cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 90 results. Next

A139383 Number of n-level labeled rooted trees with n leaves.

Original entry on oeis.org

1, 1, 2, 12, 154, 3455, 120196, 5995892, 406005804, 35839643175, 3998289746065, 550054365477936, 91478394767427823, 18091315306315315610, 4196205472500769304318, 1128136777063831105273242, 347994813261017613045578964, 122080313159891715442898099217
Offset: 0

Views

Author

Paul D. Hanna, Apr 16 2008

Keywords

Comments

Define the matrix function matexps(M) to be exp(M)/exp(1). Then the number of k-level labeled rooted trees with n leaves is also column 0 of the triangle resulting from the n-th iteration of matexps on the Pascal matrix P, A007318. The resulting triangle is also S^n*P*S^-n, where S is the Stirling2 matrix A048993. This function can be coded in PARI as sum(k=0,200,1./k!*M^k)/exp(1), using exp(M) does not work. See A056857, which equals (1/e)*exp(P) or S*P*S^-1. - Gerald McGarvey, Aug 19 2009

Examples

			If we form a table from the family of sequences defined by:
number of k-level labeled rooted trees with n leaves,
then this sequence equals the diagonal in that table:
n=1:A000012=[1,1,1,1,1,1,1,1,1,1,...];
n=2:A000110=[1,2,5,15,52,203,877,4140,21147,115975,...];
n=3:A000258=[1,3,12,60,358,2471,19302,167894,1606137,...];
n=4:A000307=[1,4,22,154,1304,12915,146115,1855570,26097835,...];
n=5:A000357=[1,5,35,315,3455,44590,660665,11035095,204904830,...];
n=6:A000405=[1,6,51,561,7556,120196,2201856,45592666,1051951026,...];
n=7:A001669=[1,7,70,910,14532,274778,5995892,148154860,4085619622,...];
n=8:A081624=[1,8,92,1380,25488,558426,14140722,406005804,13024655442,...];
n=9:A081629=[1,9,117,1989,41709,1038975,29947185,979687005,35839643175,..].
Row n in the above table equals column 0 of matrix power A008277^n where A008277 = triangle of Stirling numbers of 2nd kind:
1;
1,1;
1,3,1;
1,7,6,1;
1,15,25,10,1;
1,31,90,65,15,1; ...
The name of this sequence is a generalization of the definition given in the above sequences by _Christian G. Bower_.
		

Crossrefs

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0 or k=0, 1,
          add(binomial(n-1, j-1)*A(j, k-1)*A(n-j, k), j=1..n))
        end:
    a:= n-> A(n, n-1):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 14 2015
    # second Maple program:
    g:= x-> exp(x)-1:
    a:= n-> n! * coeff(series(1+(g@@n)(x), x, n+1), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 31 2017
    # third Maple program:
    b:= proc(n, t, m) option remember; `if`(t=0, `if`(n<2, 1, 0),
         `if`(n=0, b(m, t-1, 0), m*b(n-1, t, m)+b(n-1, t, m+1)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    t[n_,m_]:=t[n,m] = If[m==1,1,Sum[StirlingS2[n,k]*t[k,m-1],{k,1,n}]]; Table[t[n,n],{n,1,20}] (* Vaclav Kotesovec, Aug 14 2015 after Vladimir Kruchinin *)
  • Maxima
    T(n,m):=if m=1 then 1 else sum(stirling2(n,i)*T(i,m-1),i,1,n);
    makelist(T(n,n),n,1,7); /* Vladimir Kruchinin, May 19 2012 */
    
  • PARI
    {a(n)=local(E=exp(x+x*O(x^n))-1,F=x); for(i=1,n,F=subst(F,x,E));n!*polcoeff(F,n)}
    
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def A(n, k): return 1 if n==0 or k==0 else sum(binomial(n - 1, j - 1)*A(j, k - 1)*A(n - j, k) for j in range(1, n + 1))
    def a(n): return A(n, n - 1)
    print([a(n) for n in range(21)]) # Indranil Ghosh, Aug 07 2017, after Maple code

Formula

a(n) = T(n,n), T(n,m) = Sum_{i=1..n} Stirling2(n,i)*T(i,m-1), m>1, T(n,1)=1. - Vladimir Kruchinin, May 19 2012
a(n) = n! * [x^n] 1 + g^n(x), where g(x) = exp(x)-1. - Alois P. Heinz, Aug 14 2015
From Vaclav Kotesovec, Aug 14 2015: (Start)
Conjecture: a(n) ~ c * n^(2*n-5/6) / (2^(n-1) * exp(n)), where c = 2.86539...
a(n) ~ exp(-1) * A261280(n).
(End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 31 2017

A318392 Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with join of length k.

Original entry on oeis.org

1, 3, 1, 15, 9, 1, 119, 87, 18, 1, 1343, 1045, 285, 30, 1, 19905, 15663, 4890, 705, 45, 1, 369113, 286419, 95613, 16450, 1470, 63, 1, 8285261, 6248679, 2147922, 410053, 44870, 2730, 84, 1, 219627683, 159648795, 55211229, 11202534, 1394883, 105714, 4662, 108, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Examples

			The T(3,2) = 9 pairs of set partitions:
  {{1},{2},{3}}  {{1},{2,3}}
  {{1},{2},{3}}  {{1,2},{3}}
  {{1},{2},{3}}  {{1,3},{2}}
   {{1},{2,3}}  {{1},{2},{3}}
   {{1},{2,3}}   {{1},{2,3}}
   {{1,2},{3}}  {{1},{2},{3}}
   {{1,2},{3}}   {{1,2},{3}}
   {{1,3},{2}}  {{1},{2},{3}}
   {{1,3},{2}}   {{1,3},{2}}
Triangle begins:
      1
      3     1
     15     9     1
    119    87    18     1
   1343  1045   285    30     1
  19905 15663  4890   705    45     1
		

Crossrefs

Row sums are A001247. First column is A060639.

Programs

  • Mathematica
    nn=5;Table[n!*SeriesCoefficient[Sum[BellB[n]^2*x^n/n!,{n,0,nn}]^t,{x,0,n},{t,0,k}],{n,nn},{k,n}]

Formula

E.g.f.: (Sum_{n>=0} B(n)^2 x^n/n!)^t where B = A000110.

A322441 Number of pairs of set partitions of {1,...,n} where no block of one is a subset or equal to any block of the other.

Original entry on oeis.org

1, 0, 0, 0, 6, 60, 630, 9660, 192906
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Comments

For any pair (X,Y) meeting the requirement, so does the pair (Y,X) which must be distinct from (X,Y), except for X = Y = {} when n = 0. Therefore all a(n) are even for n > 0. - M. F. Hasler, Dec 30 2020

Examples

			The a(4) = 6 pairs of set partitions:
  {{1,2},{3,4}} and {{1,3},{2,4}},
  {{1,2},{3,4}} and {{1,4},{2,3}},
  {{1,3},{2,4}} and {{1,2},{3,4}},
  {{1,3},{2,4}} and {{1,4},{2,3}},
  {{1,4},{2,3}} and {{1,2},{3,4}},
  {{1,4},{2,3}} and {{1,3},{2,4}}.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    stabQ[u_]:=stabQ[u,SubsetQ];stabQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Tuples[sps[Range[n]],2],And[UnsameQ@@Join@@#,stabQ[Join@@#]]&]],{n,6}]

A001765 Coefficients of iterated exponentials.

Original entry on oeis.org

1, 7, 77, 1155, 21973, 506989, 13761937, 429853851, 15192078027, 599551077881, 26140497946017, 1248134313062231, 64783855286002573, 3632510833677434324, 218845138322691595694, 14099918095287618382033, 967508237903439910445565, 70447525748137979196484589
Offset: 1

Views

Author

Keywords

References

  • J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353.
  • T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[-Log[1+Log[1+Log[1+Log[1+Log[1+Log[1+Log[1-x]]]]]]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 07 2023 *)
  • PARI
    T(n, k) = if(k==1, (n-1)!, sum(j=1, n, abs(stirling(n, j, 1))*T(j, k-1)));
    a(n) = T(n, 7); \\ Seiichi Manyama, Feb 11 2022
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(-log(1+log(1+log(1+log(1+log(1+log(1+log(1-x))))))))) \\ Seiichi Manyama, Feb 11 2022

Formula

E.g.f.: -log(1+log(1+log(1+log(1+log(1+log(1+log(1-x))))))).

A130410 Alternating row sums of triangle A130191 (Stirling2)^2.

Original entry on oeis.org

1, -1, -1, 0, 6, 32, 115, 172, -2030, -29013, -250051, -1587556, -5178877, 52922256, 1435509569, 20813187553, 230664704969, 1884809758791, 5120430335582, -216605840330716, -6440821191934686, -122368984222010397, -1842986108839510180, -21473141673616814694
Offset: 0

Views

Author

Wolfdieter Lang Jun 01 2007

Keywords

Comments

Stirling2 transform of A000587. 2nd Stirling2 transform of A033999. - Vladimir Reshetnikov, Oct 22 2015

Examples

			E.g.f.: 1 - x - (1/2)*x^2 + (1/4)*x^4+(4/15)*x^5 + (23/144)*x^6 + (43/1260)*x^7 - (29/576)*x^8 - (9671/120960)*x^9 ...
G.f. = 1 - x - x^2 + 6*x^4 + 32*x^5 + 115*x^6 + 172*x^7 - 2030*x^8 - 29013*x^9 + ...
		

Crossrefs

Cf. A048993, A000258 (row sums of A130191), A000587, A033999, A130191.

Programs

  • Maple
    Egf:= 1/exp(exp(exp(x)-1)-1):
    S:= series(Egf,x,101):
    seq(coeff(S,x,j)*j!, j=0..100); # Robert Israel, Oct 22 2015
  • Mathematica
    Table[Sum[BellY[n, k, -BellB[Range[n]]], {k, 0, n}], {n, 0, 23}] (* Vladimir Reshetnikov, Nov 09 2016 *)

Formula

a(n) = sum(A130191(n,m)*(-1)^m,m=0..n), n>=0.
E.g.f.: 1/exp(f(x)) with f(x):=exp(exp(x)-1)-1.
a(n) = sum(k=0..n, A000587(k)*stirling2(n,k)) = sum(k=0..n, B_k(-1)*stirling2(n,k)), where B_k(x) is k-th Bell polynomial.

A318390 Regular triangle where T(n,k) is the number of pairs of set partitions of {1,...,n} with join {{1,...,n}} and meet of length k.

Original entry on oeis.org

1, 1, 2, 1, 6, 8, 1, 14, 48, 56, 1, 30, 200, 560, 552, 1, 62, 720, 3640, 8280, 7202, 1, 126, 2408, 19600, 77280, 151242, 118456, 1, 254, 7728, 95256, 579600, 1915732, 3316768, 2369922, 1, 510, 24200, 435120, 3836952, 19056492, 54726672, 85317192, 56230544, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2018

Keywords

Examples

			The T(3,3) = 8 pairs of set partitions:
  {{1},{2},{3}}  {{1,2,3}}
   {{1},{2,3}}  {{1,2},{3}}
   {{1},{2,3}}  {{1,3},{2}}
   {{1,2},{3}}  {{1},{2,3}}
   {{1,2},{3}}  {{1,3},{2}}
   {{1,3},{2}}  {{1},{2,3}}
   {{1,3},{2}}  {{1,2},{3}}
    {{1,2,3}}  {{1},{2},{3}}
Triangle begins:
    1
    1    2
    1    6    8
    1   14   48   56
    1   30  200  560  552
    1   62  720 3640 8280 7202
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spmeet[a_,b_]:=DeleteCases[Union@@Outer[Intersection,a,b,1],{}];spmeet[a_,b_,c__]:=spmeet[spmeet[a,b],c];
    Table[Length[Select[Tuples[sps[Range[n]],2],And[Length[spmeet@@#]==k,Length[csm[Union@@#]]==1]&]],{n,6},{k,n}]

Formula

T(n,k) = S(n,k) * A181939(k) where S = A008277.

A321729 Number of integer partitions of n whose Young diagram can be partitioned into vertical sections of the same sizes as the parts of the original partition.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 12, 16, 22, 28, 40, 51
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2018

Keywords

Comments

First differs from A046682 at a(11) = 28, A046682(11) = 29.
A vertical section is a partial Young diagram with at most one square in each row. For example, a suitable partition (shown as a coloring by positive integers) of the Young diagram of (322) is:
1 2 3
1 2
2 3
Conjecture: a(n) is the number of half-loop-graphical partitions of n. An integer partition is half-loop-graphical if it comprises the multiset of vertex-degrees of some graph with half-loops, where a half-loop is an edge with one vertex, to be distinguished from a full loop, which has two equal vertices.

Examples

			The a(1) = 1 through a(8) = 12 partitions whose Young diagram cannot be partitioned into vertical sections of the same sizes as the parts of the original partition are the same as the half-loop-graphical partitions up to n = 8:
  (1)  (11)  (21)   (22)    (221)    (222)     (322)      (332)
             (111)  (211)   (311)    (321)     (2221)     (2222)
                    (1111)  (2111)   (2211)    (3211)     (3221)
                            (11111)  (3111)    (4111)     (3311)
                                     (21111)   (22111)    (4211)
                                     (111111)  (31111)    (22211)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
For example, the half-loop-graphs
  {{1},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3}}
both have degrees y = (3,2,2), so y is counted under a(7).
		

Crossrefs

The complement is counted by A321728.
The following pertain to the conjecture.
Half-loop-graphical partitions by length are A029889 or A339843 (covering).
The version for full loops is A339656.
A027187 counts partitions of even length, ranked by A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A322661 counts labeled covering half-loop-graphs, ranked by A340018/A340019.
A339659 is a triangle counting graphical partitions by length.

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
    ptnverts[y_]:=Select[Join@@Table[Subsets[ptnpos[y],{k}],{k,Reverse[Union[y]]}],UnsameQ@@First/@#&];
    Table[Length[Select[IntegerPartitions[n],Length[Select[spsu[ptnverts[#],ptnpos[#]],Function[p,Sort[Length/@p]==Sort[#]]]]>0&]],{n,8}]

Formula

a(n) is the number of integer partitions y of n such that the coefficient of m(y) in e(y) is nonzero, where m is monomial symmetric functions and e is elementary symmetric functions.
a(n) = A000041(n) - A321728(n).

A008826 Triangle of coefficients from fractional iteration of e^x - 1.

Original entry on oeis.org

1, 1, 3, 1, 13, 18, 1, 50, 205, 180, 1, 201, 1865, 4245, 2700, 1, 875, 16674, 74165, 114345, 56700, 1, 4138, 155477, 1208830, 3394790, 3919860, 1587600, 1, 21145, 1542699, 19800165, 90265560, 182184030, 167310360, 57153600, 1, 115973, 16385857, 335976195, 2338275240, 7342024200, 11471572350, 8719666200, 2571912000
Offset: 2

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

The triangle reflects the Jordan-decomposition of the matrix of Stirling numbers of the second kind. A display of the matrix formula can be found at the Helms link which also explains the generation rule for the A()-numbers in a different way. - Gottfried Helms Apr 19 2014
From Gus Wiseman, Jan 02 2020: (Start)
Also the number of balanced reduced multisystems with atoms {1..n} and depth k. A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. For example, row n = 4 counts the following multisystems:
{1,2,3,4} {{1},{2,3,4}} {{{1}},{{2},{3,4}}}
{{1,2},{3,4}} {{{1},{2}},{{3,4}}}
{{1,2,3},{4}} {{{1},{2,3}},{{4}}}
{{1,2,4},{3}} {{{1,2}},{{3},{4}}}
{{1,3},{2,4}} {{{1,2},{3}},{{4}}}
{{1,3,4},{2}} {{{1},{2,4}},{{3}}}
{{1,4},{2,3}} {{{1,2},{4}},{{3}}}
{{1},{2},{3,4}} {{{1}},{{3},{2,4}}}
{{1},{2,3},{4}} {{{1},{3}},{{2,4}}}
{{1,2},{3},{4}} {{{1,3}},{{2},{4}}}
{{1},{2,4},{3}} {{{1,3},{2}},{{4}}}
{{1,3},{2},{4}} {{{1},{3,4}},{{2}}}
{{1,4},{2},{3}} {{{1,3},{4}},{{2}}}
{{{1}},{{4},{2,3}}}
{{{1},{4}},{{2,3}}}
{{{1,4}},{{2},{3}}}
{{{1,4},{2}},{{3}}}
{{{1,4},{3}},{{2}}}
(End)
From Harry Richman, Mar 30 2023: (Start)
Equivalently, T(n,k) is the number of length-k chains from minimum to maximum in the lattice of set partitions of {1..n} ordered by refinement. For example, row n = 4 counts the following chains, leaving out the minimum {1|2|3|4} and maximum {1234}:
(empty) {12|3|4} {12|3|4} < {123|4}
{13|2|4} {12|3|4} < {124|3}
{14|2|3} {12|3|4} < {12|34}
{1|23|4} {13|2|4} < {123|4}
{1|24|3} {13|2|4} < {134|2}
{1|2|34} {13|2|4} < {13|24}
{123|4} {14|2|3} < {124|3}
{124|3} {14|2|3} < {134|2}
{134|2} {14|2|3} < {14|23}
{1|234} {1|23|4} < {123|4}
{12|34} {1|23|4} < {1|234}
{13|24} {1|23|4} < {14|23}
{14|23} {1|24|3} < {124|3}
{1|24|3} < {1|234}
{1|24|3} < {13|24}
{1|2|34} < {134|2}
{1|2|34} < {1|234}
{1|2|34} < {12|34}
(End)
Also the number of cells of dimension k in the fine subdivision of the Bergman complex of the complete graph on n vertices. - Harry Richman, Mar 30 2023

Examples

			Triangle starts:
  1;
  1,    3;
  1,   13,     18;
  1,   50,    205,     180;
  1,  201,   1865,    4245,    2700;
  1,  875,  16674,   74165,  114345,   56700;
  1, 4138, 155477, 1208830, 3394790, 3919860, 1587600;
  ...
The f-vector of (the fine subdivision of) the Bergman complex of the complete graph K_3 is (1, 3). The f-vector of the Bergman complex of K_4 is (1, 13, 18). - _Harry Richman_, Mar 30 2023
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 148.

Crossrefs

Row sums are A005121.
Alternating row sums are signed factorials A133942(n-1).
Column k = 2 is A008827.
Diagonal k = n - 1 is A006472.
Diagonal k = n - 2 is A059355.
Row n equals row 2^n of A330727.

Programs

Formula

G.f. A(n;x) for n-th row satisfies A(n;x) = Sum_{k=0..n-1} Stirling2(n, k)*A(k;x)*x, A(1;x) = 1. - Vladeta Jovovic, Jan 02 2004
Sum_{k=1..n-1} (-1)^k*T(n,k) = (-1)^(n-1)*(n-1)! = A133942(n-1). - Geoffrey Critzer, Sep 06 2020

Extensions

More terms from Vladeta Jovovic, Jan 02 2004

A039811 Triangle read by rows: matrix cube of the Stirling2 triangle A008277.

Original entry on oeis.org

1, 3, 1, 12, 9, 1, 60, 75, 18, 1, 358, 660, 255, 30, 1, 2471, 6288, 3465, 645, 45, 1, 19302, 65051, 47838, 12495, 1365, 63, 1, 167894, 728556, 685580, 235193, 35700, 2562, 84, 1, 1606137, 8792910, 10285488, 4444188, 877653, 86940, 4410, 108, 1
Offset: 1

Views

Author

Christian G. Bower, Feb 15 1999

Keywords

Examples

			Triangle begins
     1;
     3,    1;
    12,    9,    1;
    60,   75,   18,   1;
   358,  660,  255,  30,  1;
  2471, 6288, 3465, 645, 45, 1;
  ...
		

Crossrefs

Cf. A008277, A000258 (first column).
Cf. also A039810, A039812, A039813.

Programs

  • Mathematica
    Flatten[Table[SeriesCoefficient[(Exp[Exp[Exp[x]-1]-1]-1)^k, {x,0,n}] n!/k!,{n,9}, {k,n}]] (* Stefano Spezia, Sep 12 2022 *)

Formula

E.g.f. k-th column: (( exp(exp(exp(x)-1)-1)-1 )^k)/k!. [corrected by Seiichi Manyama, Feb 12 2022]

A321737 Number of ways to partition the Young diagram of an integer partition of n into vertical sections.

Original entry on oeis.org

1, 1, 3, 9, 37, 152, 780, 3965, 23460, 141471, 944217, 6445643, 48075092, 364921557, 2974423953, 24847873439, 219611194148, 1987556951714, 18930298888792, 184244039718755, 1874490999743203, 19510832177784098, 210941659716920257, 2331530519337226199, 26692555830628617358
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2018

Keywords

Comments

A vertical section is a partial Young diagram with at most one square in each row. For example, a partition (shown as a coloring by positive integers) into vertical sections of the Young diagram of (322) is:
1 2 3
1 2
2 3

Examples

			The a(4) = 37 partitions into vertical sections of integer partitions of 4:
  1 2 3 4
.
  1 2 3   1 2 3   1 2 3   1 2 3
  4       3       2       1
.
  1 2   1 2   1 2   1 2   1 2   1 2   1 2
  3 4   2 3   3 2   1 3   1 2   3 1   2 1
.
  1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2   1 2
  3     3     2     3     2     1     1     3     2     1
  4     3     3     2     2     3     2     1     1     1
.
  1   1   1   1   1   1   1   1   1   1   1   1   1   1   1
  2   2   2   2   2   1   1   2   2   2   2   1   1   2   1
  3   3   2   3   2   2   2   1   1   3   2   1   2   1   1
  4   3   3   2   2   3   2   3   2   1   1   2   1   1   1
		

Crossrefs

Programs

  • Mathematica
    spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
    ptnpos[y_]:=Position[Table[1,{#}]&/@y,1];
    ptnverts[y_]:=Select[Rest[Subsets[ptnpos[y]]],UnsameQ@@First/@#&];
    Table[Sum[Length[spsu[ptnverts[y],ptnpos[y]]],{y,IntegerPartitions[n]}],{n,6}]

Extensions

a(11)-a(24) from Ludovic Schwob, Aug 28 2023
Previous Showing 31-40 of 90 results. Next