cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A001700 a(n) = binomial(2*n+1, n+1): number of ways to put n+1 indistinguishable balls into n+1 distinguishable boxes = number of (n+1)-st degree monomials in n+1 variables = number of monotone maps from 1..n+1 to 1..n+1.

Original entry on oeis.org

1, 3, 10, 35, 126, 462, 1716, 6435, 24310, 92378, 352716, 1352078, 5200300, 20058300, 77558760, 300540195, 1166803110, 4537567650, 17672631900, 68923264410, 269128937220, 1052049481860, 4116715363800, 16123801841550, 63205303218876, 247959266474052
Offset: 0

Views

Author

Keywords

Comments

To show for example that C(2n+1, n+1) is the number of monotone maps from 1..n + 1 to 1..n + 1, notice that we can describe such a map by a nondecreasing sequence of length n + 1 with entries from 1 to n + 1. The number k of increases in this sequence is anywhere from 0 to n. We can specify these increases by throwing k balls into n+1 boxes, so the total is Sum_{k = 0..n} C((n+1) + k - 1, k) = C(2*n+1, n+1).
Also number of ordered partitions (or compositions) of n + 1 into n + 1 parts. E.g., a(2) = 10: 003, 030, 300, 012, 021, 102, 120, 210, 201, 111. - Mambetov Bektur (bektur1987(AT)mail.ru), Apr 17 2003
Also number of walks of length n on square lattice, starting at origin, staying in first and second quadrants. - David W. Wilson, May 05 2001. (E.g., for n = 2 there are 10 walks, all starting at 0, 0: 0, 1 -> 0, 0; 0, 1 -> 1, 1; 0, 1 -> 0, 2; 1, 0 -> 0, 0; 1, 0 -> 1, 1; 1, 0 -> 2, 0; 1, 0 -> 1, -1; -1, 0 -> 0, 0; -1, 0 -> -1, 1; -1, 0-> -2, 0.)
Also total number of leaves in all ordered trees with n + 1 edges.
Also number of digitally balanced numbers [A031443] from 2^(2*n+1) to 2^(2*n+2). - Naohiro Nomoto, Apr 07 2001
Also number of ordered trees with 2*n + 2 edges having root of even degree and nonroot nodes of outdegree 0 or 2. - Emeric Deutsch, Aug 02 2002
Also number of paths of length 2*d(G) connecting two neighboring nodes in optimal chordal graph of degree 4, G(2*d(G)^2 + 2*d(G) + 1, 2d(G) + 1), where d(G) = diameter of graph G. - S. Bujnowski (slawb(AT)atr.bydgoszcz.pl), Feb 11 2002
Define an array by m(1, j) = 1, m(i, 1) = i, m(i, j) = m(i, j-1) + m(i-1, j); then a(n) = m(n, n), diagonal of A165257 - Benoit Cloitre, May 07 2002
Also the numerator of the constant term in the expansion of cos^(2*n)(x) or sin^(2*n)(x) when the denominator is 2^(2*n-1). - Robert G. Wilson v
Consider the expansion of cos^n(x) as a linear combination of cosines of multiple angles. If n is odd, then the expansion is a combination of a*cos((2*k-1)*x)/2^(n-1) for all 2*k - 1 <= n. If n is even, then the expansion is a combination of a*cos(2k*x)/2^(n-1) terms plus a constant. "The constant term, [a(n)/2^(2n-1)], is due to the fact that [cos^2n(x)] is never negative, i.e., electrical engineers would say the average or 'dc value' of [cos^(2*n)(x)] is [a(n)/2^(2*n-1)]. The dc value of [cos^(2*n-1)(x)] on the other hand, is zero because it is symmetrical about the horizontal axis, i.e., it is negative and positive equally." Nahin[62] - Robert G. Wilson v, Aug 01 2002
Also number of times a fixed Dyck word of length 2*k occurs in all Dyck words of length 2*n + 2*k. Example: if the fixed Dyck word is xyxy (k = 2), then it occurs a(1) = 3 times in the 5 Dyck words of length 6 (n = 1): (xy[xy)xy], xyxxyy, xxyyxy, x(xyxy)y, xxxyyy (placed between parentheses). - Emeric Deutsch, Jan 02 2003
a(n+1) is the determinant of the n X n matrix m(i, j) = binomial(2*n-i, j). - Benoit Cloitre, Aug 26 2003
a(n-1) = (2*n)!/(2*n!*n!), formula in [Davenport] used by Gauss for the special case prime p = 4*n + 1: x = a(n-1) mod p and y = x*(2n)! mod p are solutions of p = x^2 + y^2. - Frank Ellermann. Example: For prime 29 = 4*7 + 1 use a(7-1) = 1716 = (2*7)!/(2*7!*7!), 5 = 1716 mod 29 and 2 = 5*(2*7)! mod 29, then 29 = 5*5 + 2*2.
The number of compositions of 2*n, say c_1 + c_2 + ... + c_k = 2n, satisfy that Sum_{i = 1..j} c_i < 2*j for all j = 1..k, or equivalently, the number of subsets, say S, of [2*n-1] = {1, 2, ..., 2*n-1} with at least n elements such that if 2k is in S, then there must be at least k elements in S smaller than 2k. E.g., a(2) = 3 because we can write 4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1. - Ricky X. F. Chen (ricky_chen(AT)mail.nankai.edu.cn), Jul 30 2006
The number of walks of length 2*n + 1 on an infinite linear lattice that begin at the origin and end at node (1). Also the number of paths on a square lattice from the origin to (n+1, n) that use steps (1,0) and (0,1). Also number of binary numbers of length 2*n + 1 with n + 1 ones and n zeros. - Stefan Hollos (stefan(AT)exstrom.com), Dec 10 2007
If Y is a 3-subset of an 2*n-set X then, for n >= 3, a(n-1) is the number of n-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007
Also the number of rankings (preferential arrangements) of n unlabeled elements onto n levels when empty levels are allowed. - Thomas Wieder, May 24 2008
Also the Catalan transform of A000225 shifted one index, i.e., dropping A000225(0). - R. J. Mathar, Nov 11 2008
With offset 1. The number of solutions in nonnegative integers to X1 + X2 + ... + Xn = n. The number of terms in the expansion of (X1 + X2 + ... + Xn)^n. The coefficient of x^n in the expansion of (1 + x + x^2 + ...)^n. The number of distinct image sets of all functions taking [n] into [n]. - Geoffrey Critzer, Feb 22 2009
The Hankel transform of the aerated sequence 1, 0, 3, 0, 10, 0, ... is 1, 3, 3, 5, 5, 7, 7, ... (A109613(n+1)). - Paul Barry, Apr 21 2009
Also the number of distinct network topologies for a network of n items with 1 to n - 1 unidirectional connections to other objects in the network. - Anthony Bachler, May 05 2010
Equals INVERT transform of the Catalan numbers starting with offset 1. E.g.: a(3) = 35 = (1, 2, 5) dot (10, 3, 1) + 14 = 21 + 14 = 35. - Gary W. Adamson, May 15 2009
The integral of 1/(1+x^2)^(n+1) is given by a(n)/2^(2*n - 1) * (x/(1 + x^2)^n*P(x) + arctan(x)), where P(x) is a monic polynomial of degree 2*n - 2 with rational coefficients. - Christiaan van de Woestijne, Jan 25 2011
a(n) is the number of Schroder paths of semilength n in which the (2,0)-steps at level 0 come in 2 colors and there are no (2,0)-steps at a higher level. Example: a(2) = 10 because, denoting U = (1,1), H = (1,0), and D = (1,-1), we have 2^2 = 4 paths of shape HH, 2 paths of shape HUD, 2 paths of shape UDH, and 1 path of each of the shapes UDUD and UUDD. - Emeric Deutsch, May 02 2011
a(n) is the number of Motzkin paths of length n in which the (1,0)-steps at level 0 come in 3 colors and those at a higher level come in 2 colors. Example: a(3)=35 because, denoting U = (1,1), H = (1,0), and D = (1,-1), we have 3^3 = 27 paths of shape HHH, 3 paths of shape HUD, 3 paths of shape UDH, and 2 paths of shape UHD. - Emeric Deutsch, May 02 2011
Also number of digitally balanced numbers having length 2*(n + 1) in binary representation: a(n) = #{m: A070939(A031443(m)) = 2*(n + 1)}. - Reinhard Zumkeller, Jun 08 2011
a(n) equals 2^(2*n + 3) times the coefficient of Pi in 2F1([1/2, n+2]; [3/2]; -1). - John M. Campbell, Jul 17 2011
For positive n, a(n) equals 4^(n+2) times the coefficient of Pi^2 in Integral_{x = 0..Pi/2} x sin^(2*n + 2)x. - John M. Campbell, Jul 19 2011 [Apparently, the contributor means Integral_{x = 0..Pi/2} x * (sin(x))^(2*n + 2).]
a(n-1) = C(2*n, n)/2 is the number of ways to assign 2*n people into 2 (unlabeled) groups of size n. - Dennis P. Walsh, Nov 09 2011
Equals row sums of triangle A205945. - Gary W. Adamson, Feb 01 2012
a(n-1) gives the number of n-regular sequences defined by Erdős and Gallai in 1960 in connection with the degree sequences of simple graphs. - Matuszka Tamás, Mar 06 2013
a(n) is the sum of falling diagonals of squares in the comment in A085812 (equivalent to the Cloitre formula of Aug 2002). - John Molokach, Sep 26 2013
For n > 0: largest terms of Zigzag matrices as defined in A088961. - Reinhard Zumkeller, Oct 25 2013
Also the number of different possible win/loss round sequences (from the perspective of the eventual winner) in a "best of 2*n + 1" two-player game. For example, a(2) = 10 means there are 10 different win/loss sequences in a "best of 5" game (like a tennis match in which the first player to win 3 sets, out of a maximum of 5, wins the match); the 10 sequences are WWW, WWLW, WWLLW, WLWW, WLWLW, WLLWW, LWWW, LWWLW, LWLWW, LLWWW. See also A072600. - Philippe Beaudoin, May 14 2014; corrected by Jon E. Schoenfield, Nov 23 2014
When adding 1 to the beginning of the sequence: Convolving a(n)/2^n with itself equals 2^(n+1). For example, when n = 4: convolving {1, 1/1, 3/2, 10/4, 35/8, 126/16} with itself is 32 = 2^5. - Bob Selcoe, Jul 16 2014
From Tom Copeland, Nov 09 2014: (Start)
The shifted array belongs to a family of arrays associated to the Catalan A000108 (t = 1), and Riordan, or Motzkin sums A005043 (t = 0), with the o.g.f. [1 - sqrt(1 - 4x/(1 + (1 - t)x))]/2 and inverse x*(1 - x)/[1 + (t - 1)*x*(1 - x)]. See A091867 for more info on this family. Here is t = -3 (mod signs in the results).
Let C(x) = [1 - sqrt(1-4x)]/2, an o.g.f. for the Catalan numbers A000108, with inverse Cinv(x) = x*(1-x) and P(x,t) = x/(1 + t*x) with inverse P(x, -t).
O.g.f: G(x) = [-1 + sqrt(1 + 4*x/(1 - 4*x))]/2 = -C[P(-x, 4)].
Inverse o.g.f: Ginv(x) = x*(1 + x)/(1 + 4*x*(1 + x)) = -P(Cinv(-x), -4) (shifted signed A001792). A088218(x) = 1 + G(x).
Equals A001813/2 omitting the leading 1 there. (End)
Placing n distinguishable balls into n indistinguishable boxes gives A000110(n) (the number of set partitions). - N. J. A. Sloane, Jun 19 2015
The sequence is the INVERTi transform of A049027: (1, 4, 17, 74, 326, ...). - Gary W. Adamson, Jun 23 2015
a(n) is the number of compositions of 2*n + 2 such that the sum of the elements at odd positions is equal to the sum of the elements at even positions. a(2) = 10 because there are 10 such compositions of 6: (3, 3), (1, 3, 2), (2, 3, 1), (1, 1, 2, 2), (1, 2, 2, 1), (2, 2, 1, 1), (2, 1, 1, 2), (1, 2, 1, 1, 1), (1, 1, 1, 2, 1), (1, 1, 1, 1, 1, 1). - Ran Pan, Oct 08 2015
a(n-1) is also the Schur function of the partition (n) of n evaluated at x_1 = x_2 = ... = x_n = 1, i.e., the number of semistandard Young tableaux of shape (n) (weakly increasing rows with n boxes with numbers from {1, 2, ..., n}). - Wolfdieter Lang, Oct 11 2015
Also the number of ordered (rooted planar) forests with a total of n+1 edges and no trivial trees. - Nachum Dershowitz, Mar 30 2016
a(n) is the number of sets (i1,...in) of length n so that n >= i1 >= i2 >= ...>= in >= 1. For instance, n=3 as there are only 10 such sets (3,3,3) (3,3,2) (3,3,1) (3,2,2) (3,2,1) (3,1,1) (2,2,2) (2,2,1) (2,1,1) (1,1,1,) 3,2,1 is each used 10 times respectively. - Anton Zakharov, Jul 04 2016
The repeated middle term in the odd rows of Pascal's triangle, or half the central binomial coefficient in the even rows of Pascal's triangle, n >= 2. - Enrique Navarrete, Feb 12 2018
a(n) is the number of walks of length 2n+1 from the origin with steps (1,1) and (1,-1) that stay on or above the x-axis. Equivalently, a(n) is the number of walks of length 2n+1 from the origin with steps (1,0) and (0,1) that stay in the first octant. - Alexander Burstein, Dec 24 2019
Total number of nodes summed over all Dyck paths of semilength n. - Alois P. Heinz, Mar 08 2020
a(n-1) is the determinant of the n X n matrix m(i, j) = binomial(n+i-1, j). - Fabio Visonà, May 21 2022
Let X_i be iid standard Gaussian random variable N(0,1), and S_n be the partial sum S_n = X_1+...+X_n. Then P(S_1>0,S_2>0,...,S_n>0) = a(n+1)/2^(2n-1) = a(n+1) / A004171(n+1). For example, P(S_1>0) = 1/2, P(S_1>0,S_2>0) = 3/8, P(S_1>0,S_2>0,S_3>0) = 5/16, etc. This probability is also equal to the volume of the region x_1 > 0, x_2 > -x_1, x_3 > -(x_1+x_2), ..., x_n > -(x_1+x_2+...+x_(n-1)) in the hypercube [-1/2, 1/2]^n. This also holds for the Cauchy distribution and other stable distributions with mean 0, skew 0 and scale 1. - Xiaohan Zhang, Nov 01 2022
a(n) is the number of parking functions of size n+1 avoiding the patterns 132, 213, and 321. - Lara Pudwell, Apr 10 2023
Number of vectors in (Z_>=0)^(n+1) such that the sum of the components is n+1. binomial(2*n-1, n) provides this property for n. - Michael Richard, Jun 12 2023
Also number of discrete negations on the finite chain L_n={0,1,...,n-1,n}, i.e., monotone decreasing unary operators such that N(0)=n and N(n)=0. - Marc Munar, Oct 10 2023
a(n) is the number of Dyck paths of semilength n+1 having one of its peaks marked. - Juan B. Gil, Jan 03 2024
a(n) is the dimension of the (n+1)-st symmetric power of an (n+1)-dimensional vector space. - Mehmet A. Ates, Feb 15 2024
a(n) is the independence number of the twisted odd graph O^(sigma)(n+2). - _Miquel A. Fiol, Aug 26 2024
a(n) is the number of non-descending sequences with length n and the last number is less or equal to n. a(n) is also the number of integer partitions (of any positive integer) with length n and largest part is less or equal to n. - Zlatko Damijanic, Dec 06 2024
a(n) is the number of triangulations of a once-punctured (n+1)-gon [from Fontaine & Plamondon's Theorem 3.6]. - Esther Banaian, May 06 2025

Examples

			There are a(2)=10 ways to put 3 indistinguishable balls into 3 distinguishable boxes, namely, (OOO)()(), ()(OOO)(), ()()(OOO), (OO)(O)(), (OO)()(O), (O)(OO)(), ()(OO)(O), (O)()(OO), ()(O)(OO), and (O)(O)(O). - _Dennis P. Walsh_, Apr 11 2012
a(2) = 10: Semistandard Young tableaux for partition (3) of 3 (the indeterminates x_i, i = 1, 2, 3 are omitted and only their indices are given): 111, 112, 113, 122, 123, 133, 222, 223, 233, 333. - _Wolfdieter Lang_, Oct 11 2015
		

References

  • H. Davenport, The Higher Arithmetic. Cambridge Univ. Press, 7th ed., 1999, ch. V.3 (p. 122).
  • A. Frosini, R. Pinzani, and S. Rinaldi, About half the middle binomial coefficient, Pure Math. Appl., 11 (2000), 497-508.
  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • Paul J. Nahin, "An Imaginary Tale, The Story of [Sqrt(-1)]," Princeton University Press, Princeton, NJ 1998, p. 62.
  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A000984(n+1)/2.
a(n) = (2*n+1)*Catalan(n) [A000108] = A035324(n+1, 1) (first column of triangle).
Row sums of triangles A028364, A050166, A039598.
Bisections: a(2*k) = A002458(k), a(2*k+1) = A001448(k+1)/2, k >= 0.
Other versions of the same sequence: A088218, A110556, A138364.
Diagonals 1 and 2 of triangle A100257.
Second row of array A102539.
Column of array A073165.
Row sums of A103371. - Susanne Wienand, Oct 22 2011
Cf. A002054: C(2*n+1, n-1). - Bruno Berselli, Jan 20 2014

Programs

  • GAP
    List([0..30],n->Binomial(2*n+1,n+1)); # Muniru A Asiru, Feb 26 2019
  • Haskell
    a001700 n = a007318 (2*n+1) (n+1)  -- Reinhard Zumkeller, Oct 25 2013
    
  • Magma
    [Binomial(2*n, n)/2: n in [1..40]]; // Vincenzo Librandi, Nov 10 2014
    
  • Maple
    A001700 := n -> binomial(2*n+1,n+1); seq(A001700(n), n=0..20);
    A001700List := proc(m) local A, P, n; A := [1]; P := [1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), 2*P[-1]]);
    A := [op(A), P[-1]] od; A end: A001700List(27); # Peter Luschny, Mar 24 2022
  • Mathematica
    Table[ Binomial[2n + 1, n + 1], {n, 0, 23}]
    CoefficientList[ Series[2/((Sqrt[1 - 4 x] + 1)*Sqrt[1 - 4 x]), {x, 0, 22}], x] (* Robert G. Wilson v, Aug 08 2011 *)
  • Maxima
    B(n,a,x):=coeff(taylor(exp(x*t)*(t/(exp(t)-1))^a,t,0,20),t,n)*n!;
    makelist((-1)^(n)*B(n,n+1,-n-1)/n!,n,0,10); /* Vladimir Kruchinin, Apr 06 2016 */
    
  • PARI
    a(n)=binomial(2*n+1,n+1)
    
  • PARI
    z='z+O('z^50); Vec((1/sqrt(1-4*z)-1)/(2*z)) \\ Altug Alkan, Oct 11 2015
    
  • Python
    from _future_ import division
    A001700_list, b = [], 1
    for n in range(10**3):
        A001700_list.append(b)
        b = b*(4*n+6)//(n+2) # Chai Wah Wu, Jan 26 2016
    
  • Sage
    [rising_factorial(n+1,n+1)/factorial(n+1) for n in (0..22)] # Peter Luschny, Nov 07 2011
    

Formula

a(n-1) = binomial(2*n, n)/2 = A000984(n)/2 = (2*n)!/(2*n!*n!).
D-finite with recurrence: a(0) = 1, a(n) = 2*(2*n+1)*a(n-1)/(n+1) for n > 0.
G.f.: (1/sqrt(1 - 4*x) - 1)/(2*x).
L.g.f.: log((1 - sqrt(1 - 4*x))/(2*x)) = Sum_{n >= 0} a(n)*x^(n+1)/(n+1). - Vladimir Kruchinin, Aug 10 2010
G.f.: 2F1([1, 3/2]; [2]; 4*x). - Paul Barry, Jan 23 2009
G.f.: 1/(1 - 2*x - x/(1 - x/(1 - x/(1 - x/(1 - ... (continued fraction). - Paul Barry, May 06 2009
G.f.: c(x)^2/(1 - x*c(x)^2), c(x) the g.f. of A000108. - Paul Barry, Sep 07 2009
O.g.f.: c(x)/sqrt(1 - 4*x) = (2 - c(x))/(1 - 4*x), with c(x) the o.g.f. of A000108. Added second formula. - Wolfdieter Lang, Sep 02 2012
Convolution of A000108 (Catalan) and A000984 (central binomial): Sum_{k=0..n} C(k)*binomial(2*(n-k), n-k), C(k) Catalan. - Wolfdieter Lang, Dec 11 1999
a(n) = Sum_{k=0..n} C(n+k, k). - Benoit Cloitre, Aug 20 2002
a(n) = Sum_{k=0..n} C(n, k)*C(n+1, k+1). - Benoit Cloitre, Oct 19 2002
a(n) = Sum_{k = 0..n+1} binomial(2*n+2, k)*cos((n - k + 1)*Pi). - Paul Barry, Nov 02 2004
a(n) = 4^n*binomial(n+1/2, n)/(n+1). - Paul Barry, May 10 2005
E.g.f.: Sum_{n >= 0} a(n)*x^(2*n + 1)/(2*n + 1)! = BesselI(1, 2*x). - Michael Somos, Jun 22 2005
E.g.f. in Maple notation: exp(2*x)*(BesselI(0, 2*x) + BesselI(1, 2*x)). Integral representation as n-th moment of a positive function on [0, 4]: a(n) = Integral_{x = 0..4} x^n * (x/(4 - x))^(1/2)/(2*Pi) dx, n >= 0. This representation is unique. - Karol A. Penson, Oct 11 2001
Narayana transform of [1, 2, 3, ...]. Let M = the Narayana triangle of A001263 as an infinite lower triangular matrix and V = the Vector [1, 2, 3, ...]. Then A001700 = M * V. - Gary W. Adamson, Apr 25 2006
a(n) = A122366(n,n). - Reinhard Zumkeller, Aug 30 2006
a(n) = C(2*n, n) + C(2*n, n-1) = A000984(n) + A001791(n). - Zerinvary Lajos, Jan 23 2007
a(n-1) = (n+1)*(n+2)*...*(2*n-1)/(n-1)! (product of n-1 consecutive integers, divided by (n-1)!). - Jonathan Vos Post, Apr 09 2007; [Corrected and shortened by Giovanni Ciriani, Mar 26 2019]
a(n-1) = (2*n - 1)!/(n!*(n - 1)!). - William A. Tedeschi, Feb 27 2008
a(n) = (2*n + 1)*A000108(n). - Paul Barry, Aug 21 2007
Binomial transform of A005773 starting (1, 2, 5, 13, 35, 96, ...) and double binomial transform of A001405. - Gary W. Adamson, Sep 01 2007
Row sums of triangle A132813. - Gary W. Adamson, Sep 01 2007
Row sums of triangle A134285. - Gary W. Adamson, Nov 19 2007
a(n) = 2*A000984(n) - A000108(n), that is, a(n) = 2*C(2*n, n) - n-th Catalan number. - Joseph Abate, Jun 11 2010
Conjectured: 4^n GaussHypergeometric(1/2,-n; 2; 1) -- Solution for the path which stays in the first and second quadrant. - Benjamin Phillabaum, Feb 20 2011
a(n)= Sum_{k=0..n} A038231(n,k) * (-1)^k * A000108(k). - Philippe Deléham, Nov 27 2009
Let A be the Toeplitz matrix of order n defined by: A[i,i-1] = -1, A[i,j] = Catalan(j-i), (i <= j), and A[i,j] = 0, otherwise. Then, for n >= 1, a(n) = (-1)^n * charpoly(A,-2). - Milan Janjic, Jul 08 2010
a(n) is the upper left term of M^(n+1), where M is the infinite matrix in which a column of (1,2,3,...) is prepended to an infinite lower triangular matrix of all 1's and the rest zeros, as follows:
1, 1, 0, 0, 0, ...
2, 1, 1, 0, 0, ...
3, 1, 1, 1, 0, ...
4, 1, 1, 1, 1, ...
...
Alternatively, a(n) is the upper left term of M^n where M is the infinite matrix:
3, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
...
- Gary W. Adamson, Jul 14 2011
a(n) = (n + 1)*hypergeom([-n, -n], [2], 1). - Peter Luschny, Oct 24 2011
a(n) = Pochhammer(n+1, n+1)/(n+1)!. - Peter Luschny, Nov 07 2011
E.g.f.: 1 + 6*x/(U(0) - 6*x); U(k) = k^2 + (4*x + 3)*k + 6*x + 2 - 2*x*(k + 1)*(k + 2)*(2*k + 5)/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2011
a(n) = 2*A000984(n) - A000108(n). [Abate & Whitt]
a(n) = 2^(2*n+1)*binomial(n+1/2, -1/2). - Peter Luschny, May 06 2014
For n > 1: a(n-1) = A166454(2*n, n), central terms in A166454. - Reinhard Zumkeller, Mar 04 2015
a(n) = 2*4^n*Gamma(3/2 + n)/(sqrt(Pi)*Gamma(2+n)). - Peter Luschny, Dec 14 2015
a(n) ~ 2*4^n*(1 - (5/8)/n + (73/128)/n^2 - (575/1024)/n^3 + (18459/32768)/n^4)/sqrt(n*Pi). - Peter Luschny, Dec 16 2015
a(n) = (-1)^(n)*B(n, n+1, -n-1)/n!, where B(n,a,x) is a generalized Bernoulli polynomial. - Vladimir Kruchinin, Apr 06 2016
a(n) = Gamma(2 + 2*n)/(n!*Gamma(2 + n)). Andres Cicuttin, Apr 06 2016
a(n) = (n + (n + 1))!/(Gamma(n)*Gamma(1 + n)*A002378(n)), for n > 0. Andres Cicuttin, Apr 07 2016
From Ilya Gutkovskiy, Jul 04 2016: (Start)
Sum_{n >= 0} 1/a(n) = 2*(9 + 2*sqrt(3)*Pi)/27 = A248179.
Sum_{n >= 0} (-1)^n/a(n) = 2*(5 + 4*sqrt(5)*arcsinh(1/2))/25 = 2*(5*A145433 - 1).
Sum_{n >= 0} (-1)^n*a(n)/n! = BesselI(2,2)*exp(-2) = A229020*A092553. (End)
Conjecture: a(n) = Sum_{k=2^n..2^(n+1)-1} A178244(k). - Mikhail Kurkov, Feb 20 2021
a(n-1) = 1 + (1/n)*Sum_{t=1..n/2} (2*cos((2*t-1)*Pi/(2*n)))^(2*n). - Greg Dresden, Oct 11 2022
a(n) = Product_{1 <= i <= j <= n} (i + j + 1)/(i + j - 1). Cf. A006013. - Peter Bala, Feb 21 2023
Sum_{n >= 0} a(n)*x^(n+1)/(n+1) = x + 3*x^2/2 + 10*x^3/3 + 35*x^4/4 + ... = the series reversion of exp(-x)*(1 - exp(-x)). - Peter Bala, Sep 06 2023

Extensions

Name corrected by Paul S. Coombes, Jan 11 2012
Name corrected by Robert Tanniru, Feb 01 2014

A016777 a(n) = 3*n + 1.

Original entry on oeis.org

1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Numbers k such that the concatenation of the first k natural numbers is not divisible by 3. E.g., 16 is in the sequence because we have 123456789101111213141516 == 1 (mod 3).
Ignoring the first term, this sequence represents the number of bonds in a hydrocarbon: a(#of carbon atoms) = number of bonds. - Nathan Savir (thoobik(AT)yahoo.com), Jul 03 2003
n such that Sum_{k=0..n} (binomial(n+k,n-k) mod 2) is even (cf. A007306). - Benoit Cloitre, May 09 2004
Hilbert series for twisted cubic curve. - Paul Barry, Aug 11 2006
If Y is a 3-subset of an n-set X then, for n >= 3, a(n-3) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
a(n) = A144390 (1, 9, 23, 43, 69, ...) - A045944 (0, 5, 16, 33, 56, ...). From successive spectra of hydrogen atom. - Paul Curtz, Oct 05 2008
Number of monomials in the n-th power of polynomial x^3+x^2+x+1. - Artur Jasinski, Oct 06 2008
A145389(a(n)) = 1. - Reinhard Zumkeller, Oct 10 2008
Union of A035504, A165333 and A165336. - Reinhard Zumkeller, Sep 17 2009
Hankel transform of A076025. - Paul Barry, Sep 23 2009
From Jaroslav Krizek, May 28 2010: (Start)
a(n) = numbers k such that the antiharmonic mean of the first k positive integers is an integer.
A169609(a(n-1)) = 1. See A146535 and A169609. Complement of A007494.
See A005408 (odd positive integers) for corresponding values A146535(a(n)). (End)
Apart from the initial term, A180080 is a subsequence; cf. A180076. - Reinhard Zumkeller, Aug 14 2010
Also the maximum number of triangles that n + 2 noncoplanar points can determine in 3D space. - Carmine Suriano, Oct 08 2010
A089911(4*a(n)) = 3. - Reinhard Zumkeller, Jul 05 2013
The number of partitions of 6*n into at most 2 parts. - Colin Barker, Mar 31 2015
For n >= 1, a(n)/2 is the proportion of oxygen for the stoichiometric combustion reaction of hydrocarbon CnH2n+2, e.g., one part propane (C3H8) requires 5 parts oxygen to complete its combustion. - Kival Ngaokrajang, Jul 21 2015
Exponents n > 0 for which 1 + x^2 + x^n is reducible. - Ron Knott, Oct 13 2016
Also the number of independent vertex sets in the n-cocktail party graph. - Eric W. Weisstein, Sep 21 2017
Also the number of (not necessarily maximal) cliques in the n-ladder rung graph. - Eric W. Weisstein, Nov 29 2017
Also the number of maximal and maximum cliques in the n-book graph. - Eric W. Weisstein, Dec 01 2017
For n>=1, a(n) is the size of any snake-polyomino with n cells. - Christian Barrientos and Sarah Minion, Feb 27 2018
The sum of two distinct terms of this sequence is never a square. See Lagarias et al. p. 167. - Michel Marcus, May 20 2018
It seems that, for any n >= 1, there exists no positive integer z such that digit_sum(a(n)*z) = digit_sum(a(n)+z). - Max Lacoma, Sep 18 2019
For n > 2, a(n-2) is the number of distinct values of the magic constant in a normal magic triangle of order n (see formula 5 in Trotter). - Stefano Spezia, Feb 18 2021
Number of 3-permutations of n elements avoiding the patterns 132, 231, 312. See Bonichon and Sun. - Michel Marcus, Aug 20 2022
Erdős & Sárközy conjecture that a set of n positive integers with property P must have some element at least a(n-1) = 3n - 2. Property P states that, for x, y, and z in the set and z < x, y, z does not divide x+y. An example of such a set is {2n-1, 2n, ..., 3n-2}. Bedert proves this for large enough n. (This is an upper bound, and is exact for all known n; I have verified it for n up to 12.) - Charles R Greathouse IV, Feb 06 2023
a(n-1) = 3*n-2 is the dimension of the vector space of all n X n tridiagonal matrices, equals the number of nonzero coefficients: n + 2*(n-1) (see Wikipedia link). - Bernard Schott, Mar 03 2023

Examples

			G.f. = 1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 16*x^5 + 19*x^6 + 22*x^7 + ... - _Michael Somos_, May 27 2019
		

References

  • W. Decker, C. Lossen, Computing in Algebraic Geometry, Springer, 2006, p. 22.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.1 Terminology, p. 264.
  • Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269.

Crossrefs

Cf. A007559 (partial products), A051536 (lcm).
First differences of A000326.
Row sums of A131033.
Complement of A007494. - Reinhard Zumkeller, Oct 10 2008
Some subsequences: A002476 (primes), A291745 (nonprimes), A135556 (squares), A016779 (cubes).

Programs

  • Haskell
    a016777 = (+ 1) . (* 3)
    a016777_list = [1, 4 ..]  -- Reinhard Zumkeller, Feb 28 2013, Feb 10 2012
    
  • Magma
    [3*n+1 : n in [1..70]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Mathematica
    Range[1, 199, 3] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *)
    (* Start from Eric W. Weisstein, Sep 21 2017 *)
    3 Range[0, 70] + 1
    Table[3 n + 1, {n, 0, 70}]
    LinearRecurrence[{2, -1}, {1, 4}, 70]
    CoefficientList[Series[(1 + 2 x)/(-1 + x)^2, {x, 0, 70}], x]
    (* End *)
  • Maxima
    A016777(n):=3*n+1$
    makelist(A016777(n),n,0,30); /* Martin Ettl, Oct 31 2012 */
    
  • PARI
    a(n)=3*n+1 \\ Charles R Greathouse IV, Jul 28 2015
    
  • SageMath
    [3*n+1 for n in range(1,71)] # G. C. Greubel, Mar 15 2024

Formula

G.f.: (1+2*x)/(1-x)^2.
a(n) = A016789(n) - 1.
a(n) = 3 + a(n-1).
Sum_{n>=1} (-1)^n/a(n) = (1/3)*(Pi/sqrt(3) + log(2)). [Jolley, p. 16, (79)] - Benoit Cloitre, Apr 05 2002
(1 + 4*x + 7*x^2 + 10*x^3 + ...) = (1 + 2*x + 3*x^2 + ...)/(1 - 2*x + 4*x^2 - 8*x^3 + ...). - Gary W. Adamson, Jul 03 2003
E.g.f.: exp(x)*(1+3*x). - Paul Barry, Jul 23 2003
a(n) = 2*a(n-1) - a(n-2); a(0)=1, a(1)=4. - Philippe Deléham, Nov 03 2008
a(n) = 6*n - a(n-1) - 1 (with a(0) = 1). - Vincenzo Librandi, Nov 20 2010
Sum_{n>=0} 1/a(n)^2 = A214550. - R. J. Mathar, Jul 21 2012
a(n) = A238731(n+1,n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-5)^k. - Philippe Deléham, Mar 05 2014
Sum_{i=0..n} (a(i)-i) = A000290(n+1). - Ivan N. Ianakiev, Sep 24 2014
From Wolfdieter Lang, Mar 09 2018: (Start)
a(n) = denominator(Sum_{k=0..n-1} 1/(a(k)*a(k+1))), with the numerator n = A001477(n), where the sum is set to 0 for n = 0. [Jolley, p. 38, (208)]
G.f. for {n/(1 + 3*n)}_{n >= 0} is (1/3)*(1-hypergeom([1, 1], [4/3], -x/(1-x)))/(1-x). (End)
a(n) = -A016789(-1-n) for all n in Z. - Michael Somos, May 27 2019

Extensions

Better description from T. D. Noe, Aug 15 2002
Partially edited by Joerg Arndt, Mar 11 2010

A039599 Triangle formed from even-numbered columns of triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 9, 5, 1, 14, 28, 20, 7, 1, 42, 90, 75, 35, 9, 1, 132, 297, 275, 154, 54, 11, 1, 429, 1001, 1001, 637, 273, 77, 13, 1, 1430, 3432, 3640, 2548, 1260, 440, 104, 15, 1, 4862, 11934, 13260, 9996, 5508, 2244, 663, 135, 17, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of lattice paths from (0,0) to (n,n) with steps E = (1,0) and N = (0,1) which touch but do not cross the line x - y = k and only situated above this line; example: T(3,2) = 5 because we have EENNNE, EENNEN, EENENN, ENEENN, NEEENN. - Philippe Deléham, May 23 2005
The matrix inverse of this triangle is the triangular matrix T(n,k) = (-1)^(n+k)* A085478(n,k). - Philippe Deléham, May 26 2005
Essentially the same as A050155 except with a leading diagonal A000108 (Catalan numbers) 1, 1, 2, 5, 14, 42, 132, 429, .... - Philippe Deléham, May 31 2005
Number of Grand Dyck paths of semilength n and having k downward returns to the x-axis. (A Grand Dyck path of semilength n is a path in the half-plane x>=0, starting at (0,0), ending at (2n,0) and consisting of steps u=(1,1) and d=(1,-1)). Example: T(3,2)=5 because we have u(d)uud(d),uud(d)u(d),u(d)u(d)du,u(d)duu(d) and duu(d)u(d) (the downward returns to the x-axis are shown between parentheses). - Emeric Deutsch, May 06 2006
Riordan array (c(x),x*c(x)^2) where c(x) is the g.f. of A000108; inverse array is (1/(1+x),x/(1+x)^2). - Philippe Deléham, Feb 12 2007
The triangle may also be generated from M^n*[1,0,0,0,0,0,0,0,...], where M is the infinite tridiagonal matrix with all 1's in the super and subdiagonals and [1,2,2,2,2,2,2,...] in the main diagonal. - Philippe Deléham, Feb 26 2007
Inverse binomial matrix applied to A124733. Binomial matrix applied to A089942. - Philippe Deléham, Feb 26 2007
Number of standard tableaux of shape (n+k,n-k). - Philippe Deléham, Mar 22 2007
From Philippe Deléham, Mar 30 2007: (Start)
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1. Other triangles arise by choosing different values for (x,y):
(0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970
(1,0) -> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877;
(1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598;
(2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954;
(3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791;
(4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. (End)
The table U(n,k) = Sum_{j=0..n} T(n,j)*k^j is given in A098474. - Philippe Deléham, Mar 29 2007
Sequence read mod 2 gives A127872. - Philippe Deléham, Apr 12 2007
Number of 2n step walks from (0,0) to (2n,2k) and consisting of step u=(1,1) and d=(1,-1) and the path stays in the nonnegative quadrant. Example: T(3,0)=5 because we have uuuddd, uududd, ududud, uduudd, uuddud; T(3,1)=9 because we have uuuudd, uuuddu, uuudud, ududuu, uuduud, uduudu, uudduu, uduuud, uududu; T(3,2)=5 because we have uuuuud, uuuudu, uuuduu, uuduuu, uduuuu; T(3,3)=1 because we have uuuuuu. - Philippe Deléham, Apr 16 2007, Apr 17 2007, Apr 18 2007
Triangular matrix, read by rows, equal to the matrix inverse of triangle A129818. - Philippe Deléham, Jun 19 2007
Let Sum_{n>=0} a(n)*x^n = (1+x)/(1-mx+x^2) = o.g.f. of A_m, then Sum_{k=0..n} T(n,k)*a(k) = (m+2)^n. Related expansions of A_m are: A099493, A033999, A057078, A057077, A057079, A005408, A002878, A001834, A030221, A002315, A033890, A057080, A057081, A054320, A097783, A077416, A126866, A028230, A161591, for m=-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, respectively. - Philippe Deléham, Nov 16 2009
The Kn11, Kn12, Fi1 and Fi2 triangle sums link the triangle given above with three sequences; see the crossrefs. For the definitions of these triangle sums, see A180662. - Johannes W. Meijer, Apr 20 2011
4^n = (n-th row terms) dot (first n+1 odd integer terms). Example: 4^4 = 256 = (14, 28, 20, 7, 1) dot (1, 3, 5, 7, 9) = (14 + 84 + 100 + 49 + 9) = 256. - Gary W. Adamson, Jun 13 2011
The linear system of n equations with coefficients defined by the first n rows solve for diagonal lengths of regular polygons with N= 2n+1 edges; the constants c^0, c^1, c^2, ... are on the right hand side, where c = 2 + 2*cos(2*Pi/N). Example: take the first 4 rows relating to the 9-gon (nonagon), N = 2*4 + 1; with c = 2 + 2*cos(2*Pi/9) = 3.5320888.... The equations are (1,0,0,0) = 1; (1,1,0,0) = c; (2,3,1,0) = c^2; (5,9,5,1) = c^3. The solutions are 1, 2.53208..., 2.87938..., and 1.87938...; the four distinct diagonal lengths of the 9-gon (nonagon) with edge = 1. (Cf. comment in A089942 which uses the analogous operations but with c = 1 + 2*cos(2*Pi/9).) - Gary W. Adamson, Sep 21 2011
Also called the Lobb numbers, after Andrew Lobb, are a natural generalization of the Catalan numbers, given by L(m,n)=(2m+1)*Binomial(2n,m+n)/(m+n+1), where n >= m >= 0. For m=0, we get the n-th Catalan number. See added reference. - Jayanta Basu, Apr 30 2013
From Wolfdieter Lang, Sep 20 2013: (Start)
T(n, k) = A053121(2*n, 2*k). T(n, k) appears in the formula for the (2*n)-th power of the algebraic number rho(N):= 2*cos(Pi/N) = R(N, 2) in terms of the odd-indexed diagonal/side length ratios R(N, 2*k+1) = S(2*k, rho(N)) in the regular N-gon inscribed in the unit circle (length unit 1). S(n, x) are Chebyshev's S polynomials (see A049310):
rho(N)^(2*n) = Sum_{k=0..n} T(n, k)*R(N, 2*k+1), n >= 0, identical in N > = 1. For a proof see the Sep 21 2013 comment under A053121. Note that this is the unreduced version if R(N, j) with j > delta(N), the degree of the algebraic number rho(N) (see A055034), appears.
For the odd powers of rho(n) see A039598. (End)
Unsigned coefficients of polynomial numerators of Eqn. 2.1 of the Chakravarty and Kodama paper, defining the polynomials of A067311. - Tom Copeland, May 26 2016
The triangle is the Riordan square of the Catalan numbers in the sense of A321620. - Peter Luschny, Feb 14 2023

Examples

			Triangle T(n, k) begins:
  n\k     0     1     2     3     4     5    6   7   8  9
  0:      1
  1:      1     1
  2:      2     3     1
  3:      5     9     5     1
  4:     14    28    20     7     1
  5:     42    90    75    35     9     1
  6:    132   297   275   154    54    11    1
  7:    429  1001  1001   637   273    77   13   1
  8:   1430  3432  3640  2548  1260   440  104  15   1
  9:   4862 11934 13260  9996  5508  2244  663 135  17  1
  ... Reformatted by _Wolfdieter Lang_, Dec 21 2015
From _Paul Barry_, Feb 17 2011: (Start)
Production matrix begins
  1, 1,
  1, 2, 1,
  0, 1, 2, 1,
  0, 0, 1, 2, 1,
  0, 0, 0, 1, 2, 1,
  0, 0, 0, 0, 1, 2, 1,
  0, 0, 0, 0, 0, 1, 2, 1 (End)
From _Wolfdieter Lang_, Sep 20 2013: (Start)
Example for rho(N) = 2*cos(Pi/N) powers:
n=2: rho(N)^4 = 2*R(N,1) + 3*R(N,3) + 1*R(N, 5) =
  2 + 3*S(2, rho(N)) + 1*S(4, rho(N)), identical in N >= 1. For N=4 (the square with only one distinct diagonal), the degree delta(4) = 2, hence R(4, 3) and R(4, 5) can be reduced, namely to R(4, 1) = 1 and R(4, 5) = -R(4,1) = -1, respectively. Therefore, rho(4)^4 =(2*cos(Pi/4))^4 = 2 + 3 -1 = 4. (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.

Crossrefs

Row sums: A000984.
Triangle sums (see the comments): A000958 (Kn11), A001558 (Kn12), A088218 (Fi1, Fi2).

Programs

  • Magma
    /* As triangle */ [[Binomial(2*n, k+n)*(2*k+1)/(k+n+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 16 2015
    
  • Maple
    T:=(n,k)->(2*k+1)*binomial(2*n,n-k)/(n+k+1): for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, May 06 2006
    T := proc(n, k) option remember; if k = n then 1 elif k > n then 0 elif k = 0 then T(n-1, 0) + T(n-1,1) else T(n-1, k-1) + 2*T(n-1, k) + T(n-1, k+1) fi end:
    seq(seq(T(n, k), k = 0..n), n = 0..9) od; # Peter Luschny, Feb 14 2023
  • Mathematica
    Table[Abs[Differences[Table[Binomial[2 n, n + i], {i, 0, n + 1}]]], {n, 0,7}] // Flatten (* Geoffrey Critzer, Dec 18 2011 *)
    Join[{1},Flatten[Table[Binomial[2n-1,n-k]-Binomial[2n-1,n-k-2],{n,10},{k,0,n}]]] (* Harvey P. Dale, Dec 18 2011 *)
    Flatten[Table[Binomial[2*n,m+n]*(2*m+1)/(m+n+1),{n,0,9},{m,0,n}]] (* Jayanta Basu, Apr 30 2013 *)
  • PARI
    a(n, k) = (2*n+1)/(n+k+1)*binomial(2*k, n+k)
    trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(a(y, x), ", ")); print(""))
    trianglerows(10) \\ Felix Fröhlich, Jun 24 2016
  • Sage
    # Algorithm of L. Seidel (1877)
    # Prints the first n rows of the triangle
    def A039599_triangle(n) :
        D = [0]*(n+2); D[1] = 1
        b = True ; h = 1
        for i in range(2*n-1) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            if b : print([D[z] for z in (1..h-1)])
            b = not b
    A039599_triangle(10)  # Peter Luschny, May 01 2012
    

Formula

T(n,k) = C(2*n-1, n-k) - C(2*n-1, n-k-2), n >= 1, T(0,0) = 1.
From Emeric Deutsch, May 06 2006: (Start)
T(n,k) = (2*k+1)*binomial(2*n,n-k)/(n+k+1).
G.f.: G(t,z)=1/(1-(1+t)*z*C), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function. (End)
The following formulas were added by Philippe Deléham during 2003 to 2009: (Start)
Triangle T(n, k) read by rows; given by A000012 DELTA A000007, where DELTA is Deléham's operator defined in A084938.
T(n, k) = C(2*n, n-k)*(2*k+1)/(n+k+1). Sum(k>=0; T(n, k)*T(m, k) = A000108(n+m)); A000108: numbers of Catalan.
T(n, 0) = A000108(n); T(n, k) = 0 if k>n; for k>0, T(n, k) = Sum_{j=1..n} T(n-j, k-1)*A000108(j).
T(n, k) = A009766(n+k, n-k) = A033184(n+k+1, 2k+1).
G.f. for column k: Sum_{n>=0} T(n, k)*x^n = x^k*C(x)^(2*k+1) where C(x) = Sum_{n>=0} A000108(n)*x^n is g.f. for Catalan numbers, A000108.
T(0, 0) = 1, T(n, k) = 0 if n<0 or n=1, T(n, k) = T(n-1, k-1) + 2*T(n-1, k) + T(n-1, k+1).
a(n) + a(n+1) = 1 + A000108(m+1) if n = m*(m+3)/2; a(n) + a(n+1) = A039598(n) otherwise.
T(n, k) = A050165(n, n-k).
Sum_{j>=0} T(n-k, j)*A039598(k, j) = A028364(n, k).
Matrix inverse of the triangle T(n, k) = (-1)^(n+k)*binomial(n+k, 2*k) = (-1)^(n+k)*A085478(n, k).
Sum_{k=0..n} T(n, k)*x^k = A000108(n), A000984(n), A007854(n), A076035(n), A076036(n) for x = 0, 1, 2, 3, 4.
Sum_{k=0..n} (2*k+1)*T(n, k) = 4^n.
T(n, k)*(-2)^(n-k) = A114193(n, k).
Sum_{k>=h} T(n,k) = binomial(2n,n-h).
Sum_{k=0..n} T(n,k)*5^k = A127628(n).
Sum_{k=0..n} T(n,k)*7^k = A115970(n).
T(n,k) = Sum_{j=0..n-k} A106566(n+k,2*k+j).
Sum_{k=0..n} T(n,k)*6^k = A126694(n).
Sum_{k=0..n} T(n,k)*A000108(k) = A007852(n+1).
Sum_{k=0..floor(n/2)} T(n-k,k) = A000958(n+1).
Sum_{k=0..n} T(n,k)*(-1)^k = A000007(n).
Sum_{k=0..n} T(n,k)*(-2)^k = (-1)^n*A064310(n).
T(2*n,n) = A126596(n).
Sum_{k=0..n} T(n,k)*(-x)^k = A000007(n), A126983(n), A126984(n), A126982(n), A126986(n), A126987(n), A127017(n), A127016(n), A126985(n), A127053(n) for x=1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{j>=0} T(n,j)*binomial(j,k) = A116395(n,k).
T(n,k) = Sum_{j>=0} A106566(n,j)*binomial(j,k).
T(n,k) = Sum_{j>=0} A127543(n,j)*A038207(j,k).
Sum_{k=0..floor(n/2)} T(n-k,k)*A000108(k) = A101490(n+1).
T(n,k) = A053121(2*n,2*k).
Sum_{k=0..n} T(n,k)*sin((2*k+1)*x) = sin(x)*(2*cos(x))^(2*n).
T(n,n-k) = Sum_{j>=0} (-1)^(n-j)*A094385(n,j)*binomial(j,k).
Sum_{j>=0} A110506(n,j)*binomial(j,k) = Sum_{j>=0} A110510(n,j)*A038207(j,k) = T(n,k)*2^(n-k).
Sum_{j>=0} A110518(n,j)*A027465(j,k) = Sum_{j>=0} A110519(n,j)*A038207(j,k) = T(n,k)*3^(n-k).
Sum_{k=0..n} T(n,k)*A001045(k) = A049027(n), for n>=1.
Sum_{k=0..n} T(n,k)*a(k) = (m+2)^n if Sum_{k>=0} a(k)*x^k = (1+x)/(x^2-m*x+1).
Sum_{k=0..n} T(n,k)*A040000(k) = A001700(n).
Sum_{k=0..n} T(n,k)*A122553(k) = A051924(n+1).
Sum_{k=0..n} T(n,k)*A123932(k) = A051944(n).
Sum_{k=0..n} T(n,k)*k^2 = A000531(n), for n>=1.
Sum_{k=0..n} T(n,k)*A000217(k) = A002457(n-1), for n>=1.
Sum{j>=0} binomial(n,j)*T(j,k)= A124733(n,k).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
Sum_{k=0..n} T(n,k)*A005043(k) = A127632(n).
Sum_{k=0..n} T(n,k)*A132262(k) = A089022(n).
T(n,k) + T(n,k+1) = A039598(n,k).
T(n,k) = A128899(n,k)+A128899(n,k+1).
Sum_{k=0..n} T(n,k)*A015518(k) = A076025(n), for n>=1. Also Sum_{k=0..n} T(n,k)*A015521(k) = A076026(n), for n>=1.
Sum_{k=0..n} T(n,k)*(-1)^k*x^(n-k) = A033999(n), A000007(n), A064062(n), A110520(n), A132863(n), A132864(n), A132865(n), A132866(n), A132867(n), A132869(n), A132897(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.
Sum_{k=0..n} T(n,k)*(-1)^(k+1)*A000045(k) = A109262(n), A000045:= Fibonacci numbers.
Sum_{k=0..n} T(n,k)*A000035(k)*A016116(k) = A143464(n).
Sum_{k=0..n} T(n,k)*A016116(k) = A101850(n).
Sum_{k=0..n} T(n,k)*A010684(k) = A100320(n).
Sum_{k=0..n} T(n,k)*A000034(k) = A029651(n).
Sum_{k=0..n} T(n,k)*A010686(k) = A144706(n).
Sum_{k=0..n} T(n,k)*A006130(k-1) = A143646(n), with A006130(-1)=0.
T(n,2*k)+T(n,2*k+1) = A118919(n,k).
Sum_{k=0..j} T(n,k) = A050157(n,j).
Sum_{k=0..2} T(n,k) = A026012(n); Sum_{k=0..3} T(n,k)=A026029(n).
Sum_{k=0..n} T(n,k)*A000045(k+2) = A026671(n).
Sum_{k=0..n} T(n,k)*A000045(k+1) = A026726(n).
Sum_{k=0..n} T(n,k)*A057078(k) = A000012(n).
Sum_{k=0..n} T(n,k)*A108411(k) = A155084(n).
Sum_{k=0..n} T(n,k)*A057077(k) = 2^n = A000079(n).
Sum_{k=0..n} T(n,k)*A057079(k) = 3^n = A000244(n).
Sum_{k=0..n} T(n,k)*(-1)^k*A011782(k) = A000957(n+1).
(End)
T(n,k) = Sum_{j=0..k} binomial(k+j,2j)*(-1)^(k-j)*A000108(n+j). - Paul Barry, Feb 17 2011
Sum_{k=0..n} T(n,k)*A071679(k+1) = A026674(n+1). - Philippe Deléham, Feb 01 2014
Sum_{k=0..n} T(n,k)*(2*k+1)^2 = (4*n+1)*binomial(2*n,n). - Werner Schulte, Jul 22 2015
Sum_{k=0..n} T(n,k)*(2*k+1)^3 = (6*n+1)*4^n. - Werner Schulte, Jul 22 2015
Sum_{k=0..n} (-1)^k*T(n,k)*(2*k+1)^(2*m) = 0 for 0 <= m < n (see also A160562). - Werner Schulte, Dec 03 2015
T(n,k) = GegenbauerC(n-k,-n+1,-1) - GegenbauerC(n-k-1,-n+1,-1). - Peter Luschny, May 13 2016
T(n,n-2) = A014107(n). - R. J. Mathar, Jan 30 2019
T(n,n-3) = n*(2*n-1)*(2*n-5)/3. - R. J. Mathar, Jan 30 2019
T(n,n-4) = n*(n-1)*(2*n-1)*(2*n-7)/6. - R. J. Mathar, Jan 30 2019
T(n,n-5) = n*(n-1)*(2*n-1)*(2*n-3)*(2*n-9)/30. - R. J. Mathar, Jan 30 2019

Extensions

Corrected by Philippe Deléham, Nov 26 2009, Dec 14 2009

A039598 Triangle formed from odd-numbered columns of triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x). Sometimes called Catalan's triangle.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 14, 14, 6, 1, 42, 48, 27, 8, 1, 132, 165, 110, 44, 10, 1, 429, 572, 429, 208, 65, 12, 1, 1430, 2002, 1638, 910, 350, 90, 14, 1, 4862, 7072, 6188, 3808, 1700, 544, 119, 16, 1, 16796, 25194, 23256, 15504, 7752, 2907, 798, 152, 18, 1
Offset: 0

Views

Author

Keywords

Comments

T(n,k) is the number of leaves at level k+1 in all ordered trees with n+1 edges. - Emeric Deutsch, Jan 15 2005
Riordan array ((1-2x-sqrt(1-4x))/(2x^2),(1-2x-sqrt(1-4x))/(2x)). Inverse array is A053122. - Paul Barry, Mar 17 2005
T(n,k) is the number of walks of n steps, each in direction N, S, W, or E, starting at the origin, remaining in the upper half-plane and ending at height k (see the R. K. Guy reference, p. 5). Example: T(3,2)=6 because we have ENN, WNN, NEN, NWN, NNE and NNW. - Emeric Deutsch, Apr 15 2005
Triangle T(n,k), 0<=k<=n, read by rows given by T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = 2*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for k>=1. - Philippe Deléham, Mar 30 2007
Number of (2n+1)-step walks from (0,0) to (2n+1,2k+1) and consisting of steps u=(1,1) and d=(1,-1) in which the path stays in the nonnegative quadrant. Examples: T(2,0)=5 because we have uuudd, uudud, uuddu, uduud, ududu; T(2,1)=4 because we have uuuud, uuudu, uuduu, uduuu; T(2,2)=1 because we have uuuuu. - Philippe Deléham, Apr 16 2007, Apr 18 2007
Triangle read by rows: T(n,k)=number of lattice paths from (0,0) to (n,k) that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and two types of steps H=(1,0); example: T(3,1)=14 because we have UDU, UUD, 4 HHU paths, 4 HUH paths and 4 UHH paths. - Philippe Deléham, Sep 25 2007
This triangle belongs to the family of triangles defined by T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k>=1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0) -> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
With offset [1,1] this is the (ordinary) convolution triangle a(n,m) with o.g.f. of column m given by (c(x)-1)^m, where c(x) is the o.g.f. for Catalan numbers A000108. See the Riordan comment by Paul Barry.
T(n, k) is also the number of order-preserving full transformations (of an n-chain) with exactly k fixed points. - Abdullahi Umar, Oct 02 2008
T(n,k)/2^(2n+1) = coefficients of the maximally flat lowpass digital differentiator of the order N=2n+3. - Pavel Holoborodko (pavel(AT)holoborodko.com), Dec 19 2008
The signed triangle S(n,k) := (-1)^(n-k)*T(n,k) provides the transformation matrix between f(n,l) := L(2*l)*5^n*F(2*l)^(2*n+1) (F=Fibonacci numbers A000045, L=Lucas numbers A000032) and F(4*l*(k+1)), k = 0, ..., n, for each l>=0: f(n,l) = Sum_{k=0..n} S(n,k)*F(4*l*(k+1)), n>=0, l>=0. Proof: the o.g.f. of the l.h.s., G(l;x) := Sum_{n>=0} f(n,l)*x^n = F(4*l)/(1 - 5*F(2*l)^2*x) is shown to match the o.g.f. of the r.h.s.: after an interchange of the n- and k-summation, the Riordan property of S = (C(x)/x,C(x)) (compare with the above comments by Paul Barry), with C(x) := 1 - c(-x), with the o.g.f. c(x) of A000108 (Catalan numbers), is used, to obtain, after an index shift, first Sum_{k>=0} F(4*l*(k))*GS(k;x), with the o.g.f of column k of triangle S which is GS(k;x) := Sum_{n>=k} S(n,k)*x^n = C(x)^(k+1)/x. The result is GF(l;C(x))/x with the o.g.f. GF(l,x) := Sum_{k>=0} F(4*l*k)*x^k = x*F(4*l)/(1-L(4*l)*x+x^2) (see a comment on A049670, and A028412). If one uses then the identity L(4*n) - 5*F(2*n)^2 = 2 (in Koshy's book [reference under A065563] this is No. 15, p. 88, attributed to Lucas, 1876), the proof that one recovers the o.g.f. of the l.h.s. from above boils down to a trivial identity on the Catalan o.g.f., namely 1/c^2(-x) = 1 + 2*x - (x*c(-x))^2. - Wolfdieter Lang, Aug 27 2012
O.g.f. for row polynomials R(x) := Sum_{k=0..n} a(n,k)*x^k:
((1+x) - C(z))/(x - (1+x)^2*z) with C the o.g.f. of A000108 (Catalan numbers). From Riordan ((C(x)-1)/x,C(x)-1), compare with a Paul Barry comment above. This coincides with the o.g.f. given by Emeric Deutsch in the formula section. - Wolfdieter Lang, Nov 13 2012
The A-sequence for this Riordan triangle is [1,2,1] and the Z-sequence is [2,1]. See a W. Lang link under A006232 with details and references. - Wolfdieter Lang, Nov 13 2012
From Wolfdieter Lang, Sep 20 2013: (Start)
T(n, k) = A053121(2*n+1, 2*k+1). T(n, k) appears in the formula for the (2*n+1)-th power of the algebraic number rho(N) := 2*cos(Pi/N) = R(N, 2) in terms of the even-indexed diagonal/side length ratios R(N, 2*(k+1)) = S(2*k+1, rho(N)) in the regular N-gon inscribed in the unit circle (length unit 1). S(n, x) are Chebyshev's S polynomials (see A049310): rho(N)^(2*n+1) = Sum_{k=0..n} T(n, k)*R(N, 2*(k+1)), n >= 0, identical in N >= 1. For a proof see the Sep 21 2013 comment under A053121. Note that this is the unreduced version if R(N, j) with j > delta(N), the degree of the algebraic number rho(N) (see A055034), appears. For the even powers of rho(n) see A039599. (End)
The tridiagonal Toeplitz production matrix P in the Example section corresponds to the unsigned Cartan matrix for the simple Lie algebra A_n as n tends to infinity (cf. Damianou ref. in A053122). - Tom Copeland, Dec 11 2015 (revised Dec 28 2015)
T(n,k) is the number of pairs of non-intersecting walks of n steps, each in direction N or E, starting at the origin, and such that the end points of the two paths are separated by a horizontal distance of k. See Shapiro 1976. - Peter Bala, Apr 12 2017
Also the convolution triangle of the Catalan numbers A000108. - Peter Luschny, Oct 07 2022

Examples

			Triangle T(n,k) starts:
n\k     0      1      2      3      4     5    6    7   8  9 10
0:      1
1:      2      1
2:      5      4      1
3:     14     14      6      1
4:     42     48     27      8      1
5:    132    165    110     44     10     1
6:    429    572    429    208     65    12    1
7:   1430   2002   1638    910    350    90   14    1
8:   4862   7072   6188   3808   1700   544  119   16   1
9:  16796  25194  23256  15504   7752  2907  798  152  18  1
10: 58786  90440  87210  62016  33915 14364 4655 1120 189 20  1
... Reformatted and extended by _Wolfdieter Lang_, Nov 13 2012.
Production matrix begins:
2, 1
1, 2, 1
0, 1, 2, 1
0, 0, 1, 2, 1
0, 0, 0, 1, 2, 1
0, 0, 0, 0, 1, 2, 1
0, 0, 0, 0, 0, 1, 2, 1
0, 0, 0, 0, 0, 0, 1, 2, 1
- _Philippe Deléham_, Nov 07 2011
From _Wolfdieter Lang_, Nov 13 2012: (Start)
Recurrence: T(5,1) = 165 = 1*42 + 2*48 +1*27. The Riordan A-sequence is [1,2,1].
Recurrence from Riordan Z-sequence [2,1]: T(5,0) = 132 = 2*42 + 1*48. (End)
From _Wolfdieter Lang_, Sep 20 2013: (Start)
  Example for rho(N) = 2*cos(Pi/N) powers:
  n=2: rho(N)^5 = 5*R(N, 2) + 4*R(N, 4) + 1*R(N, 6) = 5*S(1, rho(N)) + 4*S(3, rho(N)) + 1*S(5, rho(N)), identical in N >= 1. For N=5 (the pentagon with only one distinct diagonal) the degree delta(5) = 2, hence R(5, 4) and R(5, 6) can be reduced, namely to R(5, 1) = 1 and R(5, 6) = -R(5,1) = -1, respectively. Thus rho(5)^5 = 5*R(N, 2) + 4*1  + 1*(-1) = 3 + 5*R(N, 2) = 3 + 5*rho(5), with the golden section rho(5). (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
  • B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.

Crossrefs

Mirror image of A050166. Row sums are A001700.

Programs

  • Magma
    /* As triangle: */ [[Binomial(2*n,n-k) - Binomial(2*n,n-k-2): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 22 2015
    
  • Maple
    T:=(n,k)->binomial(2*n, n-k) - binomial(2*n, n-k-2); # N. J. A. Sloane, Aug 26 2013
    # Uses function PMatrix from A357368. Adds row and column above and to the left.
    PMatrix(10, n -> binomial(2*n, n) / (n + 1)); # Peter Luschny, Oct 07 2022
  • Mathematica
    Flatten[Table[Binomial[2n, n-k] - Binomial[2n, n-k-2], {n,0,9}, {k,0,n}]] (* Jean-François Alcover, May 03 2011 *)
  • PARI
    T(n,k)=binomial(2*n,n-k) - binomial(2*n,n-k-2) \\ Charles R Greathouse IV, Nov 07 2016
  • Sage
    # Algorithm of L. Seidel (1877)
    # Prints the first n rows of the triangle.
    def A039598_triangle(n) :
        D = [0]*(n+2); D[1] = 1
        b = True; h = 1
        for i in range(2*n) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            b = not b
            if b : print([D[z] for z in (1..h-1) ])
    A039598_triangle(10)  # Peter Luschny, May 01 2012
    

Formula

Row n: C(2n, n-k) - C(2n, n-k-2).
a(n, k) = C(2n+1, n-k)*2*(k+1)/(n+k+2) = A050166(n, n-k) = a(n-1, k-1) + 2*a(n-1, k)+ a (n-1, k+1) [with a(0, 0) = 1 and a(n, k) = 0 if n<0 or nHenry Bottomley, Sep 24 2001
From Philippe Deléham, Feb 14 2004: (Start)
T(n, 0) = A000108(n+1), T(n, k) = 0 if n0, T(n, k) = Sum_{j=1..n} T(n-j, k-1)*A000108(j).
G.f. for column k: Sum_{n>=0} T(n, k)*x^n = x^k*C(x)^(2*k+2) where C(x) = Sum_{n>=0} A000108(n)*x^n is g.f. for Catalan numbers, A000108.
Sum_{k>=0} T(m, k)*T(n, k) = A000108(m+n+1). (End)
T(n, k) = A009766(n+k+1, n-k) = A033184(n+k+2, 2k+2). - Philippe Deléham, Feb 14 2004
Sum_{j>=0} T(k, j)*A039599(n-k, j) = A028364(n, k). - Philippe Deléham, Mar 04 2004
Antidiagonal Sum_{k=0..n} T(n-k, k) = A000957(n+3). - Gerald McGarvey, Jun 05 2005
The triangle may also be generated from M^n * [1,0,0,0,...], where M = an infinite tridiagonal matrix with 1's in the super- and subdiagonals and [2,2,2,...] in the main diagonal. - Gary W. Adamson, Dec 17 2006
G.f.: G(t,x) = C^2/(1-txC^2), where C = (1-sqrt(1-4x))/(2x) is the Catalan function. From here G(-1,x)=C, i.e., the alternating row sums are the Catalan numbers (A000108). - Emeric Deutsch, Jan 20 2007
Sum_{k=0..n} T(n,k)*x^k = A000957(n+1), A000108(n), A000108(n+1), A001700(n), A049027(n+1), A076025(n+1), A076026(n+1) for x=-2,-1,0,1,2,3,4 respectively (see square array in A067345). - Philippe Deléham, Mar 21 2007, Nov 04 2011
Sum_{k=0..n} T(n,k)*(k+1) = 4^n. - Philippe Deléham, Mar 30 2007
Sum_{j>=0} T(n,j)*binomial(j,k) = A035324(n,k), A035324 with offset 0 (0 <= k <= n). - Philippe Deléham, Mar 30 2007
T(n,k) = A053121(2*n+1,2*k+1). - Philippe Deléham, Apr 16 2007, Apr 18 2007
T(n,k) = A039599(n,k) + A039599(n,k+1). - Philippe Deléham, Sep 11 2007
Sum_{k=0..n+1} T(n+1,k)*k^2 = A029760(n). - Philippe Deléham, Dec 16 2007
Sum_{k=0..n} T(n,k)*A059841(k) = A000984(n). - Philippe Deléham, Nov 12 2008
G.f.: 1/(1-xy-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-.... (continued fraction).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A001700(n), A194723(n+1), A194724(n+1), A194725(n+1), A194726(n+1), A194727(n+1), A194728(n+1), A194729(n+1), A194730(n+1) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Nov 03 2011
From Peter Bala, Dec 21 2014: (Start)
This triangle factorizes in the Riordan group as ( C(x), x*C(x) ) * ( 1/(1 - x), x/(1 - x) ) = A033184 * A007318, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108.
Let U denote the lower unit triangular array with 1's on or below the main diagonal and zeros elsewhere. For k = 0,1,2,... define U(k) to be the lower unit triangular block array
/I_k 0\
\ 0 U/ having the k X k identity matrix I_k as the upper left block; in particular, U(0) = U. Then this array equals the bi-infinite product (...*U(2)*U(1)*U(0))*(U(0)*U(1)*U(2)*...). (End)
From Peter Bala, Jul 21 2015: (Start)
O.g.f. G(x,t) = (1/x) * series reversion of ( x/f(x,t) ), where f(x,t) = ( 1 + (1 + t)*x )^2/( 1 + t*x ).
1 + x*d/dx(G(x,t))/G(x,t) = 1 + (2 + t)*x + (6 + 4*t + t^2)*x^2 + ... is the o.g.f for A094527. (End)
Conjecture: Sum_{k=0..n} T(n,k)/(k+1)^2 = H(n+1)*A000108(n)*(2*n+1)/(n+1), where H(n+1) = Sum_{k=0..n} 1/(k+1). - Werner Schulte, Jul 23 2015
From Werner Schulte, Jul 25 2015: (Start)
Sum_{k=0..n} T(n,k)*(k+1)^2 = (2*n+1)*binomial(2*n,n). (A002457)
Sum_{k=0..n} T(n,k)*(k+1)^3 = 4^n*(3*n+2)/2.
Sum_{k=0..n} T(n,k)*(k+1)^4 = (2*n+1)^2*binomial(2*n,n).
Sum_{k=0..n} T(n,k)*(k+1)^5 = 4^n*(15*n^2+15*n+4)/4. (End)
The o.g.f. G(x,t) is such that G(x,t+1) is the o.g.f. for A035324, but with an offset of 0, and G(x,t-1) is the o.g.f. for A033184, again with an offset of 0. - Peter Bala, Sep 20 2015
Denote this lower triangular array by L; then L * transpose(L) is the Cholesky factorization of the Hankel matrix ( 1/(i+j)*binomial(2*i+2*j-2, i+j-1) )A172417%20read%20as%20a%20square%20array.%20See%20Chamberland,%20p.%201669.%20-%20_Peter%20Bala">i,j >= 1 = A172417 read as a square array. See Chamberland, p. 1669. - _Peter Bala, Oct 15 2023

Extensions

Typo in one entry corrected by Philippe Deléham, Dec 16 2007

A076035 G.f.: 1/(1-4*x*C) where C = (1/2-1/2*(1-4*x)^(1/2))/x = g.f. for Catalan numbers A000108.

Original entry on oeis.org

1, 4, 20, 104, 548, 2904, 15432, 82128, 437444, 2331128, 12426200, 66250672, 353258536, 1883768176, 10045773072, 53573890464, 285714489348, 1523763466296, 8126565627192, 43341046493424, 231149891614008, 1232790669780816, 6574850950474992, 35065749759115104
Offset: 0

Views

Author

N. J. A. Sloane, Oct 29 2002

Keywords

Comments

The Hankel transform of this sequence and that of the aerated sequence with g.f. 1/(1-4x^2*c(x^2)) is 4^n. In general, the expansions of 1/(1-k*x*c(x)) and 1/(1-k*x^2*c(x^2)) have Hankel transform k^n. - Paul Barry, Jan 20 2007

Crossrefs

Programs

  • Maple
    CatalanNumber := n -> binomial(2*n,n)/(n+1):
    h := (n, m) -> hypergeom([1+m, m-n], [m+n+2], -3):
    a := n -> CatalanNumber(n)*(h(n,0) + 6*n/(n+2)*h(n,1)):
    seq(simplify(a(n)), n=0..23); # Peter Luschny, Dec 09 2018
  • Mathematica
    CoefficientList[Series[1/(1-4*x*(1-Sqrt[1-4*x])/(2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)

Formula

a(n) = sum{k=0..n, 3^k*C(2n, n-k)(2k+1)/(n+k+1)}. - Paul Barry, Jun 22 2004
a(n) = Sum_{k, 0<=k<=n} A106566(n, k)*4^k. - Philippe Deléham, Sep 01 2005
a(n) = if(n=0,1,sum{k=1..n, C(2n-k-1,n-k)*k*4^k/n}). - Paul Barry, Jan 20 2007
a(n) = Sum{k, 0<=k<=n}A039599(n,k)*3^k. - Philippe Deléham, Sep 08 2007
a(0)=1, a(n)=(16*a(n-1)-4*A000108(n-1))/3. - Philippe Deléham, Nov 27 2007
3*n*a(n) +2*(9-14*n)*a(n-1) +32*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011 [proved by Ekhad & Yang, see link]
a(n) ~ 2^(4*n+1) / 3^(n+1). - Vaclav Kotesovec, Feb 13 2014
Conjecture: a(n) = 4*A076025(n), n>0. - R. J. Mathar, Apr 01 2022

A076036 G.f.: 1/(1 - 5*x*C(x)), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) = g.f. for the Catalan numbers A000108.

Original entry on oeis.org

1, 5, 30, 185, 1150, 7170, 44760, 279585, 1746870, 10916150, 68219860, 426353130, 2664633580, 16653699860, 104084695500, 650526003825, 4065775405350, 25411052086350, 158818913483700, 992617612224750, 6203857867325700, 38774103465635100, 242338116077385600
Offset: 0

Views

Author

N. J. A. Sloane, Oct 29 2002

Keywords

Comments

Numbers have the same parity as the Catalan numbers, that is, a(n) is even except for n of the form 2^m - 1. Follows from C(x) = 1/(1 - x*C(x)) = 1/(1 - 5*x*C(x)) (mod 2). - Peter Bala, Jul 24 2016

Crossrefs

Programs

  • PARI
    C(x) = (1 - sqrt(1 - 4*x))/(2*x);
    my(x = 'x + O('x^25)); Vec(1/(1 - 5*x*C(x))) \\ Michel Marcus, Jan 21 2020

Formula

a(n) = Sum_{k = 0..n} A106566(n, k)*5^k. - Philippe Deléham, Sep 01 2005
a(n) = Sum{k = 0..n} A039599(n,k)*4^k. - Philippe Deléham, Sep 08 2007
a(0) = 1, a(n) = (25*a(n-1) - 5*A000108(n-1))/4 for n >= 1. - Philippe Deléham, Nov 27 2007
a(n) = Sum_{k = 0..n} A116395(n,k)*3^k. - Philippe Deléham, Sep 27 2009
D-finite with recurrence: +4*n*a(n) +(-41*n+24)*a(n-1) +50*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jan 20 2020
a(n) = 5*A076025(n), n>0. - R. J. Mathar, Jan 20 2020

A076026 Expansion of g.f.: (1-4*x*C)/(1-5*x*C) where C = (1/2-1/2*(1-4*x)^(1/2))/x = g.f. for Catalan numbers A000108.

Original entry on oeis.org

1, 1, 6, 37, 230, 1434, 8952, 55917, 349374, 2183230, 13643972, 85270626, 532926716, 3330739972, 20816939100, 130105200765, 813155081070, 5082210417270, 31763782696740, 198523522444950, 1240771573465140, 7754820693127020, 48467623215477120, 302922622226091090
Offset: 0

Views

Author

N. J. A. Sloane, Oct 29 2002

Keywords

Comments

a(n) is the number of Motzkin paths of length n-1 in which the (1,0)-steps at level 0 come in 6 colors and those at a higher level come in 2 colors. Example: a(4)=230 because, denoting U=(1,1), H=(1,0), and D=(1,-1), we have 6^3 = 216 paths of shape HHH, 6 paths of shape HUD, 6 paths of shape UDH, and 2 paths of shape UHD. - Emeric Deutsch, May 02 2011

References

  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (2- 4*Sqrt(1-4*x))/(3-5*Sqrt(1-4*x)) )); // G. C. Greubel, May 04 2019
    
  • Mathematica
    CoefficientList[Series[(2-4*Sqrt[1-4*x])/(3-5*Sqrt[1-4*x]), {x, 0, 30}], x] (* Vaclav Kotesovec, Dec 09 2013 *)
    Flatten[{1,Table[FullSimplify[(2*n)!*Hypergeometric2F1Regularized[1, n+1/2, n+2, 16/25] / (25*n!) + 3*5^(2*n-1)/4^(n+1)], {n,1,30}]}] (* Vaclav Kotesovec, Dec 09 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec((2-4*sqrt(1-4*x))/(3-5*sqrt(1-4*x))) \\ G. C. Greubel, May 04 2019
    
  • Sage
    ((2-4*sqrt(1-4*x))/(3-5*sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 04 2019

Formula

a(n+1) = Sum_{k=0..n} A039598(n,k)*4^k. - Philippe Deléham, Mar 21 2007
a(n) = Sum_{k=0..n} A039599(n,k)*A015521(k), for n >= 1. - Philippe Deléham, Nov 22 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n >= 1, a(n+1)=(-1)^n*charpoly(A,-5). - Milan Janjic, Jul 08 2010
From Gary W. Adamson, Jul 25 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows:
6, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
... (End)
D-finite with recurrence: 4*n*a(n) = (41*n-24)*a(n-1) - 50*(2*n-3)*a(n-2). - Vaclav Kotesovec, Dec 09 2013
a(n) ~ 3*5^(2*n-1)/4^(n+1). - Vaclav Kotesovec, Dec 09 2013
O.g.f. A(x) = (1 - *Sum_{n >= 1} binomial(2*n,n)*x^n)/(1 - (3/2)*Sum_{n >= 1} binomial(2*n,n)*x^n). - Peter Bala, Sep 01 2016

A110488 A number triangle based on the Catalan numbers.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 14, 14, 10, 4, 1, 42, 42, 35, 17, 5, 1, 132, 132, 126, 74, 26, 6, 1, 429, 429, 462, 326, 137, 37, 7, 1, 1430, 1430, 1716, 1446, 726, 230, 50, 8, 1, 4862, 4862, 6435, 6441, 3858, 1434, 359, 65, 9, 1, 16796, 16796, 24310, 28770, 20532, 8952, 2582, 530, 82, 10, 1
Offset: 0

Views

Author

Paul Barry, Jul 22 2005

Keywords

Comments

Columns include A000108, A001700, A049027(n+1), A076025(n+1). Rows sums are A110489, diagonal sums are A110490.

Examples

			Rows begin
   1;
   1,  1;
   2,  2,  1;
   5,  5,  3,  1;
  14, 14, 10,  4,  1;
  42, 42, 35, 17,  5,  1;
		

Programs

  • Mathematica
    T[n_, 0] := CatalanNumber[n]; T[n_, 1] := CatalanNumber[n]; T[n_, n_] := 1; T[n_, k_] := Sum[2*(j + 1)*(k - 1)^j*Binomial[2 (n - k) + 1, n - k - j]/(n - k + j + 2), {j, 0, n - k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 28 2017 *)

Formula

T(n, k) = Sum_{j=0..(n-k)} 2*(j+1)*(k-1)^j*C(2*(n-k)+1, n-k-j)/(n-k+j+2).
Column k has g.f. x^k*c(x)/(1-k*x*c(x)) where c(x) is the g.f. of A000108.
T(n,0) = Catalan(n), T(n,1) = Catalan(n), T(n,n) = 1. - G. C. Greubel, Aug 28 2017

A104530 Expansion of (1+sqrt(1-4x))/(4sqrt(1-4x)-2).

Original entry on oeis.org

1, 3, 15, 78, 411, 2178, 11574, 61596, 328083, 1748346, 9319650, 49688004, 264943902, 1412826132, 7534329804, 40180417848, 214285867011, 1142822599722, 6094924220394, 32505784870068, 173362418710506, 924593002335612, 4931138212856244, 26299312319336328, 140262655976846766
Offset: 0

Views

Author

Paul Barry, Mar 12 2005

Keywords

Comments

Apply the Riordan matrix ((1+sqrt(1-4x))/2,(1-sqrt(1-4x))/2) (inverse of (1/(1-x),x(1-x))) to 4^n.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+Sqrt[1-4*x])/(4*Sqrt[1-4*x]-2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
  • PARI
    x='x+O('x^66); Vec((1+sqrt(1-4*x))/(4*sqrt(1-4*x)-2)) \\ Joerg Arndt, May 13 2013

Formula

a(n) = 0^n + Sum_{k=0..n} 3^(k+1)*C(2*n-1, n-k-1)*2*(k+1)/(n+k+1).
Recurrence: 3*n*a(n) = 2*(14*n-9)*a(n-1) - 32*(2*n-3)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ 2^(4*n-1)/3^n. - Vaclav Kotesovec, Oct 17 2012

A104532 Expansion of (1+sqrt(1-4*x))/(6*sqrt(1-4*x)-4).

Original entry on oeis.org

1, 5, 35, 250, 1795, 12910, 92910, 668820, 4815075, 34667110, 249598330, 1797091180, 12938997710, 93160575500, 670755400700, 4829436210600, 34771931021475, 250357867996950, 1802576519933250, 12978550465880700, 93445561587077850, 672808036862840100, 4844217840946181700
Offset: 0

Views

Author

Paul Barry, Mar 12 2005

Keywords

Comments

Apply the Riordan matrix ((1+sqrt(1-4x))/2,(1-sqrt(1-4x))/2) (inverse (1/(1-x),x(1-x))) to 6^n. In general, (1+sqrt(1-4x))(k*sqrt(1-4x)-(k-2)) results from applying the Riordan matrix ((1+sqrt(1-4x))/2,(1-sqrt(1-4x))/2) (inverse of (1/(1-x),x(1-x))) to k^n. We then have a(n)=0^n+sum{i=0..n, (k-1)^(i+1)*C(2n-1,n-i-1)2(i+1)/(n+i+1)}.

Crossrefs

Cf. A088218, A067336, A076025, 104530, 104531.

Programs

  • Mathematica
    CoefficientList[Series[(1+Sqrt[1-4x])/(6Sqrt[1-4x]-4), {x,0,20}], x]  (* Harvey P. Dale, Apr 11 2011 *)
  • PARI
    x='x+O('x^66); Vec((1+sqrt(1-4*x))/(6*sqrt(1-4*x)-4)) \\ Joerg Arndt, May 13 2013

Formula

a(n) = 0^n + sum{k=0..n, 5^(k+1)*C(2n-1, n-k-1)*2*(k+1)/(n+k+1)}.
D-finite with recurrence: 5*n*a(n) = 2*(28*n-15)*a(n-1) - 72*(2*n-3)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ 2^(2*n+1)*3^(2*n-1)/5^n. - Vaclav Kotesovec, Oct 17 2012
Showing 1-10 of 14 results. Next