cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 777 results. Next

A238736 Balancing Wieferich primes: primes p that divide their Pell quotients, where the Pell quotient of p is A000129(p - (2/p))/p and (2/p) is a Jacobi symbol.

Original entry on oeis.org

13, 31, 1546463
Offset: 1

Views

Author

John Blythe Dobson, Mar 04 2014

Keywords

Comments

Williams 1982 (p. 86), notes that p = 13, 31 and 1546463 are the only primes less than 10^8 for which the Pell quotient vanishes mod p. Elsenhans and Jahnel, "The Fibonacci sequence modulo p^2," p. 5, report in effect that there are no more such primes p < 10^9.
Williams 1991 (p. 440), and Sun 1995 pt. 3, Theorem 3.3, together prove a set of formulas connecting the Pell quotient with the Fermat quotient (base 2) (A007663) and harmonic numbers like H(floor(p/8)) (see example in the Formula section below). As is well known, the vanishing of the Fermat quotient (base 2) is a necessary condition for the failure of the first case of Fermat's Last Theorem (see discussion under A001220); and in light of a corresponding result of Dilcher and Skula concerning this type of harmonic number, the vanishing of the Pell quotient mod p is also a necessary condition for the failure of the first case of Fermat's Last Theorem.
There are no more terms up to 10^10.
Using the PARI script by Charles R Greathouse IV, I have extended the search from 10^10 to 10^12 without finding a further solution. - John Blythe Dobson, Mar 30 2015
Also primes p such that p^2 divides A001109((p - (2/p))/2). - Jianing Song, Oct 08 2018
From Felix Fröhlich, May 18 2019: (Start)
The term "balancing Wieferich prime" comes from Rout, 2016.
Primes p that satisfy the congruence B_{p-(8/p)} == 0 (mod p^2), where B_i denotes the i-th balancing number A001109(i) and (a/b) denotes the Jacobi symbol (cf. Rout, 2016, (1.6)).
Primes p such that the period of the balancing sequence (A001109) modulo p is equal to the period of the balancing sequence modulo p^2 (cf. Panda, Rout, 2014, p. 275).
Under the abc conjecture for the number field Q(sqrt(2)) there exist at least (log(x)/log(log(x)))*(log(log(log(x))))^m balancing non-Wieferich primes <= x such that p == 1 (mod k) for any integers k > 2, m > 0 (cf. Dutta, Patel, Ray, 2019). This is an improvement of an earlier result stating there are at least log(x)/log(log(x)) balancing non-Wieferich primes p == 1 (mod k) less than x (cf. Theorem 3.2 in Rout 2016). (End)

Examples

			PellQuotient(13) = 6214 = 13*478; PellQuotient(31) = 3470274850 = 31*111944350.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000]], Mod[Fibonacci[# - JacobiSymbol[2, #], 2]/#, #] == 0 &]
  • PARI
    is(n)=isprime(n) && (Mod([2,1;1,0],n^2)^(n-kronecker(2,n)))[2,1]==0 \\ Charles R Greathouse IV, Mar 04 2014

Formula

The condition for p to be a member of this sequence is A000129(p-e)/p == F(p-e, 2)/p == 0 (mod p), where F(p-e, 2) is the p-e'th Fibonacci polynomial evaluated at the argument 2, and e = (2/p) is a Jacobi Symbol.
Let PellQuotient(p) = A000129(p-e)/p, q_2 = (2^(p-1) - 1)/p = A007663(p) be the corresponding Fermat quotient of base 2, H(floor(p/8)) be a harmonic number, and e = (2/p) be a Jacobi Symbol. Then a result of Williams (1991), as refined by Sun (1995), shows that 2*PellQuotient(p) == -4*q_2 - H(floor(p/8)) (mod p).

Extensions

Name amended by Felix Fröhlich, May 26 2019

A272040 a(n) = A000010(A000129(n)).

Original entry on oeis.org

1, 1, 4, 4, 28, 24, 156, 128, 784, 1120, 5740, 2880, 33460, 37128, 150080, 147456, 1128256, 931392, 6446016, 4677120, 28514304, 44450560, 224075664, 106168320, 1265644800, 1560708240, 5970392064, 5588803584, 44560482148, 33497856000, 255263424000, 196368924672, 1210784762880
Offset: 1

Views

Author

Altug Alkan, May 06 2016

Keywords

Examples

			a(3) = 4 because a(3) = A000010(A000129(3)) = A000010(5) = 4.
		

Crossrefs

Programs

  • Mathematica
    EulerPhi[LinearRecurrence[{2, 1}, {1, 2}, 33]] (* Amiram Eldar, Oct 21 2023 *)
  • PARI
    a000129(n) = ([2,1;1,0]^n)[2,1];
    a(n) = eulerphi(a000129(n));

A111954 a(n) = A000129(n) + (-1)^n.

Original entry on oeis.org

1, 0, 3, 4, 13, 28, 71, 168, 409, 984, 2379, 5740, 13861, 33460, 80783, 195024, 470833, 1136688, 2744211, 6625108, 15994429, 38613964, 93222359, 225058680, 543339721, 1311738120, 3166815963, 7645370044, 18457556053, 44560482148, 107578520351
Offset: 0

Views

Author

Creighton Dement, Aug 23 2005

Keywords

Comments

a(n) + a(n+1) = A001333(n+1). Inverse binomial transform of A007070 (with prepended 1). Inverse invert transform of A077995.
Floretion Algebra Multiplication Program, FAMP Code: -4ibasejseq[J*D] with J = - .25'i + .25'j + .5'k - .25i' + .25j' + .5k' - .5'kk' - .25'ik' - .25'jk' - .25'ki' - .25'kj' - .5e and D = + .5'i - .25'j + .25'k + .5i' - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,3,1},{1,0,3},40] (* Harvey P. Dale, Nov 24 2014 *)

Formula

a(n) = a(n-1) + 3*a(n-2) + a(n-3), n >= 3.
G.f.: (x-1)/((x+1)*(x^2+2*x-1)).
a(n) = (sqrt(2)/4)*((1 + sqrt(2))^n - (1 - sqrt(2))^n) + (-1)^n.
E.g.f.: cosh(x) - sinh(x) + exp(x)*sinh(sqrt(2)*x)/sqrt(2). - Stefano Spezia, May 26 2024

A270342 Positive integers n such that the sum of the Pell numbers A000129(0) + ... + A000129(n-1) is divisible by n.

Original entry on oeis.org

3, 4, 5, 7, 8, 11, 13, 16, 17, 19, 23, 24, 29, 31, 32, 37, 41, 43, 47, 48, 53, 59, 61, 64, 67, 71, 72, 73, 79, 83, 89, 96, 97, 101, 103, 107, 109, 113, 120, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 168, 169, 173, 179, 181, 191, 192, 193, 197, 199, 211, 216, 223, 227, 229
Offset: 1

Views

Author

Altug Alkan, Mar 15 2016

Keywords

Comments

Sequence contains all odd primes because of the fact that ((1-sqrt(2))^p + (1+sqrt(2))^p - 2) is divisible by p where p is an odd prime.

Examples

			3 is a term because 0 + 1 + 2 = 3 is divisible by 3.
4 is a term because 0 + 1 + 2 + 5 = 8 is divisible by 4.
5 is a term because 0 + 1 + 2 + 5 + 12 = 20 is divisible by 5.
7 is a term because 0 + 1 + 2 + 5 + 12 + 20 + 79 = 119 is divisible by 7.
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=250,pell},pell=LinearRecurrence[{2,1},{0,1},nn];Position[ Table[ Total[Take[pell,n]]/n,{n,nn}],?(IntegerQ[#]&)]]//Flatten (* _Harvey P. Dale, Nov 11 2021 *)
  • PARI
    a048739(n) = local(w=quadgen(8)); -1/2+(3/4+1/2*w)*(1+w)^n+(3/4-1/2*w)*(1-w)^n;
    for(n=1, 1e3, if(a048739(n-1) % (n+1) == 0, print1(n+1, ", ")));

A072280 Product representation of the Pell numbers A000129 and A002203.

Original entry on oeis.org

2, 1, 7, 6, 41, 5, 239, 34, 199, 29, 8119, 33, 47321, 169, 961, 1154, 1607521, 197, 9369319, 1121, 32641, 5741, 318281039, 1153, 45245801, 33461, 7761799, 38081, 63018038201, 1345, 367296043199, 1331714, 37667521, 1136689, 1273319041, 39201, 72722761475561
Offset: 1

Views

Author

Miklos Kristof, Jul 10 2002

Keywords

Comments

Define the silver mean constants h=1+sqrt(2) = A014176, h^2=1+2h = A156035, and 1/h=h-2.
Let Phi(n,x) be the n-th cyclotomic polynomial A013595, so that x^n-1 = Product_{d | n} Phi(d, x). Let g(n) be the order of Phi(n, x), A000010. Then a(n)=(h-2)^g(n)*Phi(n, h^2) if n <> 2.
The Binet representations of the Pell numbers yields:
For even n, A000129(n) = Product_{d|n} a(d).
For odd n, A000129(n)=Product_{ d|n} a(2d).
For odd prime p, a(p)=A002203(p)/2, a(2p)=A000129(p).
a(2^(k+1))=A002203(2^k).
For odd n, A002203(n)=Product_{ d|n} a(d).
For k>0 and odd n, A002203(n*2^k)=Product_{ d | n} a(d*2^(k+1)).

Examples

			For even n=12, A000129(12) = a(1)*a(2)*a(3)*a(4)*a(6)*a(12) = 2*1*7*6*5*33 = 13860.
For odd n=9, A000129(9) = a(2)*a(6)*a(18)= 1*5*197 = 985.
For even n=8, A002203(12) = a(8)*a(24)=34*1153 = 39202.
For odd n=21, A002203(21) = a(1)*a(3)*a(7)*a(21) = 2*7*239*32641 = 109216786.
		

Crossrefs

Programs

  • Maple
    A072280 := proc(n) if n <= 2 then 3-n ; else g := numtheory[phi](n) ; h := 1+sqrt(2) ; (h-2)^g*numtheory[cyclotomic](n,h^2) ; simplify(expand(%)) ; end if; end proc:
    seq(A072280(n),n=1..80) ; # R. J. Mathar, Nov 27 2009
  • Mathematica
    a[n_] := If[n <= 2, 3-n, g = EulerPhi[n]; h = 1 + Sqrt[2]; (h - 2)^g*Cyclotomic[n, h^2] // Expand];
    Table[a[n], {n, 1, 80}] (* Jean-François Alcover, May 08 2023, after R. J. Mathar *)

Extensions

Edited and extended by R. J. Mathar, Nov 27 2009

A098586 a(n) = (1/2) * (5*P(n+1) + P(n) - 1), where P(k) are the Pell numbers A000129.

Original entry on oeis.org

2, 5, 13, 32, 78, 189, 457, 1104, 2666, 6437, 15541, 37520, 90582, 218685, 527953, 1274592, 3077138, 7428869, 17934877, 43298624, 104532126, 252362877, 609257881, 1470878640, 3551015162, 8572908965, 20696833093, 49966575152, 120629983398, 291226541949
Offset: 0

Views

Author

Creighton Dement, Oct 03 2004

Keywords

Crossrefs

Programs

  • Magma
    I:=[2,5,13]; [n le 3 select I[n] else 3*Self(n-1) - Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 03 2018
  • Maple
    A:= LREtools[REtoproc](a(n) = 3*a(n-1) - a(n-2) - a(n-3), a(n), {a(0)=2, a(1)=5, a(2)=13}):
    seq(A(n),n=0..100); # Robert Israel, Aug 26 2014
  • Mathematica
    LinearRecurrence[{3, -1, -1}, {2, 5, 13}, 28] (* Hermann Stamm-Wilbrandt, Aug 26 2014 *)
    CoefficientList[Series[(2-x)/((1-x)*(1-2*x-x^2)), {x,0,50}], x] (* G. C. Greubel, Feb 03 2018 *)
  • PARI
    Vec((2-x)/((1-x)*(1-2*x-x^2)) + O(x^50)) \\ Colin Barker, Mar 16 2016
    

Formula

a(n) = 3*a(n-1) - a(n-2) - a(n-3) with a(0)=2, a(1)=5, a(2)=13. - Hermann Stamm-Wilbrandt, Aug 26 2014
G.f.: (2-x)/((1-x)*(1-2*x-x^2)). - Robert Israel, Aug 26 2014
a(n) = 7*a(n-2) - 7*a(n-4) + a(n-6), for n>5. - Hermann Stamm-Wilbrandt, Aug 27 2014
a(2*n-1) = A006451(2*n), for n>0. - Hermann Stamm-Wilbrandt, Aug 27 2014
a(2*n) = A124124(2*n+2). - Hermann Stamm-Wilbrandt, Aug 27 2014
a(n) = (-2+(5-3*sqrt(2))*(1-sqrt(2))^n + (1+sqrt(2))^n*(5+3*sqrt(2)))/4. - Colin Barker, Mar 16 2016

Extensions

Formula supplied by Thomas Baruchel, Oct 03 2004
More terms from Emeric Deutsch, Nov 17 2004

A110327 Triangle read by rows: T(n,k) = n!*Pell(n-k+1)/k!, where Pell(n)=A000129(n).

Original entry on oeis.org

1, 2, 1, 10, 4, 1, 72, 30, 6, 1, 696, 288, 60, 8, 1, 8400, 3480, 720, 100, 10, 1, 121680, 50400, 10440, 1440, 150, 12, 1, 2056320, 851760, 176400, 24360, 2520, 210, 14, 1, 39715200, 16450560, 3407040, 470400, 48720, 4032, 280, 16, 1, 862928640
Offset: 0

Views

Author

Paul Barry, Jul 20 2005

Keywords

Comments

The row polynomials form an Appell sequence (see Wikipedia). - Tom Copeland, Dec 03 2013

Examples

			Rows begin:
  1;
  2,1;
  10,4,1;
  72,30,6,1;
  696,288,60,8,1;
  8400,3480,720,100,10,1;
  121680,50400,10440,1440,150,12,1;
		

Crossrefs

Cf. A000129, A110328 (row sums), A110329 (diagonal sums), A110330 (matrix inverse).

Formula

Column k has e.g.f.: x^k/(k!*(1-2*x-x^2)).
E.g.f.: Sum_{n>=0, k>=0} T(n,k)*x^n*y^k/n! = e^(x*y)/(1-2*x-x^2). - Franklin T. Adams-Watters, Jan 12 2007

Extensions

Edited by Franklin T. Adams-Watters, Jan 12 2007

A135153 Repeat Pell numbers A000129.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 5, 12, 12, 29, 29, 70, 70, 169, 169, 408, 408, 985, 985, 2378, 2378, 5741, 5741, 13860, 13860, 33461, 33461, 80782, 80782, 195025, 195025, 470832, 470832, 1136689, 1136689, 2744210, 2744210, 6625109, 6625109, 15994428, 15994428, 38613965
Offset: 0

Views

Author

Paul Curtz, Feb 14 2008

Keywords

Comments

The binomial transform is 0, 0, 1, 4, 12, 32,... (n>=0), i.e. A135248 without one of the leading zeros. - R. J. Mathar, Jul 10 2019

Programs

  • Magma
    I:=[0,0,1,1]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..50]]; // Vincenzo Librandi, Mar 03 2014
  • Mathematica
    CoefficientList[Series[x^2 (1 + x)/(1 - 2 x^2 - x^4), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 03 2014 *)
    LinearRecurrence[{0,2,0,1},{0,0,1,1},50] (* Harvey P. Dale, May 28 2023 *)

Formula

G.f.: x^2*(1+x)/(1-2*x^2-x^4). - Philippe Deléham, Feb 25 2014
a(n) = 2*a(n-2) + a(n-4), a(0) = a(1) = 0, a(2) = a(3) = 1. - Philippe Deléham, Feb 25 2014

Extensions

Corrected and extended by Vincenzo Librandi, Mar 03 2014

A246556 a(n) = smallest prime which divides Pell(n) = A000129(n) but does not divide any Pell(k) for k

Original entry on oeis.org

2, 5, 3, 29, 7, 13, 17, 197, 41, 5741, 11, 33461, 239, 269, 577, 137, 199, 37, 19, 45697, 23, 229, 1153, 1549, 79, 53, 113, 44560482149, 31, 61, 665857, 52734529, 103, 1800193921, 73, 593, 9369319, 389, 241, 1746860020068409, 4663, 11437, 43, 6481, 47, 3761, 97, 293, 45245801, 101, 22307, 68480406462161287469, 7761799, 109, 1535466241
Offset: 2

Views

Author

Eric Chen, Nov 15 2014

Keywords

Comments

First differs from A264137 (Largest prime factor of the n-th Pell number) at n=17; see Example section. - Jon E. Schoenfield, Dec 10 2016

Examples

			a(2) = 2 because Pell(2) = 2 and Pell(k) < 2 for k < 2.
a(4) = 3 because Pell(4) = 12 = 2^2 * 3, but 2 is not a primitive prime factor since Pell(2) = 2, so therefore 3 is the primitive prime factor.
a(5) = 29 because Pell(5) = 29, which is prime.
a(6) = 7 because Pell(6) = 70 = 2 * 5 * 7, but neither 2 nor 5 is a primitive prime factor, so therefore 7 is the primitive prime factor.
a(17) = 137 because Pell(17) = 1136689 = 137 * 8297, and both of them are primitive factors, we choose the smallest. (Pell(17) is the smallest Pell number with more than one primitive prime factor.)
		

Crossrefs

Cf. A001578 (for Fibonacci(n)), A000129 (Pell numbers), A008555, A086383, A096650, A120947, A175181, A214028, A264137.

Programs

  • Mathematica
    prms={}; Table[f=First/@FactorInteger[Pell[n]]; p=Complement[f, prms]; prms=Join[prms, p]; If[p=={}, 1, First[p]], {n, 36}]

Formula

a(n) >= 2 for all n >= 2, by Carmichael's theorem. - Jonathan Sondow, Dec 08 2017

Extensions

Edited by N. J. A. Sloane, Nov 29 2014
Terms up to a(612) in b-file added by Sean A. Irvine, Sep 23 2019
Terms a(613)-a(630) in b-file added by Max Alekseyev, Aug 26 2021

A264137 Largest prime factor of the n-th Pell number, A000129(n).

Original entry on oeis.org

2, 5, 3, 29, 7, 13, 17, 197, 41, 5741, 11, 33461, 239, 269, 577, 8297, 199, 179057, 59, 45697, 5741, 982789, 1153, 29201, 33461, 146449, 337, 44560482149, 269, 3272609, 665857, 52734529, 15607, 1800193921, 199, 1101341, 9369319, 4605197, 5521, 1746860020068409
Offset: 2

Views

Author

Jon E. Schoenfield, Dec 29 2015

Keywords

Comments

First differs from A246556 at n = 17. Since Pell(17) = 1136689 = 137 * 8297, we find that 137 does not divide any earlier Pell number, and hence A246556(17) = 137, but 8297 is also prime, and so a(17) = 8297.

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[Fibonacci[n, 2]][[-1, 1]], {n, 25}] (* Alonso del Arte, Dec 10 2016 *)
    FactorInteger[#][[-1,1]]&/@LinearRecurrence[{2,1},{2,5},60] (* Harvey P. Dale, Jun 08 2019 *)
  • PARI
    a(n) = vecmax(factor(([2, 1; 1, 0]^n)[2, 1])[,1]); \\ Daniel Suteu, May 26 2022

Formula

a(n) = A006530(A000129(n)).
Previous Showing 21-30 of 777 results. Next