cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A008619 Positive integers repeated.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38
Offset: 0

Views

Author

Keywords

Comments

The floor of the arithmetic mean of the first n+1 positive integers. - Cino Hilliard, Sep 06 2003
Number of partitions of n into powers of 2 where no power is used more than three times, or 4th binary partition function (see A072170).
Number of partitions of n in which the greatest part is at most 2. - Robert G. Wilson v, Jan 11 2002
Number of partitions of n into at most 2 parts. - Jon Perry, Jun 16 2003
a(n) = #{k=0..n: k+n is even}. - Paul Barry, Sep 13 2003
Number of symmetric Dyck paths of semilength n+2 and having two peaks. E.g., a(6)=4 because we have UUUUUUU*DU*DDDDDDD, UUUUUU*DDUU*DDDDDD, UUUUU*DDDUUU*DDDDD and UUUU*DDDDUUUU*DDDD, where U=(1,1), D=(1,-1) and * indicates a peak. - Emeric Deutsch, Jan 12 2004
Smallest positive integer whose harmonic mean with another positive integer is n (for n > 0). For example, a(6)=4 is already given (as 4 is the smallest positive integer such that the harmonic mean of 4 (with 12) is 6) - but the harmonic mean of 2 (with -6) is also 6 and 2 < 4, so the two positive integer restrictions need to be imposed to rule out both 2 and -6.
Second outermost diagonal of Losanitsch's triangle (A034851). - Alonso del Arte, Mar 12 2006
Arithmetic mean of n-th row of A080511. - Amarnath Murthy, Mar 20 2003
a(n) is the number of ways to pay n euros (or dollars) with coins of one and two euros (respectively dollars). - Richard Choulet and Robert G. Wilson v, Dec 31 2007
Inverse binomial transform of A045623. - Philippe Deléham, Dec 30 2008
Coefficient of q^n in the expansion of (m choose 2)_q as m goes to infinity. - Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
Binomial transform of (-1)^n*A034008(n) = [1,0,1,-2,4,-8,16,-32,...]. - Philippe Deléham, Nov 15 2009
From Jon Perry_, Nov 16 2010: (Start)
Column sums of:
1 1 1 1 1 1...
1 1 1 1...
1 1...
..............
--------------
1 1 2 2 3 3... (End)
This sequence is also the half-convolution of the powers of 1 sequence A000012 with itself. For the definition of half-convolution see a comment on A201204, where also the rule for the o.g.f. is given. - Wolfdieter Lang, Jan 09 2012
a(n) is also the number of roots of the n-th Bernoulli polynomial in the right half-plane for n>0. - Michel Lagneau, Nov 08 2012
a(n) is the number of symmetry-allowed, linearly-independent terms at n-th order in the series expansion of the Exe vibronic perturbation matrix, H(Q) (cf. Viel & Eisfeld). - Bradley Klee, Jul 21 2015
a(n) is the number of distinct integers in the n-th row of Pascal's triangle. - Melvin Peralta, Feb 03 2016
a(n+1) for n >= 3 is the diameter of the Generalized Petersen Graph G(n, 1). - Nick Mayers, Jun 06 2016
The arithmetic function v_1(n,2) as defined in A289198. - Robert Price, Aug 22 2017
Also, this sequence is the second column in the triangle of the coefficients of the sum of two consecutive Fibonacci polynomials F(n+1, x) and F(n, x) (n>=0) in ascending powers of x. - Mohammad K. Azarian, Jul 18 2018
a(n+2) is the least k such that given any k integers, there exist two of them whose sum or difference is divisible by n. - Pablo Hueso Merino, May 09 2020
Column k = 2 of A051159. - John Keith, Jun 28 2021

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 109, Eq. [6c]; p. 116, P(n,2).
  • D. Parisse, 'The tower of Hanoi and the Stern-Brocot Array', Thesis, Munich 1997

Crossrefs

Essentially same as A004526.
Harmonic mean of a(n) and A056136 is n.
a(n)=A010766(n+2, 2).
Cf. A010551 (partial products).
Cf. A263997 (a block spiral).
Cf. A289187.
Column 2 of A235791.

Programs

  • Haskell
    a008619 = (+ 1) . (`div` 2)
    a008619_list = concatMap (\x -> [x,x]) [1..]
    -- Reinhard Zumkeller, Apr 02 2012
    
  • Magma
    I:=[1,1,2]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..100]]; // Vincenzo Librandi, Feb 04 2015
    
  • Maple
    a:= n-> iquo(n+2, 2): seq(a(n), n=0..75);
  • Mathematica
    Flatten[Table[{n,n},{n,35}]] (* Harvey P. Dale, Sep 20 2011 *)
    With[{c=Range[40]},Riffle[c,c]] (* Harvey P. Dale, Feb 23 2013 *)
    CoefficientList[Series[1/(1 - x - x^2 + x^3), {x, 0, 75}], x] (* Robert G. Wilson v, Feb 05 2015 *)
    LinearRecurrence[{1, 1, -1}, {1, 1, 2}, 75] (* Robert G. Wilson v, Feb 05 2015 *)
    Table[QBinomial[n, 2, -1], {n, 2, 75}] (* John Keith, Jun 28 2021 *)
  • PARI
    a(n)=n\2+1
    
  • Python
    def A008619(n): return (n>>1)+1 # Chai Wah Wu, Jul 07 2022
  • Sage
    a = lambda n: 1 if n==0 else a(n-1)+1 if 2.divides(n) else a(n-1) # Peter Luschny, Feb 05 2015
    
  • Scala
    (2 to 99).map( / 2) // _Alonso del Arte, May 09 2020
    

Formula

Euler transform of [1, 1].
a(n) = 1 + floor(n/2).
G.f.: 1/((1-x)(1-x^2)).
E.g.f.: ((3+2*x)*exp(x) + exp(-x))/4.
a(n) = a(n-1) + a(n-2) - a(n-3) = -a(-3-n).
a(0) = a(1) = 1 and a(n) = floor( (a(n-1) + a(n-2))/2 + 1 ).
a(n) = (2*n + 3 + (-1)^n)/4. - Paul Barry, May 27 2003
a(n) = Sum_{k=0..n} Sum_{j=0..k} Sum_{i=0..j} binomial(j, i)*(-2)^i. - Paul Barry, Aug 26 2003
E.g.f.: ((1+x)*exp(x) + cosh(x))/2. - Paul Barry, Sep 13 2003
a(n) = A108299(n-1,n)*(-1)^floor(n/2) for n > 0. - Reinhard Zumkeller, Jun 01 2005
a(n) = A108561(n+2,n) for n > 0. - Reinhard Zumkeller, Jun 10 2005
a(n) = A125291(A125293(n)) for n>0. - Reinhard Zumkeller, Nov 26 2006
a(n) = ceiling(n/2), n >= 1. - Mohammad K. Azarian, May 22 2007
INVERT transformation yields A006054 without leading zeros. INVERTi transformation yields negative of A124745 with the first 5 terms there dropped. - R. J. Mathar, Sep 11 2008
a(n) = A026820(n,2) for n > 1. - Reinhard Zumkeller, Jan 21 2010
a(n) = n - a(n-1) + 1 (with a(0)=1). - Vincenzo Librandi, Nov 19 2010
a(n) = A000217(n) / A110654(n). - Reinhard Zumkeller, Aug 24 2011
a(n+1) = A181971(n,n). - Reinhard Zumkeller, Jul 09 2012
1/(1+2/(2+3/(3+4/(4+5/(5+...(continued fraction))))) = 1/(e-1), see A073333. - Philippe Deléham, Mar 09 2013
a(n) = floor(A000217(n)/n), n > 0. - L. Edson Jeffery, Jul 26 2013
a(n) = n*a(n-1) mod (n+1) = -a(n-1) mod (n+1), the least positive residue modulo n+1 for each expression for n > 0, with a(0) = 1 (basically restatements of Vincenzo Librandi's formula). - Rick L. Shepherd, Apr 02 2014
a(n) = (a(0) + a(1) + ... + a(n-1))/a(n-1), where a(0) = 1. - Melvin Peralta, Jun 16 2015
a(n) = Sum_{k=0..n} (-1)^(n-k) * (k+1). - Rick L. Shepherd, Sep 18 2020
a(n) = a(n-2) + 1 for n >= 2. - Vladimír Modrák, Sep 29 2020
a(n) = A004526(n)+1. - Chai Wah Wu, Jul 07 2022

Extensions

Additional remarks from Daniele Parisse
Edited by N. J. A. Sloane, Sep 06 2009
Partially edited by Joerg Arndt, Mar 11 2010

A000992 "Half-Catalan numbers": a(n) = Sum_{k=1..floor(n/2)} a(k)*a(n-k) with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 24, 47, 103, 214, 481, 1030, 2337, 5131, 11813, 26329, 60958, 137821, 321690, 734428, 1721998, 3966556, 9352353, 21683445, 51296030, 119663812, 284198136, 666132304, 1586230523, 3734594241, 8919845275, 21075282588, 50441436842
Offset: 1

Views

Author

Keywords

Comments

From David Callan, Nov 02 2006: (Start)
a(n) = number of (unlabeled, rooted) ordered trees on n-1 vertices in which all outdegrees are <= 2 and, for each vertex of outdegree 2, the sizes of its two subtrees are weakly increasing left to right (n >= 2). The number b(n) of such trees on n vertices satisfies the recurrence b[1]=1; b[n_]/;n>=2 := b[n] = b[n-1] + Sum_{i=1..floor((n-1)/2)} b[i]b[n-1-i], the first term counting trees whose root has outdegree 1 and the sum counting trees whose root has outdegree 2 by size of the left subtree. This recurrence generates b(n) = a(n+1), n >= 1. For example, the a(5)=3 such trees are:
.|....|...../\..
.|.../.\.....|..
.|.............. (End)
From R. J. Mathar, Mar 27 2009: (Start)
The connection with the Rayleigh polynomials Phi(2n,x) of A158616 is that Phi(2n,x) = Sum_{i=1..a(n)} 2^(n_i) Product_{j=2..n-1} (x+j)^(n_ij), as described by Kishore.
So a(n) counts the terms in the representation of the polynomial Phi(2n,x) as a sum over these "base" polynomials.
For example, Phi(12,x) = 2^4*(x+2)^2*(x+3) + 2^2*(x+2)*(x+3)^2 + 2^3*(x+2)*(x+3)*(x+4) + 2^3*(x+2)*(x+3)*(x+5) + 2^2*(x+2)*(x+4)*(x+5) + 2*(x+3)^2*(x+5) has a(6)=6 terms. (End)
From Wolfdieter Lang, Jan 06 2012: (Start)
The o.g.f. G(x) := Sum_{n>=0} a(n)*x^n, with a(0)=0, satisfies the relation (G(x))^2 - 2*G(x) + G2(x^2) + 2*x = 0, with the o.g.f. G2(x) := Sum_{n>=0} a(n)^2*x^n of the squares. This can be proved from the connection to the half-convolution of the sequence with itself (for this notion see a comment on A201204, where also the rule for the o.g.f. is given). (End)
Limit_{n->infinity} a(n)^(1/n) = 2.49086422... . - Vaclav Kotesovec, Oct 15 2014
This sequence diverges from A001190 for n >= 8. A001190(n) gives the number of unlabeled binary trees with n leaves and n-1 internal nodes. - Andrew Howroyd, Apr 01 2023

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 24*x^8 + 47*x^9 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Compare recurrence for A000108 (the Catalan numbers).
A093637 counts above trees without the restriction that all outdegrees are <= 2.

Programs

  • Haskell
    a000992 n = a000992_list !! (n-1)
    a000992_list = 1 : f 1 0 [1] where
       f x y zs = z : f (x + y) (1 - y) (z:zs) where
         z = sum $ take x $ zipWith (*) zs $ reverse zs
    -- Reinhard Zumkeller, Dec 21 2011
    
  • Maple
    al := 1/2; M1 := 30; a[ 0 ] := 1; for n from 0 to M1 do n0 := floor(al*n);
    a[ n+1 ] := sum( a[ i ]*a[ n-i ], i=0..n0); i := 'i'; od: [ seq(a[ j ],j=0..M1) ];
    # second Maple program:
    a:= proc(n) option remember; `if`(n=1, 1,
          add(a(j)*a(n-j), j=1..n/2))
        end:
    seq(a(n), n=1..42);  # Alois P. Heinz, Sep 22 2019
  • Mathematica
    a[1]=1; a[n_]:=a[n]=Sum[a[k] a[n-k],{k,1,Floor[n/2]}]; Table[a[n],{n,1,32}] (* Jean-François Alcover, Mar 21 2011 *)
  • PARI
    A000992_list(n)={for(i=4,#n=vector(n,i,1),n[i]=sum(j=1,i\2,n[j]*n[i-j]));n}  \\ M. F. Hasler, Dec 20 2011
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A000992(n): return sum(A000992(k)*A000992(n-k) for k in range(1,(n>>1)+1)) if n>1 else 1 # Chai Wah Wu, Nov 04 2024

A065097 a(n) = ((2n+1) + (2n-1) - 1)!/((2n+1)!*(2n-1)!).

Original entry on oeis.org

1, 1, 7, 66, 715, 8398, 104006, 1337220, 17678835, 238819350, 3282060210, 45741281820, 644952073662, 9183676536076, 131873975875180, 1907493251046152, 27767032438524099, 406472021074865382, 5979899192930226746, 88366931393503350700, 1311063521138246054410
Offset: 0

Views

Author

Len Smiley, Nov 11 2001

Keywords

Comments

A Catalan-like formula using consecutive odd numbers. Recall that Catalan numbers (A000108) are given by ((n+1)+(n)-1)!/((n+1)!(n)!).
From David Callan, Jun 01 2006: (Start)
a(n) = number of Dyck (2n)-paths (i.e., semilength = 2n) all of whose interior returns to ground level (if any) occur at or before the (2n-2)-nd step, that is, they occur strictly before the midpoint of the path.
For example, a(2)=7 counts UUUUDDDD, UUUDUDDD, UUDUUDDD, UUDUDUDD, UUUDDUDD, UD.UUUDDD, UD.UUDUDD ("." denotes an interior return to ground level).
This result follows immediately from an involution on Dyck paths, due to Emeric Deutsch, defined by E->E, UPDQ -> UQDP (where E is the empty Dyck path; U=upstep, D=downstep and P,Q are arbitrary Dyck paths), because the involution is fixed-point-free on Dyck (2n)-paths and contains one path of the type being counted in each orbit.
a(n) = Sum_{k=0..n-1} C(2n-1-2k)*C(2k). This identity has the following combinatorial interpretation:
a(n) is the number of odd-GL-marked Dyck (2n-1)-paths. An odd-GL vertex is a vertex at location (2i,0) for some odd i >= 1 (path starts at origin). An odd-GL-marked Dyck path is a Dyck path with one of its odd-GL vertices marked. For example, a(2)=7 counts UUUDDD*, UUDUDD*, UD*UUDD, UDUUDD*, UD*UDUD, UDUDUD*, UUDDUD* (the * denotes the marked odd-GL vertex). (End)
a(n+1) = Sum_{k=0..n} C(k)*C(2*n+1-k), n >= 0, with C(n) = A000108(n), also gives the odd part of the bisection of the half-convolution of the Catalan sequence A000108 with itself. For the definition of the half-convolution of a sequence with itself see a comment on A201204. There one also finds the rule for the o.g.f. given below in the formula section. The even part of this bisection is found under A201205. - Wolfdieter Lang, Jan 05 2012
From Peter Bala, Dec 01 2015: (Start)
Let x = p/q be a positive rational in reduced form with p,q > 0. Define Cat(x) = (1/(2*p + q))*binomial(2*p + q, p). Then Cat(n) = Catalan(n). This sequence is Cat(n + 1/2) = (1/(4*n + 4))*binomial(4*n + 4, 2*n + 1). Cf. A265101 (Cat(n + 1/3)), A265102 (Cat(n + 1/4)) and A265103 (Cat(n + 1/5)).
Number of maximal faces of the rational associahedron Ass(2*n + 1, 2*n + 3). Number of lattice paths from (0, 0) to (2*n + 3, 2*n + 1) using steps of the form (1, 0) and (0, 1) and staying above the line y = (2*n + 1)/(2*n + 3)*x. See Armstrong et al. (End)
Also the number of ordered rooted trees with 2n nodes, most of which are leaves, i.e., the odd bisection of A358585. This follows from Callan's formula below. - Gus Wiseman, Nov 27 2022

Examples

			G.f.: 1 + x + 7*x^2 + 66*x^3 + 715*x^4 + 8398*x^5 + 104006*x^6 + ...
		

Crossrefs

Cf. A003150 (for analog with consecutive Fibonacci numbers).

Programs

  • Magma
    [Binomial(4*n-1, 2*n-1)/(2*n+1): n in [1..20]]; // Vincenzo Librandi, Dec 09 2015
  • Maple
    seq(binomial(4*n-1,2*n-1)/(2*n+1), n=0..30); # Robert Israel, Dec 08 2015
  • Mathematica
    a[ n_] := If[ n < 1, 0, Binomial[ 4 n - 1, 2 n - 1] / (2 n + 1)]; (* Michael Somos, Oct 25 2014 *)
  • MuPAD
    combinat::dyckWords::count(2*n)/2 $ n = 1..26 // Zerinvary Lajos, Apr 25 2007
    
  • PARI
    a(n) = { if(n==0, 1, (4*n - 1)!/((2*n + 1)!*(2*n - 1)!)) } \\ Harry J. Smith, Oct 07 2009
    
  • PARI
    vector(20, n, binomial(4*n-1, 2*n-1)/(2*n+1)) \\ Altug Alkan, Dec 08 2015
    
  • Sage
    A065097 = lambda n: hypergeometric([1-2*n,-2*n],[2],1)/2
    [Integer(A065097(n).n(500)) for n in (1..20)] # Peter Luschny, Sep 22 2014
    

Formula

a(n) = binomial(4*n-1, 2*n-1)/(2*n+1).
a(n) = C(2n)/2 where C(n) is the Catalan number A000108. - David Callan, Jun 01 2006
G.f.: 1/2 + (sqrt(2)/2)/sqrt(1+sqrt(1-16*x)). - Vladeta Jovovic, Sep 26 2003
G.f.: 1 + 3F2([1, 5/4, 7/4], [2, 5/2], 16*x). - Olivier Gérard, Feb 16 2011
O.g.f.: (1 + (cata(sqrt(x)) + cata(-sqrt(x)))/2)/2, with the o.g.f. cata(x) of the Catalan numbers. See the W. Lang comment above. - Wolfdieter Lang, Jan 05 2012
a(n) = hypergeometric([1-2*n,-2*n],[2],1)/2. - Peter Luschny, Sep 22 2014
a(n) = A001448(n) / (4*n + 2) if n>0. - Michael Somos, Oct 25 2014
n*(2*n+1)*a(n) - 2*(4*n-1)*(4*n-3)*a(n-1) = 0. - R. J. Mathar, Oct 31 2015
O.g.f. is 1 + Revert( x*(1 + x)/(1 + 2*x)^4 ). - Peter Bala, Dec 01 2015
Sum_{n>=0} 1/a(n) = 39/25 + 4*Pi/(9*sqrt(3)) - 24*log(phi)/(25*sqrt(5)), where phi is the golden ratio (A001622). - Amiram Eldar, Mar 02 2023
From Peter Bala, Apr 29 2024: (Start)
For n >= 1, a(n) = (1/8)*Sum_{k = 0..2*n-1} (-1)^k * 4^(2*n-k)*binomial(2*n-1, k)*Catalan(k+1).
For n >= 1, a(n) = (1/8)*(16^n)*hypergeom([1 - 2*n, 3/2], [3], 1). (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 28 2021

A001870 Expansion of (1-x)/(1 - 3*x + x^2)^2.

Original entry on oeis.org

1, 5, 19, 65, 210, 654, 1985, 5911, 17345, 50305, 144516, 411900, 1166209, 3283145, 9197455, 25655489, 71293590, 197452746, 545222465, 1501460635, 4124739581, 11306252545, 30928921224, 84451726200, 230204999425
Offset: 0

Views

Author

Keywords

Comments

a(n) = ((n+1)*F(2*n+3)+(2*n+3)*F(2*(n+1)))/5 with F(n)=A000045(n) (Fibonacci numbers). One half of odd-indexed A001629(n), n >= 2 (Fibonacci convolution).
Convolution of F(2n+1) (A001519) and F(2n+2) (A001906(n+1)). - Graeme McRae, Jun 07 2006
Number of reentrant corners along the lower contours of all directed column-convex polyominoes of area n+3 (a reentrant corner along the lower contour is a vertical step that is followed by a horizontal step). a(n) = Sum_{k=0..ceiling((n+1)/2)} k*A121466(n+3,k). - Emeric Deutsch, Aug 02 2006
From Wolfdieter Lang, Jan 02 2012: (Start)
a(n) = A024458(2*n), n >= 1 (bisection, even arguments).
a(n) is also the odd part of the bisection of the half-convolution of the sequence A000045(n+1), n >= 0, with itself. See a comment on A201204 for the definition of the half-convolution of a sequence with itself. There one also finds the rule for the o.g.f. which in this case is Chato(x)/2 with the o.g.f. Chato(x) = 2*(1-x)/(1-3*x+x^2)^2 of A001629(2*n+3), n >= 0.
(End)

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = A060921(n+1, 1)/2.
Partial sums of A030267. First differences of A001871.
Cf. A121466.
Cf. A023610.

Programs

  • GAP
    F:=Fibonacci;; List([0..30], n-> ((n+1)*F(2*n+3)+(2*n+3)*F(2*(n+1)))/5); # G. C. Greubel, Jul 15 2019
  • Haskell
    a001870 n = a001870_list !! n
    a001870_list = uncurry c $ splitAt 1 $ tail a000045_list where
       c us vs'@(v:vs) = (sum $ zipWith (*) us vs') : c (v:us) vs
    -- Reinhard Zumkeller, Oct 31 2013
    
  • Magma
    I:=[1, 5, 19, 65]; [n le 4 select I[n] else 6*Self(n-1) -11*Self(n-2)+6*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 10 2012
    
  • Maple
    A001870:=-(-1+z)/(z**2-3*z+1)**2; # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    CoefficientList[Series[(1-x)/(1-3*x+x^2)^2,{x,0,40}],x] (* Vincenzo Librandi, Jun 10 2012 *)
    LinearRecurrence[{6,-11,6,-1},{1,5,19,65},30] (* Harvey P. Dale, Aug 17 2013 *)
    With[{F=Fibonacci}, Table[((n+1)*F[2*n+3]+(2*n+3)*F[2*n+2])/5, {n,0,30}]] (* G. C. Greubel, Jul 15 2019 *)
  • PARI
    Vec((1-x)/(1-3*x+x^2)^2+O(x^30)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • Sage
    f=fibonacci; [((n+1)*f(2*n+3)+(2*n+3)*f(2*n+2))/5 for n in (0..30)] # G. C. Greubel, Jul 15 2019
    

Formula

a(n) = Sum_{k=1..n+1} k*binomial(n+k+1, 2k). - Emeric Deutsch, Jun 11 2003
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 10 2012
a(n) = (A238846(n) + A001871(n))/2. - Philippe Deléham, Mar 06 2014
a(n) = ((2*n-1)*Fibonacci(2*n) - n*Fibonacci(2*n-1))/5 [Czabarka et al.]. - N. J. A. Sloane, Sep 18 2018
E.g.f.: exp(3*x/2)*(5*(5 + 11*x)*cosh(sqrt(5)*x/2) + sqrt(5)*(13 + 25*x)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Mar 04 2025

Extensions

More terms from Christian G. Bower

A024458 a(n) = s(1)*s(n) + s(2)*s(n-1) + ... + s(k)*s(n+1-k), where k = floor((n+1)/2), s = (Fibonacci numbers).

Original entry on oeis.org

1, 1, 3, 5, 12, 19, 40, 65, 130, 210, 404, 654, 1227, 1985, 3653, 5911, 10720, 17345, 31090, 50305, 89316, 144516, 254568, 411900, 720757, 1166209, 2029095, 3283145, 5684340, 9197455, 15855964, 25655489, 44061862, 71293590, 122032508
Offset: 1

Views

Author

Keywords

Comments

From Wolfdieter Lang, Jan 02 2012: (Start)
chat(n):=a(n+1), n>=0, is the half-convolution of the sequence A000045(n+1), n>=0, with itself. For the definition of half-convolution see a comment on A201204, where also the rule to find the o.g.f. is given. Here the o.g.f. is obtained from (U(x)^2 + U2(x^2))/2 with U(x)=1/(1-x-x^2), the o.g.f. of A000045(n+1), n>=0, and U2(x):=(1-x)/((1+x)*(1-3*x+x^2)) the o.g.f. of A007598(n+1), n>=0. This coincides with the o.g.f. given below in the formula section after x has been divided.
For the bisection of this half-convolution see A027991(n+1) and A001870(n), n>=0.
(End)

Crossrefs

Programs

  • Magma
    [(&+[Fibonacci(j+1)*Fibonacci(n-j): j in [0..Floor((n-1)/2)]]): n in [1..50]]; // G. C. Greubel, Apr 06 2022
    
  • Mathematica
    Table[((13-5(-1)^n +10n)Fibonacci[n] + (1-(-1)^n +2n)LucasL[n] +8Sin[Pi*n/2])/40, {n, 30}] (* Vladimir Reshetnikov, Oct 03 2016 *)
    LinearRecurrence[{1,3,-2,0,-2,-3,1,1},{1,1,3,5,12,19,40,65},40] (* Harvey P. Dale, Mar 02 2023 *)
  • SageMath
    def A024458(n): return sum(fibonacci(j+1)*fibonacci(n-j) for j in (0..((n-1)//2)) )
    [A024458(n) for n in (1..50)] # G. C. Greubel, Apr 06 2022

Formula

G.f.: x*(1-x^2+x^3)/((1+x^2)*(1+x-x^2)*(1-x-x^2)^2).
a(n) = ((13 - 5*(-1)^n + 10*n)*A000045(n) + (1 - (-1)^n + 2*n)*A000032(n) + 8*sin(Pi*n/2))/40. - Vladimir Reshetnikov, Oct 03 2016
From G. C. Greubel, Apr 06 2022: (Start)
a(2*n) = (1/5)*(n*Lucas(2*n+1) + Fibonacci(2*n)), n >= 1.
a(2*n+1) = (1/5)*((-1)^n + (n+1)*Lucas(2*n+2) + Fibonacci(2*n+1)), n >= 0.
a(n) = Sum_{j=0..floor((n-1)/2)} fibonacci(j+1)*Fibonacci(n-j). (End)

Extensions

More terms from James Sellers, May 03 2000

A201205 Bisection of half-convolution of Catalan sequence A000108; even part.

Original entry on oeis.org

1, 3, 23, 227, 2529, 30275, 380162, 4939443, 65844845, 895451117, 12374186318, 173257703723, 2452607696798, 35042725663002, 504697422982484, 7319313029400467, 106793147620036005, 1566546633240722681, 23089471526179716182, 341774295456352388245
Offset: 0

Views

Author

Wolfdieter Lang, Jan 02 2012

Keywords

Comments

For the definition of the half-convolution of a sequence with itself see a comment to A201204.
The odd part of this bisection is found under A065097.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 1+2*n,
          (2*n*(256*n^5-544*n^4+256*n^3+75*n^2-69*n+12)*a(n-1)
           -(8*(4*n-5))*(4*n-3)*(8*n^2+n-1)*(2*n-3)^2*a(n-2))/
          ((2*n+1)*n*(8*n^2-15*n+6)*(n+1)^2))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 28 2015
  • Mathematica
    Table[(CatalanNumber[2 n + 1] + CatalanNumber[n]^2)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *)

Formula

a(n) = sum(Catalan(k)*Catalan(2*n-k),k=0..n), n>=0, with Catalan(n)=A000108(n).
O.g.f: Ge(x)=(catao(x)+cata2(x))/2 with catao(x):= sum(Catalan(2*k+1)*x^k,k=0..infty) = (cata(sqrt(x)) - cata(-sqrt(x)))/(2*x), with the o.g.f. cata(x) of A000108, and cata2(x):=sum(Catalan(n)^2,n=0..infty) given in A001246 as (-1 + hypergeom( [-1/2,-1/2],[1],16*x))/(4*x).
a(n) = A028364(2n,n) = A067323(2n,n). - Alois P. Heinz, Nov 28 2015
a(n) = (A000108(2*n+1) + A000108(n)^2)/2. - Vladimir Reshetnikov, Oct 03 2016

Extensions

Cross-reference corrected by Robert Israel, Jun 06 2014

A203574 Bisection of A099924 (Lucas convolution); one half of the terms with odd arguments.

Original entry on oeis.org

2, 11, 41, 137, 435, 1338, 4024, 11899, 34723, 100255, 286947, 815316, 2302286, 6466667, 18079805, 50343893, 139683219, 386328654, 1065440068, 2930780635, 8043131767, 22026515371, 60203886531, 164259660072, 447431169050, 1216927557323
Offset: 0

Views

Author

Wolfdieter Lang, Jan 03 2012

Keywords

Comments

The even part of this bisection of A099924 is found in A203573.
This is also the odd part of the bisection of A201207 (half-convolution of the Lucas sequence with itself). See a comment on A201204 for the definition of half-convolution of a sequence with itself. There the rule for the o.g.f. is given.

Crossrefs

Programs

  • Magma
    I:=[2,11,41,137]; [n le 4 select I[n] else 6*Self(n-1) - 11*Self(n-2) + 6*Self(n-3) - Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 22 2017
  • Mathematica
    CoefficientList[Series[(2-x-3x^2)/(1-3x+x^2)^2,{x,0,30}],x] (* or *) LinearRecurrence[{6,-11,6,-1},{2,11,41,137},30] (* Harvey P. Dale, Oct 12 2015 *)
  • PARI
    x='x+O('x^30); Vec((2-x-3x^2)/(1-3x+x^2)^2) \\ G. C. Greubel, Dec 22 2017
    

Formula

a(n) = A099924(2*n+1)/2, n>=0.
O.g.f.: (2-x-3*x^2)/(1-3*x+x^2)^2.
a(n) = (3+2*n)*F(2*n) + (2+n)*F(2*n+1), with the Fibonacci numbers F(n)=A000045(n). From the partial fraction decomposition of the o.g.f. and the Fibonacci recurrence.
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4); a(0)=2, a(1)=11, a(2)=41, a(3)=137. - Harvey P. Dale, Oct 12 2015

A203576 Exponential (or binomial) half-convolution of A000984 (central binomial) with itself.

Original entry on oeis.org

1, 2, 14, 56, 446, 2152, 18248, 97120, 848254, 4796552, 42454664, 250140640, 2226532712, 13516860320, 120553738144, 748819997056, 6679690686334, 42254745008840, 376638926040392, 2418457241945056, 21530200591563496, 139992790135717792, 1244418656720926624, 8178446389043428736
Offset: 0

Views

Author

Wolfdieter Lang, Jan 13 2012

Keywords

Comments

In general the exponential (also known as binomial) half-convolution of a sequence {b(n), n>=0} with itself is defined by
bhat(n) := Sum_{k=0..floor(n/2)} binomial(n,k)*b(k)*b(n-k), n>=0.
The e.g.f. of the sequence {bhat(n)} is Bhat(x) = ((B(x))^2 + B2(x^2))/2, with the e.g.f. B(x) of {b(n), n>=0} and the e.g.f. B2(x) := Sum_((b(n)^2/n!)*x^n/n!, n>=0) of the scaled squares. The proof runs along the same line as the one given for the ordinary half-convolution in a comment on A201204. In fact, bhat(n)/n! is the ordinary half-convolution of the sequence {b(n)/n!, n>=0} with itself.
Here b(n) = A000984(n) = binomial(2*n,n), n>=0, B(x) = exp(2*x)*BesselI(0,2*x) (see the Abramowitz-Stegun reference and link under A008277 for BesselI, p. 375, eq. 9.6.10) and B2(x) = hypergeometric([1/2,1/2],[1,1,1],16*x).

Examples

			With cbi = {1, 2, 6, 20, 70, 252, ...}
a(4) = 1*70 + 4*2*20 + 6*6^2 = 446,
a(5) = 1*252 + 5*2*70 + 10*6*20 = 2152.
		

Crossrefs

Cf. A000984, A081085 (exponential convolution).

Programs

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*cbi(k)*cbi(n-k) n>=0, with cbi(n)=A000984(n).
E.g.f.: (exp(4*x)*BesselI(0, 2*x)^2 + hypergeom([1/2,1/2], [1,1,1],(4*x)^2))/2. See comment above.
Recurrence: (n-1)^2 * n^3 * (3*n^5 - 40*n^4 + 200*n^3 - 476*n^2 + 544*n - 241)*a(n) = 4*(n-1)^3 * (9*n^7 - 126*n^6 + 699*n^5 - 1997*n^4 + 3165*n^3 - 2770*n^2 + 1239*n - 228)*a(n-1) + 32*(3*n^10 - 55*n^9 + 420*n^8 - 1786*n^7 + 4731*n^6 - 8232*n^5 + 9630*n^4 - 7580*n^3 + 3900*n^2 - 1194*n + 162)*a(n-2) - 256*(n-2)^3 * (9*n^7 - 126*n^6 + 699*n^5 - 1997*n^4 + 3165*n^3 - 2770*n^2 + 1239*n - 228)*a(n-3) + 2048*(n-3)^3 * (n-2)^2 * (3*n^5 - 25*n^4 + 70*n^3 - 86*n^2 + 47*n - 10)*a(n-4). - Vaclav Kotesovec, Feb 25 2014
a(n) ~ 8^n / (Pi*n) * (1 + (1+(-1)^n)/sqrt(2*Pi*n)). - Vaclav Kotesovec, Feb 25 2014

A024419 a(n) = n! (1/C(n,0) + 1/C(n,1) + ... + 1/C(n,[ n/2 ])).

Original entry on oeis.org

1, 1, 3, 8, 34, 156, 924, 6144, 48096, 420480, 4134240, 44720640, 530444160, 6824805120, 94787884800, 1412038656000, 22464536371200, 380017225728000, 6811416338227200, 128936055177216000, 2570286167543808000, 53818546503794688000, 1180914445357903872000
Offset: 0

Views

Author

Keywords

Comments

Half-convolution of factorials (A000142) with itself. For the definition of the half-convolution of a sequence with itself see a comment to A201204. - Vladimir Reshetnikov, Oct 05 2016

Examples

			a(3)=3!*(1/1 + 1/3)=6*4/3=8.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) options operator, arrow: factorial(n)*(sum(1/binomial(n, k), k= 0.. floor((1/2)*n))) end proc: seq(a(n), n=0..21); # Emeric Deutsch, Oct 11 2007
  • Mathematica
    Table[Sum[k! (n - k)!, {k, 0, n/2}], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 05 2016 *)
  • PARI
    a(n) = sum(k=0, n\2, k!*(n-k)!); \\ Michel Marcus, Oct 05 2016

Formula

G.f.: (G(x)^2+H(x))/2 where G(x) = Sum_{k>=0} k!*x^k and H(x) = Sum_{k>=0} k!^2*x^(2*k). - Vladeta Jovovic, Sep 22 2007
a(n) = Sum_{k=0..floor(n/2)} k!*(n-k)!. - Vladimir Reshetnikov, Oct 05 2016

Extensions

More terms from Emeric Deutsch, Oct 11 2007

A027991 a(n) = Sum{T(n,k)*T(n,2n-k)}, 0<=k<=n-1, T given by A027926.

Original entry on oeis.org

1, 3, 12, 40, 130, 404, 1227, 3653, 10720, 31090, 89316, 254568, 720757, 2029095, 5684340, 15855964, 44061862, 122032508, 336966015, 927953705, 2549229256, 6987648358, 19115124552, 52194037200, 142274514025, 387215773899
Offset: 1

Views

Author

Keywords

Comments

From Wolfdieter Lang, Jan 02 2012: (Start)
a(n) = A024458(2*n-1), n>=1 (bisection, odd arguments).
chate(n):=a(n+1), n>=0, is the even part of the bisection of the half-convolution of the sequence A000045(n+1), n>=0, with itself. See a comment on A201204 for the definition of half-convolution. There one finds also the rule for the o.g.f.s of the bisection. Here the o.g.f. of the sequence chate(n), n>=0, is Chate(x):= (Ce(x)+U2(x))/2 with Ce(x)=(1-x+x^2)/(1-3*x+x^2)^2, the o.g.f. of A054444(n), and
U2(x)=(1-x)/((1+x)*(1-3*x+x^2)), the o.g.f. of A007598(n+1), n>=0. This results (after multiplying with x) in the o.g.f. given below in the formula section. It is equivalent to the explicit formula given there, as can be seen after a partial fraction decomposition of the o.g.f.
(End)

Crossrefs

Formula

a(n) = (1/5)[n*F(2n+2) - n*F(2n-2) + F(2n-1) - (-1)^n], F(n)=A000045(n).
O.g.f.: x*(1-2*x+2*x^2)/((1-3*x+x^2)^2*(1+x)). See the comment above. - Wolfdieter Lang, Jan 02 2012
Showing 1-10 of 13 results. Next