cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 48 results. Next

A004070 Table of Whitney numbers W(n,k) read by antidiagonals, where W(n,k) is maximal number of pieces into which n-space is sliced by k hyperplanes, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 4, 1, 1, 2, 4, 7, 5, 1, 1, 2, 4, 8, 11, 6, 1, 1, 2, 4, 8, 15, 16, 7, 1, 1, 2, 4, 8, 16, 26, 22, 8, 1, 1, 2, 4, 8, 16, 31, 42, 29, 9, 1, 1, 2, 4, 8, 16, 32, 57, 64, 37, 10, 1, 1, 2, 4, 8, 16, 32, 63, 99, 93, 46, 11, 1, 1, 2, 4, 8, 16, 32, 64, 120, 163
Offset: 0

Views

Author

Keywords

Comments

As a number triangle, this is given by T(n,k)=sum{j=0..n, C(n,j)(-1)^(n-j)sum{i=0..j, C(j+k,i-k)}}. - Paul Barry, Aug 23 2004
As a number triangle, this is the Riordan array (1/(1-x), x(1+x)) with T(n,k)=sum{i=0..n, binomial(k,i-k)}. Diagonal sums are then A023434(n+1). - Paul Barry, Feb 16 2005
Form partial sums across rows of square array of binomial coefficients A026729; see also A008949. - Philippe Deléham, Aug 28 2005
Square array A026729 -> Partial sums across rows
1 0 0 0 0 0 0 . . . . 1 1 1 1 1 1 1 . . . . . .
1 1 0 0 0 0 0 . . . . 1 2 2 2 2 2 2 . . . . . .
1 2 1 0 0 0 0 . . . . 1 3 4 4 4 4 4 . . . . . .
1 3 3 1 0 0 0 . . . . 1 4 7 8 8 8 8 . . . . . .
For other Whitney numbers see A007799.
W(n,k) is the number of length k binary sequences containing no more than n 1's. - Geoffrey Critzer, Mar 15 2010
From Emeric Deutsch, Jun 15 2010: (Start)
Viewed as a number triangle, T(n,k) is the number of internal nodes of the Fibonacci tree of order n+2 at level k. A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node.
(End)
Named after the American mathematician Hassler Whitney (1907-1989). - Amiram Eldar, Jun 13 2021

Examples

			Table W(n,k) begins:
  1 1 1 1  1  1  1 ...
  1 2 3 4  5  6  7 ...
  1 2 4 7 11 16 22 ...
  1 2 4 8 15 26 42 ...
W(2,4) = 11 because there are 11 length 4 binary sequences containing no more than 2 1's: {0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}, {0, 0, 1, 1}, {0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {1, 0, 0, 0}, {1, 0, 0, 1}, {1, 0, 1, 0}, {1, 1, 0, 0}. - _Geoffrey Critzer_, Mar 15 2010
Table T(n, k) begins:
  1
  1  1
  1  2  1
  1  2  3  1
  1  2  4  4  1
  1  2  4  7  5  1
  1  2  4  8 11  6  1
...
		

References

  • Donald E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.

Crossrefs

Cf. A007799. As a triangle, mirror A052509.
Rows converge to powers of two (A000079). Subdiagonals include A000225, A000295, A002662, A002663, A002664, A035038, A035039, A035040, A035041, A035042. Antidiagonal sums are A000071.

Programs

  • Mathematica
    Transpose[ Table[Table[Sum[Binomial[n, k], {k, 0, m}], {m, 0, 15}], {n, 0, 15}]] // Grid (* Geoffrey Critzer, Mar 15 2010 *)
    T[ n_, k_] := Sum[ Binomial[n, j] (-1)^(n - j) Sum[ Binomial[j + k, i - k], {i, 0, j}], {j, 0, n}]; (* Michael Somos, May 31 2016 *)
  • PARI
    /* array read by antidiagonals up coordinate index functions */
    t1(n) = binomial(floor(3/2 + sqrt(2+2*n)), 2) - (n+1); /* A025581 */
    t2(n) = n - binomial(floor(1/2 + sqrt(2+2*n)), 2); /* A002262 */
    /* define the sequence array function for A004070 */
    W(n, k) = sum(i=0, n, binomial(k, i));
    /* visual check ( origin 0,0 ) */
    printp(matrix(7, 7, n, k, W(n-1, k-1)));
    /* print the sequence entries by antidiagonals going up ( origin 0,0 ) */
    print1("S A004070 "); for(n=0, 32, print1(W(t1(n), t2(n))","));
    print1("T A004070 "); for(n=33, 61, print1(W(t1(n), t2(n))","));
    print1("U A004070 "); for(n=62, 86, print1(W(t1(n), t2(n))",")); /* Michael Somos, Apr 28 2000 */
    
  • PARI
    T(n, k)=sum(m=0, n-k, binomial(k, m)) \\ Jianing Song, May 30 2022

Formula

W(n, k) = Sum_{i=0..n} binomial(k, i). - Bill Gosper
W(n, k) = if k=0 or n=0 then 1 else W(n, k-1)+W(n-1, k-1). - David Broadhurst, Jan 05 2000
The table W(n,k) = A000012 * A007318(transform), where A000012 = (1; 1,1; 1,1,1; ...). - Gary W. Adamson, Nov 15 2007
E.g.f. for row n: (1 + x + x^2/2! + ... + x^n/n!)* exp(x). - Geoffrey Critzer, Mar 15 2010
G.f.: 1 / (1 - x - x*y*(1 - x^2)) = Sum_{0 <= k <= n} x^n * y^k * T(n, k). - Michael Somos, May 31 2016
W(n, n) = 2^n. - Michael Somos, May 31 2016
From Jianing Song, May 30 2022: (Start)
T(n, 0) = T(n, n) = 1 for n >= 0; T(n, k) = T(n-1, k-1) + T(n-2, k-1) for k=1, 2, ..., n-1, n >= 2.
T(n, k) = Sum_{m=0..n-k} binomial(k, m).
T(n,k) = 2^k for 0 <= k <= floor(n/2). (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 20 2000

A052509 Knights-move Pascal triangle: T(n,k), n >= 0, 0 <= k <= n; T(n,0) = T(n,n) = 1, T(n,k) = T(n-1,k) + T(n-2,k-1) for k = 1,2,...,n-1, n >= 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 4, 2, 1, 1, 5, 7, 4, 2, 1, 1, 6, 11, 8, 4, 2, 1, 1, 7, 16, 15, 8, 4, 2, 1, 1, 8, 22, 26, 16, 8, 4, 2, 1, 1, 9, 29, 42, 31, 16, 8, 4, 2, 1, 1, 10, 37, 64, 57, 32, 16, 8, 4, 2, 1, 1, 11, 46, 93, 99, 63, 32, 16, 8, 4, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 17 2000

Keywords

Comments

Also square array T(n,k) (n >= 0, k >= 0) read by antidiagonals: T(n,k) = Sum_{i=0..k} binomial(n,i).
As a number triangle read by rows, this is T(n,k) = Sum_{i=n-2*k..n-k} binomial(n-k,i), with T(n,k) = T(n-1,k) + T(n-2,k-1). Row sums are A000071(n+2). Diagonal sums are A023435(n+1). It is the reverse of the Whitney triangle A004070. - Paul Barry, Sep 04 2005
Also, twice number of orthants intersected by a generic k-dimensional subspace of R^n [Naiman and Scheinerman, 2017]. - N. J. A. Sloane, Mar 03 2018

Examples

			Triangle begins:
[0] 1;
[1] 1, 1;
[2] 1, 2,  1;
[3] 1, 3,  2,  1;
[4] 1, 4,  4,  2,  1;
[5] 1, 5,  7,  4,  2,  1;
[6] 1, 6, 11,  8,  4,  2, 1;
[7] 1, 7, 16, 15,  8,  4, 2, 1;
[8] 1, 8, 22, 26, 16,  8, 4, 2, 1;
[9] 1, 9, 29, 42, 31, 16, 8, 4, 2, 1;
As a square array, this begins:
  1  1  1  1  1  1 ...
  1  2  2  2  2  2 ...
  1  3  4  4  4  4 ...
  1  4  7  8  8  8 ...
  1  5 11 15 16 ...
  1  6 16 26 31 32 ...
		

Crossrefs

Row sums A000071; Diagonal sums A023435; Mirror A004070.
Columns give A000027, A000124, A000125, A000127, A006261, ...
Partial sums across rows of (extended) Pascal's triangle A052553.

Programs

  • GAP
    A052509:=Flat(List([0..100],n->List([0..n],k->Sum([0..n],m->Binomial(n-k,k-m))))); # Muniru A Asiru, Sat Feb 17 2018
    
  • Haskell
    a052509 n k = a052509_tabl !! n !! k
    a052509_row n = a052509_tabl !! n
    a052509_tabl = [1] : [1,1] : f [1] [1,1] where
       f row' row = rs : f row rs where
         rs = zipWith (+) ([0] ++ row' ++ [1]) (row ++ [0])
    -- Reinhard Zumkeller, Nov 22 2012
    
  • Magma
    [[(&+[Binomial(n-k, k-j): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 13 2019
    
  • Maple
    a := proc(n::nonnegint, k::nonnegint) option remember: if k=0 then RETURN(1) fi: if k=n then RETURN(1) fi: a(n-1,k)+a(n-2,k-1) end: for n from 0 to 11 do for k from 0 to n do printf(`%d,`,a(n,k)) od: od: # James Sellers, Mar 17 2000
    with(combinat): for s from 0 to 11 do for n from s to 0 by -1 do if n=0 or s-n=0 then printf(`%d,`,1) else printf(`%d,`,sum(binomial(n, i), i=0..s-n)) fi; od: od: # James Sellers, Mar 17 2000
  • Mathematica
    Table[Sum[Binomial[n-k, k-m], {m, 0, n}], {n, 0, 10}, {k, 0, n}]
    T[n_, k_] := Hypergeometric2F1[-k, -n + k, -k, -1];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Nov 28 2021 *)
  • PARI
    T(n,k)=sum(m=0,n,binomial(n-k,k-m));
    for(n=0,10,for(k=0,n,print1(T(n,k),", "););print();); /* show triangle */
    
  • Sage
    [[sum(binomial(n-k, k-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 13 2019

Formula

T(n, k) = Sum_{m=0..n} binomial(n-k, k-m). - Wouter Meeussen, Oct 03 2002
From Werner Schulte, Feb 15 2018: (Start)
Referring to the square array T(i,j):
G.f. of row n: Sum_{k>=0} T(n,k) * x^k = (1+x)^n / (1-x).
G.f. of T(i,j): Sum_{k>=0, n>=0} T(n,k) * x^k * y^n = 1 / ((1-x)*(1-y-x*y)).
Let a_i(n) be multiplicative with a_i(p^e) = T(i, e), p prime and e >= 0, then Sum_{n>0} a_i(n)/n^s = (zeta(s))^(i+1) / (zeta(2*s))^i for i >= 0.
(End)
T(n, k) = hypergeom([-k, -n + k], [-k], -1). - Peter Luschny, Nov 28 2021
From Jianing Song, May 30 2022: (Start)
Referring to the triangle, G.f.: Sum_{n>=0, 0<=k<=n} T(n,k) * x^n * y^k = 1 / ((1-x*y)*(1-x-x^2*y)).
T(n,k) = 2^(n-k) for ceiling(n/2) <= k <= n. (End)

Extensions

More terms from James Sellers, Mar 17 2000
Entry formed by merging two earlier entries. - N. J. A. Sloane, Jun 17 2007
Edited by Johannes W. Meijer, Jul 24 2011

A086514 Difference between the arithmetic mean of the neighbors of the terms and the term itself follows the pattern 0,1,2,3,4,5,...

Original entry on oeis.org

1, 2, 3, 6, 13, 26, 47, 78, 121, 178, 251, 342, 453, 586, 743, 926, 1137, 1378, 1651, 1958, 2301, 2682, 3103, 3566, 4073, 4626, 5227, 5878, 6581, 7338, 8151, 9022, 9953, 10946, 12003, 13126, 14317, 15578, 16911, 18318, 19801, 21362, 23003, 24726
Offset: 1

Views

Author

Amarnath Murthy, Jul 29 2003

Keywords

Comments

{a(k): 1 <= k <= 4} = divisors of 6. - Reinhard Zumkeller, Jun 17 2009

Examples

			2 = (1+3)/2 -0. 3 = (2+6)/2 - 1, 6 = (3+13)/2 - 2, etc.
		

Crossrefs

Programs

Formula

a(n)+ n-2 = {a(n-1) +a(n+1)}/2
a(n) = (n^3-6*n^2+14*n-6)/3.
Contribution from Bruno Berselli, May 31 2010: (Start)
G.f.: (1-2*x+x^2+2*x^3)/(1-x)^4.
a(n)-4*a(n-1)+6*a(n-2)-4*a(n-3)+a(n-4) = 0 with n>4. For n=9, 121-4*78+6*47-4*26+13 = 0.
a(n) = ( A177342(n)-A000290(n-1)-3*A014106(n-2) )/4 with n>1. For n=11, a(11) = (1671-100-3*189)/4 = 251. (End)

Extensions

More terms from David Wasserman, Mar 10 2005

A161706 a(n) = (-11*n^5 + 145*n^4 - 635*n^3 + 1115*n^2 - 494*n + 120)/120.

Original entry on oeis.org

1, 2, 4, 5, 10, 20, 21, -27, -201, -626, -1486, -3035, -5608, -9632, -15637, -24267, -36291, -52614, -74288, -102523, -138698, -184372, -241295, -311419, -396909, -500154, -623778, -770651, -943900, -1146920, -1383385, -1657259, -1972807
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 6} = divisors of 20:
a(n) = A027750(A006218(19) + k + 1), 0 <= k < A000005(20).

Examples

			Differences of divisors of 20 to compute the coefficients of their interpolating polynomial, see formula:
  1     2     4     5    10    20
     1     2     1     5    10
        1    -1     4     5
          -2     5     1
              7    -4
               -11
		

Crossrefs

Programs

  • Magma
    [(-11*n^5 + 145*n^4 - 635*n^3 + 1115*n^2 - 494*n + 120)/120: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
    
  • Maple
    A161706:=n->(-11*n^5 + 145*n^4 - 635*n^3 + 1115*n^2 - 494*n + 120)/120: seq(A161706(n), n=0..50); # Wesley Ivan Hurt, Jul 16 2017
  • Mathematica
    CoefficientList[Series[(1 - 4*x + 7*x^2 - 9*x^3 + 15*x^4 - 21*x^5)/(1 - x)^6, {x, 0, 50}], x] (* G. C. Greubel, Jul 16 2017 *)
  • PARI
    a(n)=(-11*n^5+145*n^4-635*n^3+1115*n^2-494*n+120)/120 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Python
    def A161706(n): return (n*(n*(n*(n*(145 - 11*n) - 635) + 1115) - 494) + 120)//15>>3 # Chai Wah Wu, Oct 23 2023

Formula

a(n) = C(n,0) + C(n,1) + C(n,2) - 2*C(n,3) + 7*C(n,4) - 11*C(n,5).
G.f.: (1-4*x+7*x^2-9*x^3+15*x^4-21*x^5)/(1-x)^6. - Colin Barker, Apr 25 2012

A161710 a(n) = (-6*n^7 + 154*n^6 - 1533*n^5 + 7525*n^4 - 18879*n^3 + 22561*n^2 - 7302*n + 2520)/2520.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 24, 39, -2, -295, -1308, -3980, -9996, -22150, -44808, -84483, -150534, -256001, -418588, -661806, -1016288, -1521288, -2226376, -3193341, -4498314, -6234123, -8512892, -11468896, -15261684, -20079482, -26142888
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 8} = divisors of 24:
a(n) = A027750(A006218(23) + k + 1), 0 <= k < A000005(24).

Examples

			Differences of divisors of 24 to compute the coefficients of their interpolating polynomial, see formula:
1 ... 2 ... 3 ... 4 ... 6 ... 8 .. 12 .. 24
.. 1 ... 1 ... 1 ... 2 ... 2 ... 4 .. 12
..... 0 ... 0 ... 1 ... 0 ... 2 ... 8
........ 0 ... 1 .. -1 ... 2 ... 6
........... 1 .. -2 ... 3 ... 4
............. -3 ... 5 ... 1
................. 8 .. -4
.................. -12.
		

Crossrefs

Programs

  • Magma
    [(-6*n^7 + 154*n^6 - 1533*n^5 + 7525*n^4 - 18879*n^ 3 + 22561*n^2 - 7302*n + 2520)/2520: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011
    
  • Mathematica
    Table[(-6n^7+154n^6-1533n^5+7525n^4-18879n^3+22561n^2-7302n+2520)/2520,{n,0,40}] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,2,3,4,6,8,12,24},40] (* Harvey P. Dale, Jul 15 2012 *)
  • PARI
    a(n)=(-6*n^7+154*n^6-1533*n^5+7525*n^4-18879*n^3+22561*n^2-7302*n+2520)/2520 \\ Charles R Greathouse IV, Sep 24 2015
  • Python
    A161710_list, m = [1], [-12, 80, -223, 333, -281, 127, -23, 1]
    for _ in range(1,10**2):
        for i in range(7):
            m[i+1]+= m[i]
        A161710_list.append(m[-1]) # Chai Wah Wu, Nov 09 2014
    

Formula

a(n) = C(n,0) + C(n,1) + C(n,4) - 3*C(n,5) + 8*C(n,6) - 12*C(n,7).
G.f.: (1-6*x+15*x^2-20*x^3+16*x^4-12*x^5+18*x^6-24*x^7)/(1-x)^8. - Bruno Berselli, Jul 17 2011
a(0)=1, a(1)=2, a(2)=3, a(3)=4, a(4)=6, a(5)=8, a(6)=12, a(7)=24, a(n)=8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+ 8*a(n-7)- a(n-8). - Harvey P. Dale, Jul 15 2012

A161713 a(n) = (-n^5 + 15*n^4 - 65*n^3 + 125*n^2 - 34*n + 40)/40.

Original entry on oeis.org

1, 2, 4, 7, 14, 28, 49, 71, 79, 46, -70, -329, -812, -1624, -2897, -4793, -7507, -11270, -16352, -23065, -31766, -42860, -56803, -74105, -95333, -121114, -152138, -189161, -233008, -284576, -344837, -414841, -495719, -588686, -695044
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 6} = divisors of 28:
a(n) = A027750(A006218(27) + k + 1), 0 <= k < A000005(28).

Examples

			Differences of divisors of 28 to compute the coefficients of their interpolating polynomial, see formula:
  1     2     4     7    14    28
     1     2     3     7    14
        1     1     4     7
           0     3     3
              3     0
                -3
		

Crossrefs

Programs

  • Magma
    [(-n^5 + 15*n^4 - 65*n^3 + 125*n^2 - 34*n + 40)/40: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011
    
  • Mathematica
    Table[(-n^5+15n^4-65n^3+125n^2-34n)/40+1,{n,0,40}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,2,4,7,14,28},40] (* Harvey P. Dale, Jan 14 2014 *)
  • PARI
    a(n)=(-n^5+15*n^4-65*n^3+125*n^2-34*n+40)/40 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Python
    def A161713(n): return n*(n*(n*(n*(15 - n) - 65) + 125) - 34)//40 + 1 # Chai Wah Wu, Dec 16 2021

Formula

a(n) = C(n,0) + C(n,1) + C(n,2) + 3*C(n,4) - 3*C(n,5).
G.f.: -(-1+4*x-7*x^2+7*x^3-7*x^4+7*x^5)/(-1+x)^6. - R. J. Mathar, Jun 18 2009
a(0)=1, a(1)=2, a(2)=4, a(3)=7, a(4)=14, a(5)=28, a(n)=6*a(n-1)- 15*a(n-2)+ 20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Harvey P. Dale, Jan 14 2014

A161715 a(n) = (50*n^7 - 1197*n^6 + 11333*n^5 - 53655*n^4 + 132125*n^3 - 156828*n^2 + 73212*n + 5040)/5040.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 15, 30, 171, 886, 3359, 10143, 26072, 59502, 123931, 240048, 438261, 761754, 1270123, 2043641, 3188202, 4840994, 7176951, 10416034, 14831391, 20758446, 28604967, 38862163, 52116860, 69064806, 90525155, 117456180
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 8} = divisors of 30:
a(n) = A027750(A006218(29) + k + 1), 0 <= k < A000005(30).

Examples

			Differences of divisors of 30 to compute the coefficients of their interpolating polynomial, see formula:
  1     2     3     5     6    10    15    30
     1     1     2     1     4     5    15
        0     1    -1     3     1    10
           1    -2     4    -2     9
             -3     6    -6    11
                 9   -12    17
                  -21    29
                      50
		

Crossrefs

Programs

  • Magma
    [(50*n^7 - 1197*n^6 + 11333*n^5 - 53655*n^4 + 132125*n^3 - 156828*n^2 + 73212*n + 5040)/5040: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011
    
  • Mathematica
    CoefficientList[Series[(1-6*x+15*x^2-19*x^3+8*x^4+18*x^5-51*x^6+84*x^7)/(-1+x)^8, {x, 0, 50}], x] (* G. C. Greubel, Jul 16 2017 *)
  • PARI
    x='x+O('x^50); Vec((1 -6*x +15*x^2 -19*x^3 +8*x^4 +18*x^5 -51*x^6 +84*x^7) /(-1+x)^8) \\ G. C. Greubel, Jul 16 2017
  • Python
    A161710_list, m = [1], [50, -321, 864, -1249, 1024, -452, 85, 1]
    for _ in range(1,10**2):
        for i in range(7):
            m[i+1]+= m[i]
        A161710_list.append(m[-1]) # Chai Wah Wu, Nov 09 2014
    

Formula

a(n) = C(n,0) + C(n,1) + C(n,3) - 3*C(n,4) + 9*C(n,5) - 21*C(n,6) + 50*C(n,7).
G.f.: (1-6*x+15*x^2-19*x^3+8*x^4+18*x^5-51*x^6+84*x^7)/(-1+x)^8. - R. J. Mathar, Jun 18 2009
a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8). - Wesley Ivan Hurt, Apr 26 2021

A161701 a(n) = (n^5 - 5*n^4 + 5*n^3 + 5*n^2 + 114*n + 120)/120.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 28, 64, 135, 262, 473, 804, 1300, 2016, 3018, 4384, 6205, 8586, 11647, 15524, 20370, 26356, 33672, 42528, 53155, 65806, 80757, 98308, 118784, 142536, 169942, 201408, 237369, 278290, 324667, 377028, 435934, 501980, 575796, 658048
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 6} = divisors of 12:
a(n) = A027750(A006218(11) + k + 1), 0 <= k < A000005(12).

Examples

			Differences of divisors of 12 to compute the coefficients of their interpolating polynomial, see formula:
  1     2     3     4     6    12
     1     1     1     2     6
        0     0     1     4
           0     1     3
              1     2
                 1
		

Crossrefs

Programs

  • Magma
    [(n^5 - 5*n^4 + 5*n^3 + 5*n^2 + 114*n + 120)/120: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
    
  • Maple
    A161701:=n->(n^5 - 5*n^4 + 5*n^3 + 5*n^2 + 114*n + 120)/120: seq(A161701(n), n=0..60); # Wesley Ivan Hurt, Jul 16 2017
  • Mathematica
    CoefficientList[Series[(1-4*x+6*x^2-4*x^3+2*x^4)/(1-x)^6, {x, 0, 50}], x] (* G. C. Greubel, Jul 16 2017 *)
  • PARI
    a(n)=(n^5-5*n^4+5*n^3+5*n^2+114*n+120)/120 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = C(n,0) + C(n,1) + C(n,4) + C(n,5).
G.f.: (1-4*x+6*x^2-4*x^3+2*x^4)/(1-x)^6. - Colin Barker, Aug 20 2012

A161704 a(n) = (3*n^5 - 35*n^4 + 145*n^3 - 235*n^2 + 152*n + 30)/30.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 59, 190, 513, 1186, 2435, 4566, 7977, 13170, 20763, 31502, 46273, 66114, 92227, 125990, 168969, 222930, 289851, 371934, 471617, 591586, 734787, 904438, 1104041, 1337394, 1608603, 1922094, 2282625, 2695298, 3165571, 3699270
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 6} = divisors of 18:
a(n) = A027750(A006218(17) + k + 1), 0 <= k < A000005(18).

Examples

			Differences of divisors of 18 to compute the coefficients of their interpolating polynomial, see formula:
  1     2     3     6     9    18
     1     1     3     3     9
        0     2     0     6
           2    -2     6
             -4     8
                12
		

Crossrefs

Programs

  • Magma
    [(3*n^5 - 35*n^4 + 145*n^3 - 235*n^2 + 152*n + 30)/30: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
    
  • Maple
    A161704:=n->(3*n^5 - 35*n^4 + 145*n^3 - 235*n^2 + 152*n + 30)/30: seq(A161704(n), n=0..50); # Wesley Ivan Hurt, Jul 16 2017
  • Mathematica
    CoefficientList[Series[(1 - 4*x + 6*x^2 - 2*x^3 - 7*x^4 + 18*x^5)/(x - 1)^6, {x, 0, 50}], x] (* G. C. Greubel, Jul 16 2017 *)
  • PARI
    a(n)=n*(3*n^4-35*n^3+145*n^2-235*n+152)/30+1

Formula

a(n) = C(n,0) + C(n,1) + 2*C(n,3) - 4*C(n,4) + 12*C(n,5).
G.f.: ( 1-4*x+6*x^2-2*x^3-7*x^4+18*x^5 ) / (x-1)^6. - R. J. Mathar, Jul 12 2016

A161708 a(n) = -n^3 + 7*n^2 - 5*n + 1.

Original entry on oeis.org

1, 2, 11, 22, 29, 26, 7, -34, -103, -206, -349, -538, -779, -1078, -1441, -1874, -2383, -2974, -3653, -4426, -5299, -6278, -7369, -8578, -9911, -11374, -12973, -14714, -16603, -18646, -20849, -23218, -25759, -28478, -31381, -34474, -37763, -41254
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 4} = divisors of 22:
a(n) = A027750(A006218(21) + k + 1), 0 <= k < A000005(22).

Examples

			Differences of divisors of 22 to compute the coefficients of their interpolating polynomial, see formula:
  1     2    11    22
     1     9    11
        8     2
          -6
		

Crossrefs

Programs

  • Magma
    [-n^3 + 7*n^2 - 5*n + 1: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011
    
  • Mathematica
    Table[-n^3+7n^2-5n+1,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,2,11,22},40] (* Harvey P. Dale, Nov 12 2013 *)
  • PARI
    a(n)=-n^3+7*n^2-5*n+1 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = C(n,0) + C(n,1) + 8*C(n,2) - 6*C(n,3).
G.f.: -(-1+2*x-9*x^2+14*x^3)/(-1+x)^4. - R. J. Mathar, Jun 18 2009
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) with a(0)=1, a(1)=2, a(2)=11, a(3)=22. - Harvey P. Dale, Nov 12 2013
E.g.f.: (-x^3 + 4*x^2 + x + 1)*exp(x). - G. C. Greubel, Jul 16 2017
Previous Showing 11-20 of 48 results. Next