a(n) = 2^(n-1) - a(n-1). a(n) = 2*a(n-1) - (-1)^n = (2^n - (-1)^n)/3.
G.f.: x/(1 - x - 2*x^2) = x/((x+1)*(1-2*x)).
Simon Plouffe in his 1992 dissertation
E.g.f.: (exp(2*x) - exp(-x))/3.
a(2*n) = 2*a(2*n-1)-1 for n >= 1, a(2*n+1) = 2*a(2*n)+1 for n >= 0. -
Lee Hae-hwang, Oct 11 2002; corrected by Mario Catalani (mario.catalani(AT)unito.it), Dec 04 2002
Also a(n) is the coefficient of x^(n-1) in the bivariate Fibonacci polynomials F(n)(x, y) = x*F(n-1)(x, y) + y*F(n-2)(x, y), with y=2*x^2. - Mario Catalani (mario.catalani(AT)unito.it), Dec 04 2002
a(n) = Sum_{k=1..n} binomial(n, k)*(-1)^(n+k)*3^(k-1). -
Paul Barry, Apr 02 2003
The ratios a(n)/2^(n-1) converge to 2/3 and every fraction after 1/2 is the arithmetic mean of the two preceding fractions. -
Gary W. Adamson, Jul 05 2003
a(n) = U(n-1, i/(2*sqrt(2)))*(-i*sqrt(2))^(n-1) with i^2=-1. -
Paul Barry, Nov 17 2003
a(n+1) = Sum_{k=0..ceiling(n/2)} 2^k*binomial(n-k, k). -
Benoit Cloitre, Mar 06 2004
a(n) = round(2^n/3) = (2^n + (-1)^(n-1))/3 so lim_{n->infinity} 2^n/a(n) = 3. -
Gerald McGarvey, Jul 21 2004
a(n) = Sum_{k=0..n-1} (-1)^k*2^(n-k-1) = Sum_{k=0..n-1}, 2^k*(-1)^(n-k-1). -
Paul Barry, Jul 30 2004
a(n+1) = Sum_{k=0..n} binomial(k, n-k)*2^(n-k). -
Paul Barry, Oct 07 2004
a(n) = Sum_{k=0..n-1} W(n-k, k)*(-1)^(n-k)*binomial(2*k,k), W(n, k) as in
A004070. -
Paul Barry, Dec 17 2004
a(n) = Sum_{k=0..n} k*binomial(n-1, (n-k)/2)*(1+(-1)^(n+k))*floor((2*k+1)/3).
a(n+1) = Sum_{k=0..n} k*binomial(n-1, (n-k)/2)*(1+(-1)^(n+k))*(
A042965(k)+0^k). (End)
a(n+1) = ceiling(2^n/3) + floor(2^n/3) = (ceiling(2^n/3))^2 - (floor(2^n/3))^2.
a(n+1) = Sum_{k=0..n} Sum_{j=0..n} (-1)^(n-j)*binomial(j, k). -
Paul Barry, Jan 26 2005
Let M = [1, 1, 0; 1, 0, 1; 0, 1, 1], then a(n) = (M^n)[2, 1], also matrix characteristic polynomial x^3 - 2*x^2 - x + 2 defines the three-step recursion a(0)=0, a(1)=1, a(2)=1, a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n > 2. - Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 28 2005
a(n) = Sum_{k=0..floor(n/3)} binomial(n, f(n-1)+3*k);
a(n) = Sum_{k=0..floor(n/3)} binomial(n, f(n-2)+3*k), where f(n)=
A080425(n). (End)
a(2*n) = (1/3)*Product_{d|n} cyclotomic(d,4).
a(2*n+1) = (1/3)*Product_{d|2*n+1} cyclotomic(2*d,2). (End)
The a(n) are closely related to nested square roots; this is 2*sin(2^(-n)*Pi/2*a(n)) = sqrt(2-sqrt(2-sqrt(2-sqrt(...sqrt(2)))...) {with the '2' n times, n >= 0}.
Also 2*cos(2^(-n)*Pi*a(n)) = sqrt(2-sqrt(2-sqrt(2-sqrt(...sqrt(2)))...) {with the '2' n-1 times, n >= 1} as well as
2*sin(2^(-n)*3/2*Pi*a(n)) = sqrt(2+sqrt(2+sqrt(2+sqrt(...sqrt(2)))...) {with the '2' n times, n >= 0} and
2*cos(2^(-n)*3*Pi*a(n)) = -sqrt(2+sqrt(2+sqrt(2+sqrt(...sqrt(2)))...) {with the '2' n-1 times, n >= 1}.
a(n) = 2^(n+1)/Pi*arcsin(b(n+1)/2) where b(n) is defined recursively by b(0)=2, b(n)=sqrt(2-b(n-1)).
There is a similar formula regarding the arccos function, this is a(n) = 2^n/Pi*arccos(b(n)/2).
With respect to the sequence c(n) defined recursively by c(0)=-2, c(n)=sqrt(2+c(n-1)), the following formulas hold true: a(n) = 2^n/3*(1-(-1)^n*(1-2/Pi*arcsin(c(n+1)/2))); a(n) = 2^n/3*(1-(-1)^n*(1-1/Pi*arccos(-c(n)/2))).
(End)
Let T = the 3 X 3 matrix [1,1,0; 1,0,1; 0,1,1]. Then T^n * [1,0,0,] = [
A005578(n), a(n),
A000975(n-1)]. -
Gary W. Adamson, Dec 24 2007
a(n) = Sum_{k=1..n} K(2, k)*a(n - k), where K(n,k) = k if 0 <= k <= n and K(n,k)=0 otherwise. (When using such a K-coefficient, several different arguments to K or several different definitions of K may lead to the same integer sequence. For example, the Fibonacci sequence can be generated in several ways using the K-coefficient.) -
Thomas Wieder, Jan 13 2008
a(n) + a(n+2*k+1) = a(2*k+1)*2^n. -
Paul Curtz, Feb 12 2008
a(n) = lower left term in the 2 X 2 matrix [0,2; 1,1]^n. -
Gary W. Adamson, Mar 02 2008
a(n) = sqrt(8*a(n-1)*a(n-2) + 1). E.g., sqrt(3*5*8+1) = 11, sqrt(5*11*8+1) = 21. -
Giuseppe Ottonello, Jun 14 2009
Let p[i] = Fibonacci(i-1) and let A be the Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j] = -1, (i = j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n-1) = det(A). -
Milan Janjic, May 08 2010
Algebraically equivalent to replacing the 5's with 9's in the explicit (Binet) formula for the n-th term in the Fibonacci sequence: The formula for the n-th term in the Fibonacci sequence is F(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)). Replacing the 5's with 9's gives ((1+sqrt(9))^n - (1-sqrt(9))^n)/(2^n*sqrt(9)) = (2^n+(-1)^(n+1))/3 = (2^n-(-1)^(n))/3 = a(n). -
Jeffrey R. Goodwin, May 27 2011
G.f.: x/(1-x-2*x^2) = G(0)/3; G(k) = 1 - ((-1)^k)/(2^k - 2*x*4^k/(2*x*2^k - ((-1)^k)/G(k+1))); (continued fraction 3 kind, 3-step).
E.g.f.: G(0)/3; G(k) = 1 - ((-1)^k)/(2^k - 2*x*4^k/(2*x*2^k - ((-1)^k)*(k+1)/G(k+1))); (continued fraction 3rd kind, 3-step). (End)
G.f.: Q(0)/3, where Q(k) = 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 + 1/(2*4^k - 8*x*16^k/(4*x*4^k + 1/Q(k+1)))))); (continued fraction). -
Sergei N. Gladkovskii, May 21 2013
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(2*k+1 + 2*x)/( x*(2*k+2 + 2*x) + 1/Q(k+1) )); (continued fraction). -
Sergei N. Gladkovskii, Aug 29 2013
G.f.: Q(0) -1, where Q(k) = 1 + 2*x^2 + (k+2)*x - x*(k+1 + 2*x)/Q(k+1); (continued fraction). -
Sergei N. Gladkovskii, Oct 06 2013
a(n) = (Sum_{k=1..n, k odd} C(n,k)*3^(k-1))/2^(n-1). -
Vladimir Shevelev, Feb 05 2014
a(-n) = -(-1)^n * a(n) / 2^n for all n in Z. -
Michael Somos, Mar 18 2014
a(n) = (-1)^(n-1)*Sum_{k=0..n-1}
A135278(n-1,k)*(-3)^k = (2^n - (-1)^n)/3 = (-1)^(n-1)*Sum_{k=0..n-1} (-2)^k. Equals (-1)^(n-1)*Phi(n,-2), where Phi is the cyclotomic polynomial when n is an odd prime. (For n > 0.) -
Tom Copeland, Apr 14 2014
a(2*n)/a(n) =
A014551(n) for n >= 1; a(3*n)/a(n) = 3*
A245489(n) for n >= 1.
exp( Sum_{n >= 1} a(2*n)/a(n)*x^n/n ) = Sum_{n >= 0} a(n+1)*x^n.
exp( Sum_{n >= 1} a(3*n)/a(n)*x^n/n ) = Sum_{n >= 0}
A084175(n+1)*x^n.
exp( Sum_{n >= 1} a(4*n)/a(n)*x^n/n ) = Sum_{n >= 0}
A015266(n+3)*(-x)^n.
exp( Sum_{n >= 1} a(5*n)/a(n)*x^n/n ) = Sum_{n >= 0}
A015287(n+4)*x^n.
exp( Sum_{n >= 1} a(6*n)/a(n)*x^n/n ) = Sum_{n >= 0}
A015305(n+5)*(-x)^n.
exp( Sum_{n >= 1} a(7*n)/a(n)*x^n/n ) = Sum_{n >= 0}
A015323(n+6)*x^n.
exp( Sum_{n >= 1} a(8*n)/a(n)*x^n/n ) = Sum_{n >= 0}
A015338(n+7)*(-x)^n.
exp( Sum_{n >= 1} a(9*n)/a(n)*x^n/n ) = Sum_{n >= 0}
A015356(n+8)*x^n.
exp( Sum_{n >= 1} a(10*n)/a(n)*x^n/n ) = Sum_{n >= 0}
A015371(n+9)*(-x)^n. (End)
Dirichlet g.f.: (PolyLog(s,2) + (1 - 2^(1-s))*zeta(s))/3. -
Ilya Gutkovskiy, Jun 27 2016
a(m)*a(n) + a(m-1)*a(n-1) - 2*a(m-2)*a(n-2) = 2^(m+n-3).
a(m+n-1) = a(m)*a(n) + 2*a(m-1)*a(n-1); a(m+n) = a(m+1)*a(n+1) - 4*a(m-1)*a(n-1).
a(2*n-1) = a(n)^2 + 2*a(n-1)^2; a(2*n) = a(n+1)^2 - 4*a(n-1)^2. (End)
a(n+4) = a(n) + 5*2^n, a(0) = 0, a(1..4) = [1,1,3,5]. That is to say, for n > 0, the ones digits of Jacobsthal numbers follow the pattern 1,1,3,5,1,1,3,5,1,1,3,5,.... -
Yuchun Ji, Apr 25 2019
The sequence starting with "1" is the second INVERT transform of (1, -1, 3, -5, 11, -21, 43, ...). -
Gary W. Adamson, Jul 08 2019
a(n)^2 - a(n+1)*a(n-1) = (-2)^(n-1).
a(n)^2 - a(n+r)*a(n-r) = (-2)^(n-r)*a(r)^2.
a(m)*a(n+1) - a(m+1)*a(n) = (-2)^n*a(m-n).
a(n) = Sum_{i=0..n-1; j=0..n-1; i+2*j=n-1} 2^j*((i+j)!/(i!*j!)). (End)
For n > 0, 1/(2*a(n+1)) = Sum_{m>=n} a(m)/(a(m+1)*a(m+2)). -
Kai Wang, Mar 03 2020
For 4 > h >= 0, k >= 0, a(4*k+h) mod 5 = a(h) mod 5. -
Kai Wang, May 07 2020
a(n) = 1 + Sum_{k=0..n-1} a(k) if n odd; a(n) = Sum_{k=0..n-1} a(k) if n even.
a(n) = F(n) + Sum_{k=0..n-2} a(k)*F(n-k-1), where F denotes the Fibonacci numbers.
a(n) = b(n) + Sum_{k=0..n-1} a(k)*b(n-k), where b(n) is defined through b(0) = 0, b(1) = 1, b(n) = 2*b(n-2).
a(n) = 1 + 2*Sum_{k=0..n-2} a(k).
a(m+n) = a(m)*a(n+1) + 2*a(m-1)*a(n).
a(2*n) = Sum_{i>=0, j>=0} binomial(n-j-1,i)*binomial(n-i-1,j)*2^(i+j). (End)
G.f.: x/(1 - x - 2*x^2) = Sum_{n >= 0} x^(n+1) * Product_{k = 1..n} (k + 2*x)/(1 + k*x) (a telescoping series). -
Peter Bala, May 08 2024
a(n) = Sum_{r>=0} F(n-2r, r), where F(n, 0) is the n-th Fibonacci number and F(n,r) = Sum_{j=1..n} F(n+1-j, r-1) F(j, r-1). -
Gregory L. Simay, Aug 31 2024
The following are all examples of telescoping infinite products:
Product_{n >= 1} (1 + 2^n/a(2*n+2)) = 2, since 1 + 2^n/a(2*n+2) = b(n+1)/b(n), where b(n) = 2 - 3/(2^n + 1).
Product_{n >= 1} (1 - 2^n/a(2*n+2)) = 2/5, since 1 - 2^n/a(2*n+2) = c(n+1)/c(n), where c(n) = 2 + 3/(2^n - 1).
Product_{n >= 1} (1 + (-2)^n/a(2*n+2)) = 2/3, since 1 + (-2)^n/a(2*n+2) = d(n+1)/d(n), where d(n) = 2 - 1/(1 + (-2)^n).
Product_{n >= 1} (1 - (-2)^n/a(2*n+2)) = 6/5, since 1 - (-2)^n/a(2*n+2) = e(n+1)/e(n), where e(n) = 2 - 1/(1 - (-2)^n). (End)
Comments