13 2014
Conjecture: a(n) = 4*A076025(n), n>0. - R. J. Mathar, Apr 01 2022

A129442 Expansion of c(x)*c(x*c(x)) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 6, 21, 80, 322, 1348, 5814, 25674, 115566, 528528, 2449746, 11485068, 54377288, 259663576, 1249249981, 6049846848, 29469261934, 144293491564, 709806846980, 3506278661820, 17385618278700, 86500622296800
Offset: 0

Views

Author

Philippe Deléham, May 28 2007, Jun 20 2007

Keywords

Comments

The sequence b(n) = [0,1,2,6,21,80,322,1348,...] for n >= 0 is the Catalan transform of Catalan numbers C(n-1), with C(-1)=0; Sum_{k=0..n} A106566(n,k) * A000108(k-1) = b(n).
A121988 is an essentially identical sequence. - R. J. Mathar, Jun 13 2008
Catalan transform of A014137. - R. J. Mathar, Nov 11 2008

Examples

			G.f. = 1 + 2*x + 6*x^2 + 21*x^3 + 80*x^4 + 322*x^5 + 1349*x^6 + ... - _Michael Somos_, May 28 2023
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(2*Sqrt(1-4*x)-1))/(2*x) )); // G. C. Greubel, Feb 06 2024
    
  • Maple
    c := proc (x) options operator, arrow; (1/2)*(1-sqrt(1-4*x))/x end proc; G := simplify(c(x)*c(x*c(x))); Gser := series(G, x = 0, 28); seq(coeff(Gser, x, n), n = 0 .. 24) # Emeric Deutsch, Jun 20 2007
  • Mathematica
    a[n_]:= Sum[ Binomial[2n -k-1, n-1]*Binomial[2k-2, k-1], {k, n}]/n;
    Array[a, 23] (* Robert G. Wilson v, Jul 18 2007 *)
  • SageMath
    def A129442_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-sqrt(2*sqrt(1-4*x)-1))/(2*x) ).list()
    A129442_list(40) # G. C. Greubel, Feb 06 2024

Formula

a(n-1) = (1/n)*Sum_{k=1..n} binomial(2*n-k-1, n-1)*binomial(2*k-2, k-1).
G.f.: (1-sqrt(2*sqrt(1-4*x)-1))/(2*x). - Emeric Deutsch, Jun 20 2007 Corrected by Stefan Forcey (sforcey(AT)tnstate.edu), Aug 02 2007
From Vaclav Kotesovec, Oct 20 2012: (Start)
Recurrence: 3*n*(n+1)*a(n) = 14*n*(2*n-1)*a(n-1) - 4*(4*n-5)*(4*n-3)*a(n-2).
a(n) ~ 2^(4*n+3/2)/(3^(n+1/2)*sqrt(Pi)*n^(3/2)). (End)
0 = +a(n)*(+a(n+1)*(+262144*a(n+2) -275968*a(n+3) +52608*a(n+4)) +a(n+2)*(-50176*a(n+2) +107680*a(n+3) -27930*a(n+4)) +a(n+3)*(-6006*a(n+3) +2574*a(n+4))) +a(n+1)*(+a(n+1)*(-17920*a(n+2) +21952*a(n+3) -4494*a(n+4)) +a(n+2)*(+5152*a(n+2) -15820*a(n+3) +4611*a(n+4)) +a(n+3)*(+1470*a(n+3) -630*a(n+4))) +a(n+2)*(+a(n+2)*(+42*a(n+2) +129*a(n+3) -63*a(n+4)) +a(n+3)*(-63*a(n+3) +27*a(n+4))) for n>=0. - Michael Somos, May 28 2023
From Seiichi Manyama, Jan 10 2023: (Start)
G.f.: (1/x) * Series_Reversion( x * (1-x) * (1-x+x^2) ).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+k,k) * binomial(3*n-k+1,n-2*k). (End)

Extensions

More terms from Emeric Deutsch, Jun 20 2007

A187357 Catalan trisection: A000108(3*n), n >= 0.

Original entry on oeis.org

1, 5, 132, 4862, 208012, 9694845, 477638700, 24466267020, 1289904147324, 69533550916004, 3814986502092304, 212336130412243110, 11959798385860453492, 680425371729975800390, 39044429911904443959240, 2257117854077248073253720, 131327898242169365477991900, 7684785670514316385230816156, 451959718027953471447609509424
Offset: 0

Views

Author

Wolfdieter Lang, Mar 09 2011

Keywords

Comments

Trisection of a sequence, given by its real o.g.f. G(x), is accomplished by
G(x) = G0(x^3) + x*G1(x^3) + (x^2)*G2(x^3), with the following solutions (using r := exp(2*Pi*i/3) = (-1 + sqrt(3)*i)/2):
G0(x) = (G(x^(1/3) + (G(r*x^(1/3)) + c.c.))/3,
G1(x) = (G(x^(1/3)) + ((1/r)*G(r*x^(1/3)) + c.c.))/(3*x^(1/3)),
G2(x) = (G(x^(1/3)) + (r*G(r*x^(1/3)) + c.c.))/(3*x^(2/3)),
where c.c. denotes the complex conjugate of the preceding expression.
See also the J. Arndt link, sect. 36.1.4,p.688: "Multisection by selecting terms with exponents s mod M", with M=3, where the o.g.f.s for the M-sected sequences with interspersed zeros are given for the general case.

Crossrefs

Cf. A000108, A024492, A048990, A187358 (C(3*n+1)), A187359 (C(3*n+2)/2), A208745.

Programs

  • Mathematica
    Table[CatalanNumber[3*n], {n, 0, 20}] (* Amiram Eldar, Mar 16 2022 *)

Formula

a(n) = C(3*n), n >= 0, with C(n):= A000108(n) (Catalan).
O.g.f.: G0(x) = (sqrt(2*sqrt(1 + 4*x^(1/3) + 16*x^(2/3)) - (1 - 4*x^(1/3))) - sqrt(1 - 4*x^(1/3)))/(6*x^(1/3)).
From Ilya Gutkovskiy, Jan 13 2017: (Start)
E.g.f.: 3F3(1/6,1/2,5/6; 2/3,1,4/3; 64*x).
a(n) ~ 64^n/(3*sqrt(3*Pi)*n^(3/2)). (End)
D-finite with recurrence n*(3*n-1)*(3*n+1)*a(n) -8*(6*n-5)*(6*n-1)*(2*n-1)*a(n-1)=0. - R. J. Mathar, Feb 21 2020
Sum_{n>=0} a(n)/4^n = (4/3)^(3/4) (A208745). - Amiram Eldar, Mar 16 2022
a(n) = Product_{1 <= i <= j <= 3*n-1} (3*i + j + 2)/(3*i + j - 1). - Peter Bala, Feb 22 2023

A025225 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 2. Also a(n) = (2^n)*C(n-1), where C = A000108 (Catalan numbers).

Original entry on oeis.org

2, 4, 16, 80, 448, 2688, 16896, 109824, 732160, 4978688, 34398208, 240787456, 1704034304, 12171673600, 87636049920, 635361361920, 4634400522240, 33985603829760, 250420238745600, 1853109766717440, 13765958267043840, 102618961627054080, 767411365211013120
Offset: 1

Views

Author

Keywords

Comments

Number of generators of degree n of the Hopf algebra of 2-colored planar binary trees. Also, dimensions of the graded components of the primitive Lie algebra of the same Hopf algebra. - Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Jun 26 2008

Crossrefs

Essentially identical to A115125.
Cf. A052701.

Programs

  • Magma
    [2^n*Catalan(n-1): n in [1..30]]; // Vincenzo Librandi, Nov 06 2016
  • Maple
    a:= n-> (2^n)*binomial(2*n-2, n-1)/n:
    seq(a(n), n=1..25); # Alois P. Heinz, Jan 27 2012
  • Mathematica
    InverseSeries[Series[y/2-y^2/2, {y, 0, 24}], x] (* then A(x)=y(x) *) (* Len Smiley, Apr 13 2000 *)
    a[n_] := 2^n*CatalanNumber[n - 1]; Table[a[n], {n, 1, 23}] (* Jean-François Alcover, Jul 09 2013 *)
  • PARI
    a(n)=polcoeff((1-sqrt(1-8*x+x*O(x^n)))/2,n)
    

Formula

G.f.: (1-sqrt(1-8*x))/2. - Michael Somos, Jun 08 2000
Given g.f. C(x) and given A(x)= g.f. of A100238, then B(x)=A(x)-1-x satisfies B(x)=x-C(x*B(x)). - Michael Somos, Sep 07 2005
n*a(n) + 4*(-2*n+3)*a(n-1) = 0. - R. J. Mathar, Feb 25 2015
a(n) = 2*A052701(n). - Alois P. Heinz, Feb 16 2025

Extensions

Typo in definition corrected by R. J. Mathar, Aug 11 2008

A115140 O.g.f. inverse of Catalan A000108 o.g.f.

Original entry on oeis.org

1, -1, -1, -2, -5, -14, -42, -132, -429, -1430, -4862, -16796, -58786, -208012, -742900, -2674440, -9694845, -35357670, -129644790, -477638700, -1767263190, -6564120420, -24466267020, -91482563640, -343059613650, -1289904147324, -4861946401452, -18367353072152
Offset: 0

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Crossrefs

See A034807 and A115149 for comments.
For convolutions of this sequence see A115141-A115149.

Formula

O.g.f.: 1/c(x) = 1-x*c(x) with the o.g.f. c(x):=(1-sqrt(1-4*x))/(2*x) of A000108 (Catalan numbers).
a(0) = 1, a(n) = -C(n-1), n>=1, with C(n):=A000108(n) (Catalan).
G.f.: (1 + sqrt(1-4*x))/2=U(0) where U(k)=1 - x/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 29 2012
G.f.: 1/G(0) where G(k) = 1 - x/(x - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 12 2012
G.f.: G(0), where G(k)= 2*x*(2*k+1) + k + 1 - 2*x*(k+1)*(2*k+3)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Jul 14 2013
D-finite with recurrence n*a(n) +2*(-2*n+3)*a(n-1)=0. a(n) = A002420(n)/2, n>0. - R. J. Mathar, Aug 09 2015
a(n) ~ -2^(2*n-2) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, May 06 2021

A116382 Riordan array (1/sqrt(1-4*x^2), (1-2*x^2*c(x^2))*(x^2*c(x^2))/(x*(1-x-x^2*c(x^2)))) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 2, 1, 1, 0, 3, 2, 1, 6, 4, 5, 3, 1, 0, 10, 10, 8, 4, 1, 20, 15, 21, 19, 12, 5, 1, 0, 35, 42, 42, 32, 17, 6, 1, 70, 56, 84, 92, 77, 50, 23, 7, 1, 0, 126, 168, 192, 180, 131, 74, 30, 8, 1, 252, 210, 330, 405, 400, 326, 210, 105, 38, 9, 1
Offset: 0

Views

Author

Paul Barry, Feb 12 2006

Keywords

Comments

Row sums are A116383. Diagonal sums are A116384.
First column has e.g.f. Bessel_I(0,2*x) (A000984 with interpolated zeros).
Second column has e.g.f. Bessel_I(1,2*x) + Bessel_I(2,2*x) (A037952).
Third column has e.g.f. Bessel_I(2,2*x) + 2*Bessel_I(3,2*x) + Bessel_I(4,2*x) (A116385).
A binomial-Bessel triangle: column k has e.g.f. Sum_{j=0..k} C(k,j) * Bessel_I(k+j,2*x).

Examples

			Triangle begins
    1;
    0,   1;
    2,   1,   1;
    0,   3,   2,   1;
    6,   4,   5,   3,   1;
    0,  10,  10,   8,   4,   1;
   20,  15,  21,  19,  12,   5,   1;
    0,  35,  42,  42,  32,  17,   6,   1;
   70,  56,  84,  92,  77,  50,  23,   7,  1;
    0, 126, 168, 192, 180, 131,  74,  30,  8, 1;
  252, 210, 330, 405, 400, 326, 210, 105, 38, 9, 1;
		

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> Sum([0..n], j-> (-1)^(n-j)*Binomial(n,j)*Sum([0..j], m-> Binomial(j,m-k)*Binomial(m,j-m)  ))))); # G. C. Greubel, May 22 2019
  • Magma
    T:= func< n,k | (&+[(-1)^(n-j)*Binomial(n,j)*(&+[Binomial(j,m-k)* Binomial(m,j-m): m in [0..j]]): j in [0..n]]) >;
    [[T(n,k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 22 2019
    
  • Mathematica
    T[n_, k_] := Sum[(-1)^(n-j)*Binomial[n, j]*Sum[Binomial[j, i-k]* Binomial[i, j-i], {i, 0, j}], {j, 0, n}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 24 2018 *)
  • PARI
    {T(n,k) = sum(j=0,n, (-1)^(n-j)*binomial(n,j)*sum(m=0,j, binomial(j,m-k)*binomial(m,j-m) ))}; \\ G. C. Greubel, May 22 2019
    
  • Sage
    def T(n, k): return sum((-1)^(n-j)*binomial(n,j)*sum(binomial(j,m-k)*binomial(m,j-m) for m in (0..j)) for j in (0..n))
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 22 2019
    

Formula

Riordan array (1/sqrt(1-4*x^2), sqrt(1-4*x^2)*(1-sqrt(1-4*x^2))/(x-2*x^2 + x*sqrt(1-4*x^2))).
Number triangle T(n,k) = Sum{j=0..n} (-1)^(n-j)* C(n,j)*Sum_{i=0..j} C(j,i-k)*C(i,j-i).

A121839 Decimal expansion of Sum_{k>=1} 1/C(k), where C(k) is a Catalan Number (A000108).

Original entry on oeis.org

1, 8, 0, 6, 1, 3, 3, 0, 5, 0, 7, 7, 0, 7, 6, 3, 4, 8, 9, 1, 5, 2, 9, 2, 3, 6, 7, 0, 0, 6, 3, 1, 8, 0, 3, 2, 5, 4, 5, 9, 5, 8, 4, 9, 9, 9, 1, 5, 2, 3, 2, 9, 1, 4, 4, 6, 9, 7, 7, 2, 6, 6, 3, 7, 9, 5, 0, 2, 7, 6, 9, 6, 9, 3, 8, 9, 4, 9, 0, 6, 1, 4, 9, 7, 0, 7, 2, 2, 2, 1, 6, 9, 8, 3, 1, 3, 7, 8, 5, 2, 8, 2
Offset: 1

Views

Author

Alexander Adamchuk, Aug 28 2006

Keywords

Examples

			1.806133050770763489152923670063180325459584999152...
		

Crossrefs

Cf. A000108, A002390, A268813 (essentially the same).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); 1 + 4*Sqrt(3)*Pi(R)/27; // G. C. Greubel, Nov 04 2018
  • Maple
    evalf(1 + Sum((-1)^n*(2*n+1)/(9*n*(n+1)/2+1), n=0..infinity), 120); # Vaclav Kotesovec, May 31 2015
  • Mathematica
    RealDigits[N[Sum[n!(n + 1)!/(2n)!, {n, 1, Infinity}], 150]]
    RealDigits[N[1+4*Sqrt[3]*Pi/27,100]][[1]]
  • PARI
    default(realprecision,100); 1 + 4*sqrt(3)*Pi/27
    

Formula

Reciprocal Catalan Constant C = 1 + 4*sqrt(3)*Pi/27.
This number is f(1) where f(x) = -1 + 2*(sqrt(4-x)*(8+x) + 12 * sqrt(x) * arctan(sqrt(x)/sqrt(4-x))) / sqrt((4-x)^5). This form corresponds to a generating function of the reciprocal Catalan numbers in the sense of Sprugnoli. - Juan M. Marquez, Mar 05 2009
Equals -1 + hypergeom([1,2],[1/2],1/4); note hypergeom([1,2],[1/2],x/4) = 1/1 + 1/1*x + 1/2*x^2 + 1/5*x^3 + 1/14*x^4 + 1/42*x^5 + ... is the g.f. for the inverse Catalan numbers (including C(0)). - Joerg Arndt, Apr 06 2013
From Vaclav Kotesovec, May 31 2015: (Start)
Equals 1 + Integral_{x=0..1} Product_{k>=1} (1-x^(9*k))^3 dx.
Equals 1 + Sum_{n>=0} (-1)^n * (2*n+1) / (9*n*(n+1)/2 + 1).
(End)
Equals 1 + Integral_{0..inf} x^3 BesselI_0(x) BesselK_0(x)^2 dx. - Jean-François Alcover, Jun 06 2016
From Amiram Eldar, Jul 05 2020: (Start)
Equals 1 + gamma(4/3)*gamma(5/3).
Equals 1 + Integral_{x=0..oo} dx/(1 + x^3)^2. (End)

A201204 Half-convolution of Catalan sequence A000108 with itself.

Original entry on oeis.org

1, 1, 3, 7, 23, 66, 227, 715, 2529, 8398, 30275, 104006, 380162, 1337220, 4939443, 17678835, 65844845, 238819350, 895451117, 3282060210, 12374186318, 45741281820, 173257703723, 644952073662, 2452607696798, 9183676536076, 35042725663002, 131873975875180, 504697422982484, 1907493251046152
Offset: 0

Views

Author

Wolfdieter Lang, Jan 02 2012

Keywords

Comments

In general the half-convolution of a sequence {b(n)}_0^infty with itself is defined by chat(n):=sum(b(k)*b(n-k), k=0..floor(n/2)), n>=0. The o.g.f. of the sequence {chat(n)} is obtained from the bisection 2*chat(2*k) - b(k)^2 = c(2*k), k>=0, with the ordinary convolution c(n):=sum(b(k)*b(n-k),k=0..n), n>=0, and 2*chat(2*k+1) = c(2*k+1), k>=0. This leads to the o.g.f.s for the corresponding even (e) and odd (o) parts:
2*Chate(x) - B2(x) = Ce(x) and 2*Chato(x) = Co(x), where Chate(x):= sum(chat(2*k)*x^k,k=0..infty), Chato(x):= sum(chat(2*k+1)*x^k,k=0..infty), B2(x) := sum(b(k)^2*x^k, k=0..infty), Ce(x) := sum(c(2*k)*x^k, k=0..infty) and Co(x) := sum(c(2*k+1)*x^k, k=0..infty). Thus Chate(x)=(Ce(x) + B2(x))/2 and Chato(x)=Co(x)/2. Expressing this in terms of C(x), the o.g.f. of {c(n)}, and B2(x) leads to the result: Chat(x)= (C(x) + B2(x^2))/2.
In the Catalan case b(n)=A000108(n), c(n)=b(n+1), C(x)= (cata(x)+1)/x, with the o.g.f. of A000108 cata(x)=(1-sqrt(1-4*x))/(2*x), and B2(x) is found under A001246 to be (-1 + hypergeom([-1/2,-1/2],[1],16*x))/(4*x). This produces the o.g.f. given in the formula section.
This computation was motivated by a question about the o.g.f. of A000992 ("half-Catalan numbers"). Note, however, that this sequence is not the half-convolution of the Catalan numbers presented here.
Apparently the number of hills to the left of or at the midpoint in all Dyck paths of semilength n+1. [David Scambler, Apr 30 2013]

Crossrefs

A000108, bisection: A201205 and A065097.

Programs

  • Maple
    C:= n -> binomial(2*n,n)/(n+1):
    A:= n -> add(C(k)*C(n-k),k=0..floor(n/2));
    seq(A(i),i=1..100); # Robert Israel, Jun 06 2014
  • Mathematica
    Table[Sum[CatalanNumber[k]CatalanNumber[n-k],{k,0,Floor[n/2]}],{n,0,30}] (* Harvey P. Dale, Jun 12 2012 *)
    Table[CatalanNumber[n + 1]/2 + 2^(2 n + 1) Binomial[1/2, n/2 + 1]^2, {n, 0, 30}] (* Vladimir Reshetnikov, Oct 03 2016 *)

Formula

a(n) = sum(Catalan(k)*Catalan(n-k),k=0..floor(n/2)), n>=0, with Catalan(n)=A000108(n).
O.g.f.: G(x)=(catalan(x)-1)/(2*x)+(-1+hypergeom([-1/2,-1/2],[1],16*x^2))/(8*x^2), with the o.g.f. catalan(x) of the Catalan numbers (see also the comment section).
a(n) ~ 2^(2*n+1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 15 2014
a(n) = A000108(n+1)/2 + 2^(2*n+1) * binomial(1/2, n/2+1)^2. - Vladimir Reshetnikov, Oct 03 2016
D-finite with recurrence: (n+1)*(n+2)^2*a(n) +6*(n-2)*(n+1)^2*a(n-1) +4*(-16*n^3+25*n^2+4*n-4)*a(n-2) +16*(-4*n^3+25*n^2-56*n+41)*a(n-3) +192*(4*n-7)*(n-3)^2*a(n-4) -256*(2*n-7)*(n-4)^2*a(n-5)=0. - R. J. Mathar, Feb 21 2020
Previous Showing 21-30 of 4208 results. Next