cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 178 results. Next

A000774 a(n) = n!*(1 + Sum_{i=1..n} 1/i).

Original entry on oeis.org

1, 2, 5, 17, 74, 394, 2484, 18108, 149904, 1389456, 14257440, 160460640, 1965444480, 26029779840, 370643938560, 5646837369600, 91657072281600, 1579093018675200, 28779361764249600, 553210247226470400, 11185850044938240000, 237335752951879680000
Offset: 0

Views

Author

Keywords

Comments

Number of {12,12*,21}-avoiding signed permutations in the hyperoctahedral group.
Let M be the n X n matrix with M( i, i ) = i+1, other entries = 1. Then a(n) = det(M); example: a(3) = 17 = det([2, 1, 1; 1, 3, 1; 1, 1, 4]). - Philippe Deléham, Jun 13 2005.
With offset 1: number of permutations of the n-set into at most two cycles. - Joerg Arndt, Jun 22 2009
A ball goes with probability 1/(k+1) from place k to a place j with j=0..k; a(n)/n! is the average number of steps from place n to place 0. - Paul Weisenhorn, Jun 03 2010
a(n) is a multiple of A025527(n). - Charles R Greathouse IV, Oct 16 2012

Examples

			(1-x)^-1 * (1 - log(1-x)) = 1 + 2*x + 5/2*x^2 + 17/6*x^3 + ...
G.f.: 1+x = 1/(1+x) + 2*x/((1+x)*(1+2*x)) + 5*x^2/((1+x)*(1+2*x)*(1+3*x)) + 17*x^3/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + 74*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)) +...
		

Crossrefs

Cf. A000254, A000776. Same as A081046 apart from signs.

Programs

  • Maple
    A000774 := proc(n) local i,j; j := 0; for i to n do j := j+1/i od; (j+1)*n! end;
    ZL :=[S, {S = Set(Cycle(Z),3 > card)}, labelled]: seq(combstruct[count](ZL, size=n), n=1..20); # Zerinvary Lajos, Mar 25 2008
    a[0]:=1: p:=1: for n from 1 to 20 do
    a[n]:=n*a[n-1]+p: p:=p*n: end do: # Paul Weisenhorn, Jun 03 2010
  • Mathematica
    Table[n!(1+Sum[1/i,{i,n}]),{n,0,30}] (* Harvey P. Dale, Oct 03 2011 *)
  • PARI
    a(n)=n!*(1+sum(j=1,n, 1/j ));
    
  • PARI
    {a(n)=if(n==0, 1, polcoeff(1+x-sum(k=0, n-1, a(k)*x^k/prod(j=1, k+1, (1+j*x+x*O(x^n)) )), n))} /* Paul D. Hanna, Mar 01 2012 */

Formula

E.g.f.: A(x) = (1-x)^-1 * (1 - log(1-x)).
a(n+1) = (n+1)*a(n) + n!. - Jon Perry, Sep 26 2004
a(n) = A000254(n) + n!. - Mark van Hoeij, Jul 06 2010
G.f.: 1+x = Sum_{n>=0} a(n) * x^n / Product_{k=1..n+1} (1 + k*x). - Paul D. Hanna, Mar 01 2012
a(n) = Sum_{k=0..n} (k+1)*|s(n,k)|, where s(n,k) are Stirling numbers of the first kind (A008275). - Peter Luschny, Oct 16 2012
Conjecture: a(n) +(-2*n+1)*a(n-1) +(n-1)^2*a(n-2)=0. - R. J. Mathar, Nov 26 2012

A051562 Second unsigned column of triangle A051380.

Original entry on oeis.org

0, 1, 19, 299, 4578, 71394, 1153956, 19471500, 343976400, 6366517200, 123418922400, 2503748556000, 53091962697600, 1175271048201600, 27123099523027200, 651708291206649600, 16282170039031142400
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=2,n=9) ~ exp(-x)/x^2*(1 - 19/x + 299/x^2 - 4578/x^3 + 71394/x^4 - 1153956/x^5 + 19471500/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051380.

Crossrefs

Cf. A049389 (first unsigned column).
Related to n!*the k-th successive summation of the harmonic numbers: k=0..A000254, k=1..A001705, k= 2..A001711, k=3..A001716, k=4..A001721, k=5..A051524, k=6..A051545, k=7..A051560, k=8..A051562, k=9..A051564. - Gary Detlefs Jan 04 2011

Programs

  • Mathematica
    f[k_] := k + 8; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}]
    (* Clark Kimberling, Dec 29 2011 *)

Formula

a(n) = A051380(n, 2)*(-1)^(n-1).
E.g.f.: -log(1-x)/(1-x)^9.
a(n) = n!*Sum_{k=0..n-1} ((-1)^k*binomial(-9,k)/(n-k)), for n>=1. - Milan Janjic, Dec 14 2008
a(n) = n!*[8]h(n), where [k]h(n) denotes the k-th successive summation of the harmonic numbers from 0 to n. - Gary Detlefs, Jan 04 2011

A051564 Second unsigned column of triangle A051523.

Original entry on oeis.org

0, 1, 21, 362, 6026, 101524, 1763100, 31813200, 598482000, 11752855200, 240947474400, 5154170774400, 114942011990400, 2669517204076800, 64496340380102400, 1619153396908185600, 42188624389562112000
Offset: 0

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=2,n=10) ~ exp(-x)/x^2*(1 - 21/x + 362/x^2 - 6026/x^3 + 101524/x^4 - 1763100/x^5 + 31813200/x^6 - ...) leads to the sequence given above. See A163931 and A028421 for more information. - Johannes W. Meijer, Oct 20 2009

References

  • Mitrinovic, D. S. and Mitrinovic, R. S. see reference given for triangle A051523.

Crossrefs

Cf. A049398 (first unsigned column).
Related to n!*the k-th successive summation of the harmonic numbers: k=0..A000254, k=1..A001705, k=2..A001711, k=3..A001716, k=4..A001721, k=5..A051524, k=6..A051545, k=7..A051560, k=8..A051562, k=9..A051564. - Gary Detlefs Jan 04 2011

Programs

  • Mathematica
    f[n_] := n!*Sum[(-1)^k*Binomial[-10, k]/(n - k), {k, 0, n - 1}]; Array[f, 17, 0]
    Range[0, 16]! CoefficientList[ Series[-Log[(1 - x)]/(1 - x)^10, {x, 0, 16}], x]
    (* Or, using elementary symmetric functions: *)
    f[k_] := k + 9; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}]
    (* Clark Kimberling, Dec 29 2011 *)

Formula

a(n) = A051523(n, 2)*(-1)^(n-1).
E.g.f.: -log(1-x)/(1-x)^10.
a(n) = n!*Sum_{k=0..n-1}((-1)^k*binomial(-10,k)/(n-k)), for n>=1. - Milan Janjic, Dec 14 2008
a(n) = n!*[9]h(n), where [k]h(n) denotes the k-th successive summation of the harmonic numbers from 0 to n. - Gary Detlefs, Jan 04 2011

A008969 Triangle of differences of reciprocals of unity.

Original entry on oeis.org

1, 1, 3, 1, 11, 7, 1, 50, 85, 15, 1, 274, 1660, 575, 31, 1, 1764, 48076, 46760, 3661, 63, 1, 13068, 1942416, 6998824, 1217776, 22631, 127, 1, 109584, 104587344, 1744835904, 929081776, 30480800, 137845, 255, 1, 1026576, 7245893376, 673781602752, 1413470290176, 117550462624, 747497920, 833375, 511
Offset: 1

Views

Author

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1,      3;
  1,     11,         7;
  1,     50,        85,         15;
  1,    274,      1660,        575,        31;
  1,   1764,     48076,      46760,      3661,       63;
  1,  13068,   1942416,    6998824,   1217776,    22631,    127;
  1, 109584, 104587344, 1744835904, 929081776, 30480800, 137845, 255;
  ...
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 228.

Crossrefs

Columns include A000254, A000424, A001236, A001237, A001238. Right-hand columns include A000225, A001240, A001241, A001242.

Programs

  • Maple
    T:= (n,k)-> `if`(k<=n, (n-k+2)!^k *
         add((-1)^(j+1)*binomial(n-k+2, j)/ j^k, j=1..n-k+2), 0):
    seq(seq(T(n,k), k=0..n), n=0..7); # Alois P. Heinz, Sep 05 2008
  • Mathematica
    T[n_, k_] := If[k <= n, (n-k+2)!^k*Sum[(-1)^(j+1)*Binomial[n-k+2, j]/j^k, {j, 1, n-k+2}], 0]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 7}] // Flatten (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)

A001233 Unsigned Stirling numbers of first kind s(n,6).

Original entry on oeis.org

1, 21, 322, 4536, 63273, 902055, 13339535, 206070150, 3336118786, 56663366760, 1009672107080, 18861567058880, 369012649234384, 7551527592063024, 161429736530118960, 3599979517947607200, 83637381699544802976, 2021687376910682741568, 50779532534302850198976, 1323714091579185857760000
Offset: 6

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=6,n=1) ~ exp(-x)/x^6*(1 - 21/x + 322/x^2 - 4536/x^3 + 63273/x^4 - ...) leads to the sequence given above. See A163931 for E(x,m,n) information and A163932 for a Maple procedure for the asymptotic expansion. - Johannes W. Meijer, Oct 20 2009

Examples

			(-log(1-x))^6 = x^6 + 3*x^7 + 23/4*x^8 + 9*x^9 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Drop[Abs[StirlingS1[Range[30],6]],5] (* Harvey P. Dale, Sep 17 2013 *)
  • PARI
    for(n=5,50,print1(polcoeff(prod(i=1,n,x+i),5,x),","))
    
  • Sage
    [stirling_number1(i,6) for i in range(6,22)] # Zerinvary Lajos, Jun 27 2008

Formula

Let P(n-1,X) = (X+1)(X+2)(X+3)...(X+n-1); then a(n) is the coefficient of X^5; or a(n) = P'''''(n-1,0)/5!. - Benoit Cloitre, May 09 2002 [Edited by Petros Hadjicostas, Jun 29 2020 to agree with the offset of 6]
E.g.f.: (-log(1-x))^6/6!.
a(n) is coefficient of x^(n+6) in (-log(1-x))^6, multiplied by (n+6)!/6!.
a(n) = det(|S(i+6,j+5)|, 1 <= i,j <= n-6), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 06 2013
a(n) = 3*(2*n - 7)*a(n-1) - 5*(3*n^2 - 24*n + 49)*a(n-2) + 10*(2*n - 9)*(n^2 - 9*n + 21)*a(n-3) - (15*n^4 - 300*n^3 + 2265*n^2 - 7650*n + 9751)*a(n-4) + (2*n - 11)*(n^2 - 11*n + 31)*(3*n^2 - 33*n + 91)*a(n-5) - (n-6)^6*a(n-6). - Vaclav Kotesovec, Feb 24 2025

A081048 Signed Stirling numbers of the first kind.

Original entry on oeis.org

0, 1, -3, 11, -50, 274, -1764, 13068, -109584, 1026576, -10628640, 120543840, -1486442880, 19802759040, -283465647360, 4339163001600, -70734282393600, 1223405590579200, -22376988058521600, 431565146817638400, -8752948036761600000, 186244810780170240000
Offset: 0

Views

Author

Paul Barry, Mar 05 2003

Keywords

Examples

			a(9): coefficient of p^2 in polynomial p (p - 1) (p - 2) (p - 3) (p - 4) (p - 5) (p - 6) (p - 7) (p - 8) = -1 + 40320 p - 109584 p^2 + 118124 p^3 - 67284 p^4 + 22449 p^5 - 4536 p^6 + 546 p^7 - 36 p^8 + p^9 is equal to -109584. - _Artur Jasinski_, Nov 30 2008
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Log(1+x)/(1+x))); [0] cat [Factorial(n)*b[n]: n in [1..m-1]]; // G. C. Greubel, Aug 28 2018
  • Maple
    a:= proc(n) option remember;
          `if`(n<2, n, (1-2*n)*a(n-1) -(n-1)^2*a(n-2))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 06 2013
  • Mathematica
    aa = {}; Do[AppendTo[aa,Coefficient[Expand[Product[p - n, {n, 0, m}]], p, 2]], {m, 1, 20}]; aa (* Artur Jasinski, Nov 30 2008 *)
    a[n_] := (-1)^(n+1)*n!*HarmonicNumber[n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 29 2017 *)
    Table[StirlingS1[n, 2], {n, 1, 20}] (* Vaclav Kotesovec, Mar 03 2022 *)
  • PARI
    a(n)=stirling(n,2) \\ Charles R Greathouse IV, May 08 2015
    

Formula

a(n) = n!*Sum {k=1..n} (-1)^(n+1)*1/k.
E.g.f.: log(1+x)/(1+x).
D-finite with recurrence a(n) = (2*n-1)*a(n-1) + (n-1)^2*a(n-2) = 0. (Proved by Reshetnikov.) - R. J. Mathar, Nov 24 2012
a(n) = (-1)^(n-1)*det(S(i+2,j+1), 1 <= i,j <= n-1), where S(n,k) are Stirling numbers of the second kind and n>0. - Mircea Merca, Apr 06 2013
a(n) ~ n! * (-1)^(n+1) * (log(n) + gamma), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 05 2013

A067318 Sum of the reflection lengths of all permutations of n letters.

Original entry on oeis.org

0, 1, 7, 46, 326, 2556, 22212, 212976, 2239344, 25659360, 318540960, 4261576320, 61148511360, 937030429440, 15275952518400, 264030355814400, 4823280687052800, 92865738644582400, 1879691760950169600, 39905092126771200000, 886664974825728000000
Offset: 1

Views

Author

H. Nick Hann (nickhann(AT)aol.com), Jan 15 2002

Keywords

Comments

The reflection length of a permutation is the minimum number of transpositions needed to express the permutation.
May also be called the "weight" of the symmetric group S_n.
a(n) is the number of n+1-permutations that have at least 3 cycles. a(n) = Sum_{k=3..n+1} A132393(n+1,k). Cf. A001563 (n-permutations with at least 2 cycles). - Geoffrey Critzer, Dec 01 2013
The number of covering relations in the middle order on S_n. - Bridget Tenner, Jul 11 2025

Examples

			a(3)=7 since the permutations are 1, (12), (13), (23), (12)(13) and (13)(12). The sum of reflection lengths of all elements in S_3 is 0+1+1+1+2+2=7.
The terms satisfy the series: x/(1-x) = x/((1+x)*(1+2*x)*(1+3*x)) + 7*x^2/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + 46*x^3/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)) + 326*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)*(1+6*x)) + ... - _Paul D. Hanna_, Aug 28 2012
		

References

  • N. Hann, Average Weight of a Random Permutation, preprint, 2002. [Apparently unpublished]

Crossrefs

Programs

  • Maple
    ZL :=[S, {S = Set(Cycle(Z),3 <= card)}, labelled]: seq(combstruct[count](ZL, size=n), n=2..22); # Zerinvary Lajos, Mar 25 2008
  • Mathematica
    a[n_] := n!*(n - HarmonicNumber[n]); Table[a[n], {n, 1, 21}](* Jean-François Alcover, Feb 10 2012 *)
    nn=22;Drop[Range[0,nn]!CoefficientList[Series[1/(1-x)-1-Log[1/(1-x)]-Log[1/(1-x)]^2/2!,{x,0,nn}],x],2] (* Geoffrey Critzer, Dec 01 2013 *)
  • Maxima
    A067318(n):=n*n! - abs(stirling1(n+1, 2))$
    makelist(A067318(n),n,1,30); /* Martin Ettl, Nov 03 2012 */
  • PARI
    {a(n)=if(n==0,0,if(n==1, 1, 1-polcoeff(sum(k=1, n-1, a(k)*x^k/prod(j=1, k+2, (1+j*x+x*O(x^n)) ) ), n)))} /* Paul D. Hanna, Aug 28 2012 */
    

Formula

a(n) = n!*(0/1+1/2+...+(n-1)/n) = n!*(n - H_n), where H_n = Sum_{k=1..n} 1/k; a(1) = 0, a(2) = 1, a(n) = n*a(n-1) + (n-1)*(n-1)!.
a(n) = n*n! - abs(stirling1(n+1, 2)) (cf. A000254). E.g.f.: (x+(1-x)*log(1-x))/(1-x)^2. - Vladeta Jovovic, Feb 01 2003
a(n) = T(n, n-1) for the triangle read by rows: [0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 30 2003
G.f.: x/(1-x) = Sum_{n>=1} a(n)*x^n/Product_{k=1..n+2} (1+k*x). - Paul D. Hanna, Aug 28 2012
a(n) = A062119(n) - A001705(n-1). - Anton Zakharov, Sep 22 2016

Extensions

Definition and example edited by Bridget Tenner, Jul 11 2025

A165674 Triangle generated by the asymptotic expansions of the E(x,m=2,n).

Original entry on oeis.org

1, 3, 1, 11, 5, 1, 50, 26, 7, 1, 274, 154, 47, 9, 1, 1764, 1044, 342, 74, 11, 1, 13068, 8028, 2754, 638, 107, 13, 1, 109584, 69264, 24552, 5944, 1066, 146, 15, 1, 1026576, 663696, 241128, 60216, 11274, 1650, 191, 17, 1
Offset: 1

Views

Author

Johannes W. Meijer, Oct 05 2009

Keywords

Comments

The higher order exponential integrals E(x,m,n) are defined in A163931. The asymptotic expansion of the E(x,m=2,n) ~ (exp(-x)/x^2)*(1 - (1+2*n)/x + (2+6*n+3*n^2)/x^2 - (6+22*n+18*n^2+ 4*n^3)/x^3 + ... ) is discussed in A028421. The formula for the asymptotic expansion leads for n = 1, 2, 3, .., to the left hand columns of the triangle given above.
The recurrence relations of the right hand columns of this triangle lead to Pascal's triangle A007318, their a(n) formulas lead to Wiggen's triangle A028421 and their o.g.f.s lead to Wood's polynomials A126671; cf. A080663, A165676, A165677, A165678 and A165679.
The row sums of this triangle lead to A093344. Surprisingly the e.g.f. of the row sums Egf(x) = (exp(1)*Ei(1,1-x) - exp(1)*Ei(1,1))/(1-x) leads to the exponential integrals in view of the fact that E(x,m=1,n=1) = Ei(n=1,x). We point out that exp(1)*Ei(1,1) = A073003.
The Maple programs generate the coefficients of the triangle given above. The first one makes use of a relation between the triangle coefficients, see the formulas, and the second one makes use of the asymptotic expansions of the E(x,m=2,n).
Amarnath Murthy discovered triangle A093905 which is the reversal of our triangle.
A165675 is an extended version of this triangle. Its reversal is A105954.
Triangle A094587 is generated by the asymptotic expansions of E(x,m=1,n).

Crossrefs

A093905 is the reversal of this triangle.
A000254, A001705, A001711, A001716, A001721, A051524, A051545, A051560, A051562, A051564 are the first ten left hand columns.
A080663, n>=2, is the third right hand column.
A165676, A165677, A165678 and A165679 are the next right hand columns, A093344 gives the row sums.
A073003 is Gompertz's constant.
A094587 is generated by the asymptotic expansions of E(x, m=1, n).
Cf. A165675, A105954 (Quet) and A067176 (Bottomley).
Cf. A007318 (Pascal), A028421 (Wiggen), A126671 (Wood).

Programs

  • Maple
    nmax:=9; for n from 1 to nmax do a(n, n) := 1 od: for n from 2 to nmax do a(n, 1) := n*a(n-1, 1) + (n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do a(n, m) := (n-m+1)*a(n-1, m) + a(n-1, m-1) od: od: seq(seq(a(n, m), m = 1..n), n = 1..nmax);
    # End program 1
    nmax := nmax+1: m:=2; with(combinat): EA := proc(x, m, n) local E, i; E:=0: for i from m-1 to nmax+2 do E := E + sum((-1)^(m+k1+1) * binomial(k1, m-1) * n^(k1-m+1) * stirling1(i, k1), k1=m-1..i) / x^(i-m+1) od: E:= exp(-x)/x^(m) * E: return(E); end: for n1 from 1 to nmax do f(n1-1) := simplify(exp(x) * x^(nmax+3) * EA(x, m, n1)); for m1 from 0 to nmax+2 do b(n1-1, m1) := coeff(f(n1-1), x, nmax+2-m1) od: od: for n1 from 0 to nmax-1 do for m1 from 0 to n1-m+1 do a(n1-m+2, m1+1) := abs(b(m1, n1-m1)) od: od: seq(seq(a(n, m), m = 1..n),n = 1..nmax-1);
    # End program 2
    # Maple programs revised by Johannes W. Meijer, Sep 22 2012

Formula

a(n,m) = (n-m+1)*a(n-1,m) + a(n-1,m-1), for 2 <= m <= n-1, with a(n,n) = 1 and a(n,1) = n*a(n-1,1) + (n-1)!.
a(n,m) = product(i, i= m..n)*sum(1/i, i = m..n).

A165675 Triangle read by rows. T(n, k) = (n - k + 1)! * H(k, n - k), where H are the hyperharmonic numbers. For 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 11, 5, 1, 24, 50, 26, 7, 1, 120, 274, 154, 47, 9, 1, 720, 1764, 1044, 342, 74, 11, 1, 5040, 13068, 8028, 2754, 638, 107, 13, 1, 40320, 109584, 69264, 24552, 5944, 1066, 146, 15, 1, 362880, 1026576, 663696, 241128, 60216, 11274, 1650, 191, 17, 1
Offset: 0

Views

Author

Johannes W. Meijer, Oct 05 2009

Keywords

Comments

Previous name: Extended triangle related to the asymptotic expansions of the E(x, m = 2, n).
For the definition of the hyperharmonic numbers see the formula section.
This triangle is the same as triangle A165674 except for the extra left-hand column T(n, 0) = n!. The T(n) formulas for the right-hand columns generate the coefficients of this extra left-hand column.
Leroy Quet discovered triangle A105954 which is the reversal of our triangle.
In square format, row k gives the (n-1)-st elementary symmetric function of {k, k+1, k+2,..., k+n}, as in the Mathematica section. - Clark Kimberling, Dec 29 2011

Examples

			Triangle T(n, k) begins:
  [0]    1;
  [1]    1,     1;
  [2]    2,     3,    1;
  [3]    6,    11,    5,    1;
  [4]   24,    50,   26,    7,   1;
  [5]  120,   274,  154,   47,   9,   1;
  [6]  720,  1764, 1044,  342,  74,  11,  1;
  [7] 5040, 13068, 8028, 2754, 638, 107, 13, 1;
Seen as an array (the triangle arises when read by descending antidiagonals):
  [0] 1,  1,   2,    6,    24,    120,     720,     5040, ...
  [1] 1,  3,  11,   50,   274,   1764,   13068,   109584, ...
  [2] 1,  5,  26,  154,  1044,   8028,   69264,   663696, ...
  [3] 1,  7,  47,  342,  2754,  24552,  241128,  2592720, ...
  [4] 1,  9,  74,  638,  5944,  60216,  662640,  7893840, ...
  [5] 1, 11, 107, 1066, 11274, 127860, 1557660, 20355120, ...
  [6] 1, 13, 146, 1650, 19524, 245004, 3272688, 46536624, ...
  [7] 1, 15, 191, 2414, 31594, 434568, 6314664, 97053936, ...
		

Crossrefs

A105954 is the reversal of this triangle.
A165674, A138771 and A165680 are related triangles.
A080663 equals the third right hand column.
A000142 equals the first left hand column.
A093345 are the row sums.
Columns include A165676, A165677, A165678 and A165679.

Programs

  • Maple
    nmax := 8; for n from 0 to nmax do a(n, 0) := n! od: for n from 0 to nmax do a(n, n) := 1 od: for n from 2 to nmax do for m from 1 to n-1 do a(n, m) := (n-m+1)*a(n-1, m) + a(n-1, m-1) od: od: seq(seq(a(n, m), m=0..n), n=0..nmax);
    # Johannes W. Meijer, revised Nov 27 2012
    # Shows the array format, using hyperharmonic numbers.
    H := proc(n, k) option remember; if n = 0 then 1/(k+1)
    else add(H(n - 1, j), j = 0..k) fi end:
    seq(lprint(seq((k + 1)!*H(n, k), k = 0..7)), n = 0..7);
    # Shows the array format, using the hypergeometric formula.
    A := (n, k) -> (k+1)*((n + k)! / n!)*hypergeom([-k, 1, 1], [2, n + 1], 1):
    seq(lprint(seq(simplify(A(n, k)), k = 0..7)), n = 0..7);
    # Peter Luschny, Jul 03 2022
  • Mathematica
    a[n_] := SymmetricPolynomial[n - 1, t[n]]; z = 10;
    t[n_] := Table[k - 1, {k, 1, n}]; t1 = Table[a[n], {n, 1, z}]  (* A000142 *)
    t[n_] := Table[k,     {k, 1, n}]; t2 = Table[a[n], {n, 1, z}]  (* A000254 *)
    t[n_] := Table[k + 1, {k, 1, n}]; t3 = Table[a[n], {n, 1, z}]  (* A001705 *)
    t[n_] := Table[k + 2, {k, 1, n}]; t4 = Table[a[n], {n, 1, z}]  (* A001711 *)
    t[n_] := Table[k + 3, {k, 1, n}]; t5 = Table[a[n], {n, 1, z}]  (* A001716 *)
    t[n_] := Table[k + 4, {k, 1, n}]; t6 = Table[a[n], {n, 1, z}]  (* A001721 *)
    t[n_] := Table[k + 5, {k, 1, n}]; t7 = Table[a[n], {n, 1, z}]  (* A051524 *)
    t[n_] := Table[k + 6, {k, 1, n}]; t8 = Table[a[n], {n, 1, z}]  (* A051545 *)
    t[n_] := Table[k + 7, {k, 1, n}]; t9 = Table[a[n], {n, 1, z}]  (* A051560 *)
    t[n_] := Table[k + 8, {k, 1, n}]; t10 = Table[a[n], {n, 1, z}] (* A051562 *)
    t[n_] := Table[k + 9, {k, 1, n}]; t11 = Table[a[n], {n, 1, z}] (* A051564 *)
    t[n_] := Table[k + 10, {k, 1, n}];t12 = Table[a[n], {n, 1, z}] (* A203147 *)
    t = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10};
    TableForm[t]  (* A165675 in square format *)
    m[i_, j_] := t[[i]][[j]];
    (* A165675 as a sequence *)
    Flatten[Table[m[i, n + 1 - i], {n, 1, 10}, {i, 1, n}]]
    (* Clark Kimberling, Dec 29 2011 *)
    A[n_, k_] := (k + 1)*((n + k)! / n!)*HypergeometricPFQ[{-k, 1, 1}, {2, n + 1}, 1];
    Table[A[n, k], {n, 0, 7}, {k, 0, 7}] // TableForm (* Peter Luschny, Jul 03 2022 *)
  • Python
    from functools import cache
    @cache
    def Trow(n: int) -> list[int]:
        if n == 0:
            return [1]
        row = Trow(n - 1) + [1]
        for m in range(n - 1, 0, -1):
            row[m] = (n - m + 1) * row[m] + row[m - 1]
        row[0] *= n
        return row
    for n in range(9): print(Trow(n))  # Peter Luschny, Feb 27 2025

Formula

The hyperharmonic numbers are H(n, k) = Sum_{j=0..k} H(n - 1, j), with base condition H(0, k) = 1/(k + 1).
T(n, k) = (n - k + 1)*T(n - 1, k) + T(n - 1, k - 1), 1 <= k <= n-1, with T(n, 0) = n! and T(n, n) = 1.
From Peter Luschny, Jul 03 2022: (Start)
The rectangular array is given by:
A(n, k) = (k + 1)!*H(n, k).
A(n, k) = (k + 1)*((n + k)! / n!)*hypergeom([-k, 1, 1], [2, n + 1], 1). (End)
From Werner Schulte, Feb 26 2025: (Start)
T(n, k) = n * T(n-1, k) + (n-1)! / (k-1)! for 0 < k < n.
T(n, k) = (Sum_{i=k..n} 1/i) * n! / (k-1)! for 0 < k <= n.
Matrix inverse M = T^(-1) is given by: M(n, n) = 1, M(n, n-1) = 1 - 2 * n for n > 0, M(n, n-2) = (n-1)^2 for n > 1, and M(i, j) = 0 otherwise. (End)

Extensions

New name from Peter Luschny, Jul 03 2022

A001234 Unsigned Stirling numbers of the first kind s(n,7).

Original entry on oeis.org

1, 28, 546, 9450, 157773, 2637558, 44990231, 790943153, 14409322928, 272803210680, 5374523477960, 110228466184200, 2353125040549984, 52260903362512720, 1206647803780373360, 28939583397335447760
Offset: 7

Views

Author

Keywords

Comments

The asymptotic expansion of the higher order exponential integral E(x,m=7,n=1) ~ exp(-x)/x^7*(1 - 28/x + 546/x^2 - 9450/x^3 + 157773/x^4 - ...) leads to the sequence given above. See A163931 for E(x,m,n) information and A163932 for a Maple procedure for the asymptotic expansion. - Johannes W. Meijer, Oct 20 2009

Examples

			G.f. = x^7 + 28*x^8 + 546*x^9 + 9450*x^10 + 157773*x^11 + 2637558*x^12 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 834.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008275 (Stirling1 triangle).

Programs

  • Maple
    A001234 := proc(n) abs(combinat[stirling1](n,7)) ; end: seq(A001234(n),n=7..30) ; # R. J. Mathar, Nov 06 2009
  • Mathematica
    Table[Abs[StirlingS1[n, 7]], {n, 7, 40}] (* Jean-François Alcover, Mar 24 2020 *)
  • PARI
    for(n=6,50,print1(polcoeff(prod(i=1,n,x+i),6,x),","))
    
  • Sage
    [stirling_number1(i,7) for i in range(7,22)] # Zerinvary Lajos, Jun 27 2008

Formula

Let P(n-1,X) = (X+1)(X+2)(X+3)...(X+n-1); then a(n) is the coefficient of X^6; or a(n) = P^(vi)(n-1,0)/6!. - Benoit Cloitre, May 09 2002 [Edited by Petros Hadjicostas, Jun 29 2020 to agree with the offset 7]
a(n) = det(|S(i+7,j+6)|, 1 <= i,j <= n-7), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 06 2013

Extensions

More terms from R. J. Mathar, Nov 06 2009
Previous Showing 31-40 of 178 results. Next