cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 48 results. Next

A103942 Number of unrooted n-edge isthmusless maps in the plane (planar with a distinguished outside face).

Original entry on oeis.org

1, 1, 3, 9, 38, 187, 1120, 7083, 47990, 337676, 2455517, 18310155, 139447034, 1080773098, 8502896424, 67763884363, 546147639926, 4445389286380, 36501274080076, 302060508150976, 2517213486505592, 21110062391001119, 178052027949519768, 1509631210682469661, 12860805940582898474
Offset: 0

Views

Author

Valery A. Liskovets, Mar 17 2005

Keywords

References

  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Programs

  • Mathematica
    a[n_] := (1/(2n)) ((5n^2 + 13n + 2) Binomial[4n, n]/((n+1)(3n+1)(3n+2)) + Sum[Boole[0 < k < n] EulerPhi[n/k] Binomial[4k, k], {k, Divisors[n]}] + q[n]);
    q[n_] := If[EvenQ[n], 0, (n-1) Binomial[2n, (n-1)/2]]/(n+1);
    Array[a, 20] (* Jean-François Alcover, Sep 01 2019 *)
  • PARI
    a(n) = {if(n==0, 1, (sumdiv(n, d, if(dAndrew Howroyd, Mar 28 2021

Formula

For n > 0, a(n) = (1/(2n))*[(5n^2+13n+2)*binomial(4n, n)/((n+1)(3n+1)(3n+2)) + Sum_{0A000010), q(n)=0 if n is even and q(n)=(n-1)*binomial(2n, (n-1)/2)/(n+1) if n is odd.

Extensions

a(0)=1 prepended and terms a(21) and beyond from Andrew Howroyd, Mar 28 2021

A027432 Related to sorting procedure studied by West: number of permutations that are both sorted (i.e., obtainable as output of the sorting procedure) and one-stack sortable.

Original entry on oeis.org

1, 1, 1, 2, 4, 10, 25, 69, 192, 562, 1663, 5065, 15592, 48874, 154651, 495418, 1599816, 5212650, 17098590, 56473664, 187572584, 626430568, 2101977231, 7084963950, 23976649328, 81447876258, 277627821135, 949393445553, 3256266981128, 11199653726786, 38620292110925
Offset: 0

Views

Author

Keywords

Comments

Series reversion of g.f. A(x) is -A(-x) (if offset 1).

Crossrefs

Cf. A027361.

Programs

  • Mathematica
    max = 29; f[x_] = Sum[a[n]*x^n, {n, 0, max}]; a[0] = a[1] = 1; y = x*f[x]; coes = CoefficientList[ Series[(x^4-3x^3+3x^2-x) + y*(4x^3+29x^2-7x+1) + y^2*(6x^2-29x+3) + y^3*(4x+3) + y^4, {x, 0, max}], x]; Table[a[n], {n, 0, max-1}] /. First[ Solve[ Thread[coes == 0]]] (* Jean-François Alcover, Nov 14 2011 *)
    a[0] = a[1] = a[2] = 1; a[3] = 2; a[n_] := a[n] = (1/(3*(n - 1)*(n + 1)* (3*n + 1)*(3*n + 2)*(n*(24*n - 1) - 90)))*(2*(n*(n*(n*(n*(1680*n^2 - 1294*n - 10977) + 16676) - 3843) - 2602) + 720)*a[n-1] + 4*(n*(n*(n* (768*n^3 - 3872*n^2 + 3560*n + 6195) - 11498) + 6887) - 2520)*a[n-2] - 32*n*(n*(2*n*(16*n*(n*(24*n - 133) + 29) + 16153) - 63331) + 33165)* a[n-3]); Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 20 2018, after Vaclav Kotesovec *)
  • PARI
    {a(n) = local(A); if( n<0, 0, n++; A = O(x); for( k=1, n, A = subst( x - 3*(x^2 + y^2) + 7*x*y + 3*(x^3 - y^3) - 29*x*y*(x - y) - (x^4 + y^4) - 4*x*y*(x^2 + y^2) - 6*x^2*y^2, y, A)); polcoeff(A, n))}

Formula

G.f. is algebraic of degree 4.
If g.f. is A(x), y = x*A(x) satisfies (x^4 - 3*x^3 + 3*x^2 - x) + y * (4*x^3 + 29*x^2 - 7*x + 1) + y^2 * (6*x^2 - 29*x + 3) + y^3 * (4*x + 3) + y^4 = 0.
G.f. A(x) satisfies A(x) = x + B(x*A(x)) where B(x) is g.f. for A000260 (offset 1). - Michael Somos, Sep 07 2005
Recurrence: 3*(n-1)*(n+1)*(3*n+1)*(3*n+2)*(24*n^2 - n - 90)*a(n) = 2*(1680*n^6 - 1294*n^5 - 10977*n^4 + 16676*n^3 - 3843*n^2 - 2602*n + 720)*a(n-1) + 4*(768*n^6 - 3872*n^5 + 3560*n^4 + 6195*n^3 - 11498*n^2 + 6887*n - 2520)*a(n-2) - 32*n*(2*n-5)*(4*n-11)*(4*n-9)*(24*n^2 + 47*n - 67)*a(n-3). - Vaclav Kotesovec, Mar 18 2014
a(n) ~ c * (1/r)^n / (sqrt(Pi) * n^(5/2)), where r = (2*sqrt(7)-1)/16 = 0.268218913883... and c = sqrt((9653 + 3619*sqrt(7))/1944) = 3.14498539342675985580088726043277778... - Vaclav Kotesovec, Jul 01 2014

A185113 Number of dissections of a convex (3n+3)-sided polygon into n pentagons and one triangle (up to equivalence).

Original entry on oeis.org

1, 3, 18, 130, 1020, 8379, 70840, 610740, 5340060, 47187580, 420412278, 3770221338, 33991902308, 307826695050, 2798052616800, 25514463687720, 233296537299228, 2138295980859588, 19639886707062280, 180724535020583400, 1665767679910654320, 15376467276901980315
Offset: 0

Views

Author

F. Chapoton, Feb 03 2011

Keywords

Comments

This sequence counts dissections of a convex 3n+3-sided polygon into one triangle and n pentagons, modulo a simple equivalence relation. This equivalence relation is defined by moving the triangle according to a simple rule (not detailed here).
(The equivalence relation is not defined by a group, but by local moves. Consider the hexagon formed by a pentagon adjacent to the triangle. The local move is half-rotation of such hexagons.)
The terms seem to be odd exactly for indices in A002450. - F. Chapoton Mar 08 2020

Examples

			For n=0, there is just one triangle, so that a(0)=1. For n=1, one can dissect an hexagon in 6 ways into a pentagon and a triangle. In this case, the equivalence relation just relates every such dissection to its half rotated image, so that a(1)=3.
		

Crossrefs

Programs

Formula

a(n) = binomial(4*n+1,n-1)*(n+2)/n = binomial(4*n+1,n)*(n+2)/(3*n+2).
a(n) = binomial(n+2,2) * A000260(n). - F. Chapoton Feb 22 2024

A242136 Number of strong triangulations of a fixed square with n interior vertices.

Original entry on oeis.org

0, 1, 6, 36, 228, 1518, 10530, 75516, 556512, 4194801, 32224114, 251565996, 1991331720, 15953808780, 129171585690, 1055640440268, 8698890336576, 72215877581844, 603532770013080, 5074488683389840
Offset: 0

Views

Author

David Callan, Aug 15 2014

Keywords

Comments

A strong triangulation is one in which no interior edge joins two vertices of the square (see W. G. Brown reference).
If the restriction "strong" is dropped, the counting sequence is A197271 (shifted left).

Examples

			The 6 triangulations for n=2 are as follows. Four have a central vertex joined to all 4 vertices of the square creating 4 triangular regions, one of which contains the second interior vertex. In these 4 cases, the central vertex has degree 5, the other interior  vertex has degree 3. In the other 2 triangulations, both interior vertices have degree 4, an opposite pair a, c of vertices of the square both have degree 3 (so 1 interior edge), and the other 2 opposite vertices have degree 4.
		

Crossrefs

Column k=1 of A341856.
Cf. A000260 for triangulations of a triangle.

Programs

  • Maple
    A242136:=n->24*binomial(4*n+3,n-1)/((3*n+5)*(n+2)): seq(A242136(n), n=0..30); # Wesley Ivan Hurt, Aug 16 2014
  • Mathematica
    Table[24 Binomial[4n+3,n-1]/((3n+5)(n+2)), {n, 0, 15}]

Formula

a(n) = 72 * (4*n+3)!/((3*n+6)!*(n-1)!) = 24 * binomial(4*n+3,n-1)/((3*n+5)*(n+2)) = binomial(4*n+3,n-1) - 5 * binomial(4*n+3,n-2) + 6 * binomial(4*n+3,n-3).

A253882 Number of 3-connected planar triangulations of the sphere with n vertices up to orientation preserving isomorphisms.

Original entry on oeis.org

1, 1, 2, 6, 17, 73, 389, 2274, 14502, 97033, 672781, 4792530, 34911786, 259106122, 1954315346, 14949368524, 115784496932, 906736988527, 7171613842488, 57231089062625, 460428456484557, 3731572377382341, 30447133566946517, 249968326771680542, 2063931874299323140
Offset: 4

Views

Author

Danny Rorabaugh, Feb 27 2015

Keywords

Crossrefs

Cf. A000109 (full automorphism group), A000260 (rooted at an edge), A000944, A002709 (with a distinguished face).

Programs

  • PARI
    a(n)={if(n<3, 0, (2*binomial(4*(n-3)+1, n-3)/((n-2)*(3*n-7))
      + 3*sumdiv(n-2, d, if(d>=2, my(s=(n-2)/d); eulerphi(d)*binomial(4*s,s))/4)
      + if(n%2==1, my(s=(n-3)/2); 3*binomial(4*s,s)*(2*s+1)/(3*s+1))
      + if(n%3==1, my(s=(n-4)/3); 8*binomial(4*s,s)*(4*s+1)/(3*s+1))
      + if(n%3==0, my(s=(n-3)/3); 2*binomial(4*s,s)) )/(6*(n-2)))} \\ Andrew Howroyd, Mar 02 2021

Extensions

Name clarified and terms a(24) and beyond from Andrew Howroyd, Mar 02 2021

A263191 Triangle read by rows: T(n>=0, 1<=k<=A000108(n)) is the number of Dyck paths of length 2n having k smaller elements in Tamari order.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 3, 2, 2, 2, 0, 2, 0, 1, 0, 0, 0, 0, 1, 1, 4, 3, 5, 4, 2, 4, 0, 5, 2, 0, 2, 0, 3, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 4, 9, 6, 7, 6, 3, 10, 6, 4, 4, 0, 9, 5, 2, 0, 4, 4, 4, 0, 0, 4, 3, 1, 0, 2, 4, 0, 4, 0, 0, 0, 3, 0, 0, 2
Offset: 0

Views

Author

Christian Stump, Oct 19 2015

Keywords

Comments

Row sums give A000108.

Examples

			Triangle begins:
1;
1;
1,1;
1,2,1,0,1;
1,3,2,2,2,0,2,0,1,0,0,0,0,1;
1,4,3,5,4,2,4,0,5,2,0,2,0,3,0,1,0,0,2,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,0,1;
...
		

Crossrefs

Formula

Sum_{k=1..A000108(n)} k * T(n,k) = A000260(n). - Alois P. Heinz, Nov 15 2015

Extensions

Two terms (for rows 0 and 1) prepended by Alois P. Heinz, Nov 15 2015

A268315 Decimal expansion of 256/27.

Original entry on oeis.org

9, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8, 1, 4, 8
Offset: 1

Views

Author

Gheorghe Coserea, Feb 01 2016

Keywords

Examples

			9.481481481481481481481481481481...
		

Crossrefs

Programs

  • Magma
    [9] cat &cat[[4, 8, 1]^^45]; // Vincenzo Librandi, Feb 04 2016
  • Mathematica
    Join[{9}, PadRight[{}, 120, {4, 8, 1}]] (* Vincenzo Librandi, Feb 04 2016 *)
  • PARI
    1.0 * 256/27
    

Extensions

More digits from Jon E. Schoenfield, Mar 15 2018

A255918 Array a(n,m) read by descending antidiagonals giving the number of intervals in a generalized Tamari lattice of m-ballot paths of size n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 13, 1, 1, 10, 58, 68, 1, 1, 15, 170, 703, 399, 1, 1, 21, 395, 3685, 9729, 2530, 1, 1, 28, 791, 13390, 91881, 146916, 16965, 1, 1, 36, 1428, 38591, 524256, 2509584, 2359968, 118668, 1, 1, 45, 2388, 94738, 2180262, 22533126
Offset: 1

Views

Author

Jean-François Alcover, Mar 11 2015

Keywords

Comments

This array occurs in counting the degeneracies in the supersymmetric ground states of the Kronecker model of quiver quantum mechanics. See Cordova and Shao, 1.4. - Peter Bala, Oct 29 2017
In mathematical terms, this corresponds to the homology of some moduli spaces of semi-stable representations of the Kronecker quiver K_m with dimension vector (n,n+1). F. Chapoton, Jun 09 2021

Examples

			Array begins:
1,   1,    1,     1,      1,       1,       1,        1,        1, ...
1,   3,    6,    10,     15,      21,      28,       36,       45, ...
1,  13,   58,   170,    395,     791,    1428,     2388,     3765, ...
1,  68,  703,  3685,  13390,   38591,   94738,   206718,   412095, ...
1, 399, 9729, 91881, 524256, 2180262, 7291550, 20787390, 52450587, ...
...
2nd row is A000217 (triangular numbers);
3rd row is A103220;
4th row is not in the OEIS;
2nd column is A000260 (number of intervals in the usual Tamari lattice of size n);
3rd column is not in the OEIS.
		

Crossrefs

Cf. A000217, A000260, A070914 (generalized Catalan numbers giving the number of paths), A103220.

Programs

  • Mathematica
    a[n_, m_] := ((m + 1)/(n*(m*n + 1)))*Binomial[(m + 1)^2*n + m, n - 1]; Table[a[n - m, m], {n, 1, 12}, {m, n - 1, 0, -1}] // Flatten
  • Sage
    def a(n, m):
        return (m + 1) * binomial((m + 1)**2 * n + m, n - 1) // (n*(m*n + 1)) # F. Chapoton, Mar 24 2021

Formula

a(n,m) = ((m + 1)/(n*(m*n + 1)))*binomial((m + 1)^2*n + m, n - 1).

A294084 Number of indecomposable intervals in the Tamari lattices.

Original entry on oeis.org

0, 1, 2, 8, 41, 240, 1528, 10312, 72647, 528992, 3954488, 30201504, 234798627, 1853076528, 14814453896, 119763949936, 977709717091, 8050816106176, 66803956281592, 558146870481760, 4692269111973668, 39669049950811328, 337082395954643168, 2877697636252004168, 24672447821197834553
Offset: 0

Views

Author

F. Chapoton, Feb 26 2018

Keywords

Comments

This is also the number of interval-posets with connected Hasse diagram.

Examples

			Among the 3 interval-posets of size 2 :
1 --> 2 ; 1 <-- 2 ; 1  2,
only the third (which is an antichain) is not a connected poset.
		

Crossrefs

Cf. A000260.

Programs

  • Julia
    using Nemo
    s(n) = div(Nemo.binom(4*n + 2, n + 1), (2*n + 1) * (3*n + 2))
    R, z = PowerSeriesRing(ZZ, 25, "z")
    F = sum(s(n)z^n for n in 0:25)
    G = 1 - inv(F)
    println([coeff(G,n) for n in 0:24]) # Peter Luschny, Feb 26 2018
  • Maple
    h:= proc(n) h(n):= 2*(4*n+1)!/((n+1)!*(3*n+2)!) end:
    a:= proc(n) a(n):= `if`(n=0, 0, h(n)-add(a(n-i)*h(i), i=1..n-1)) end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 28 2019
  • Mathematica
    terms = 25;
    G[] = 0; Do[G[x] = 1 + x G[x]^4 + O[x]^terms, terms];
    F[x_] = 1 - 1/((2 - G[x]) G[x]^2);
    CoefficientList[F[x], x] (* Jean-François Alcover, Feb 14 2019 *)
  • Sage
    F = PowerSeriesRing(ZZ,'t')([1] + [(2 * binomial(4 * n + 1, n - 1)) // (n * (n + 1)) for n in range(1, 20)])
    1 - F.inverse()
    

Formula

The generating series can be obtained by inverting the generating series of A000260.

A336110 Irregular triangle of Catalan-based numbers, read by rows.

Original entry on oeis.org

1, 1, 2, -2, 5, -14, 5, 14, -74, 74, -14, 42, -352, 668, -352, 42, 132, -1588, 4808, -4808, 1588, -132, 429, -6946, 30371, -48540, 30371, -6946, 429, 1430, -29786, 176270, -407810, 407810, -176270, 29786, -1430
Offset: 1

Views

Author

Sergii Voloshyn, Jul 08 2020

Keywords

Comments

Calculation of the sum over the partitions of r of products of dimensions of two different representations of a symmetric group S_r gives
Sum_{L |- S_r} f(L)*f(l+q^N) = (r+q^N)! * G[N+1] * G[q+1]/(G[N+q+1]) * B_r(1!c_1, ..., r!c_r) where f(L) is the dimension of the symmetric group S_r, G[x] is Barnes function, and B_r() is the complete exponential Bell polynomial.
In the limit N -> infinity the coefficients [are?]
c_1 = 1/(1+x), c_i = 1/(i*N^(2*(i-1)))*P(i-1), for i >= 2.
Coefficient of x^n in the numerator of P(i) is T(s, i).
This triangle of coefficients was discovered by Borisenko et al. In mathematical physics these coefficients appear as an important ingredient of series that define the free energy of the SU(N) standard lattice model in the large N limit.
They are easily obtained from the g.f.
Some special cases are given by A000108 (first column of the triangle), A138156 (second column of the triangle).
The sum of the numbers in row 2*k+1 is (-1)^k * A000260(k) * 2^(2*k).

Examples

			     1;
     1;
     2,     -2;
     5,    -14,      5;
    14,    -74,     74,     -14;
    42,   -352,    668,    -352,     42;
   132,  -1588,   4808,   -4808,   1588,    -132;
   429,  -6946,  30371,  -48540,  30371,   -6946,   429;
  1430, -29786, 176270, -407810, 407810, -176270, 29786, -1430;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[L_, n_] := CatalanNumber[L] Sum[u[L, a]/u[0, a] M[n - 1 - 2*a, L], {a, 0, (n - 1)/2}]-4^L Sum[v[L, a]/v[0, a] M[n - 2 - 2*a, L], {a,0,(n-2)/2}];
    M[n_, l_] := Sum[k!/n! BellY[n,k,Table[(-1)^(j-1) j!Binomial[3l+j,j], {j,n}]], {k, 0, n}];
    u[k_, n_] := Product[Binomial[2 k + 2 l + 1, 3], {l, 1, n}];
    v[k_, n_] := Product[ Binomial[2 k + 2 l + 2, 3], {l, 1, n}];
    (* alternate program using coefficients in numerator *)
    P[s_] := x CatalanNumber[s] HypergeometricPFQ[{s + 1/2, s + 1, s + 3/2}, {1/2, 3/2}, x^2] - x^2*4^s HypergeometricPFQ[{s + 1, s + 3/2, s + 2}, {3/2, 2}, x^2];
    Table[CoefficientList[P[s] // Together // Numerator, x] // Rest, {s, 0, 10}] // Flatten (* amended by Jean-François Alcover, Sep 25 2020 *)
    (* another program using coefficients in numerator *)
    Needs["Combinatorica`"];
    OA[p_,x_]:= (2^p(-(1/(x+1)))^(2p+1))/((2p+1)!(p+1)!) Sum[(-x/(1+x))^(p-r+1)Product[Pochhammer[1+Plus@@Table[3*k[[i]]-1,{i,1,j-1}],3*k[[j]]],{j,1,r}],{r, 1, p},{k,Compositions[p-r,r]+1}]; Table[CoefficientList[OA[s, x] // Together // Numerator, x] //
       Rest, {s, 0, 10}] // Flatten (* Sergii Voloshyn, Sep 03 2021 *)

Formula

Coefficients of x^n in the numerator of P(s) = (x * C[s]* 3F2[ s+ 1/2, s+1, s+3/2; 1/2,3/2; x^2] - x^2 * 4^s * 3F2[ s+1,s+3/2, s+2; 3/2, 2; x^2]), where C(s) are Catalan numbers.
or in a more explicit way (only for k >= 1)
T(s, n) = C(s) * U(s, n) - 4^s * V(s, n), where
U(s, n) = Sum_{a=0..(n-1)/2} (u(s, a)/u(0,a)) * M(s, n-1- 2a),
V(s, n) = Sum_{a=0..(n-2)/2} (v(s, a)/v(0,a)) * M(s, n-2- 2a), and
u(s, n) = Product_{L=1..n} binomial(2s+2L+1, 3),
v(s, n) = Product_{L=1..n} binomial(2s+2L+2, 3), and
M(m, n) = Sum_{L=1..n} L!/n! B_{n,l} ( x_1, ..., x_{n-L+1}), and
x_i = (-1)^{1+i} * (3s+i)_i = (-1)^{1+i} * i! * binomial(3s + i, i), where
B_{n,l} (x_1, ..., x_{n-L+1}) is the n-th partial or incomplete exponential Bell polynomial with monomials sorted into graded lexicographic order.
Sum of numbers in the particular row:
Sum_{n=1..2*k+1} T(2*k+1, n) = 2*(4*k+1)!/((k+1)!*(3*k+2)!) *2^(2*k) (odd s);
Sum_{n=1..2*k} T(2*k, n) = 0 (even s).
From Sergii Voloshyn, Oct 22 2020: (Start)
Formulae for particular columns:
T(s, 1) = C(s);
T(s, 2) = C(s)*(3*s+1) - 4^s;
T(s, 3) = C(s)*(binomial(2*s+3,3) + (3*s+1)^2 - binomial(3*s +2,2)) - 4^s*(3*s+1);
T(s, 4) = C(s)*((2*s+1)binomial(2*s+3,3) +(3*s+1)^3 - 2(3*s+1)* binomial(3*s+2,2)+ binomial(3*s+3, 3)) - 4^s*(binomial(3*s+4, 3)/4 + (3*s+1)^2 - binomial(3*s+2,2));
...
T(s, s) = (-1)^(s+1)*C(s). (End)
From Sergii Voloshyn, Mar 17 2021: (Start)
Recursion ( P[0] = x/(1+x) ):
x*(d^3/dx^3)*P[s] = (1/4)*(2*k+2)*(2*k+3)*(2*k+4)*P[s+1]
for P[s_] := x CatalanNumber[s] HypergeometricPFQ[{s + 1/2, s + 1, s + 3/2}, {1/2, 3/2}, x^2] - x^2*4^s HypergeometricPFQ[{s + 1, s + 3/2, s + 2}, {3/2, 2}, x^2].
(End)
Recursion for array ( T(1,1) = 1 ): T(k, p) = (1/(k*(k+1)*(2k+1)))*[p*(p+1)*(p+2)*T(k-1,p+2) - 3*p*(p+1)*(3*k-p-1)*T(k-1,p+1) + 3*p*(3*k-p)*(3*k-p-1)*T(k-1,p) - (3*k-p+1)*(3*k-p)*(3*k-p-1)*T(k-1,p-1)]; p =[1,...,k]. - Sergii Voloshyn, Apr 14 2021
From Sergii Voloshyn, Apr 17 2021: (Start)
G.f.: Sum_{m>=1} x^m Om(k, m) = (1/(1+x)^(3*k+1))*Sum_{n=1..k} x^k * T(k,n);
Om(k, m) = (12^k/((1+k)!*(2k+1)!)) * Product_{L=1..k} binomial(m+2L, 3).
(End)
From Sergii Voloshyn, Apr 25 2021: (Start)
Differential equation for P[k_]:
x*(x^2-1)*(d^3/dx^3)P[s] + (2*k+2)*3*x^2*(d^2/dx^2)P[s] +(2*k+2)*(2*k+1)*3*x (d/dx)P[s] + (2*k+2)(2*k+1)*2*k*P[s] = 0.
Discrete set equation for T(k,n) (n=-1..k-2) at fixed k:
(k-n-1)*(k-n)*(k-n+1)*T(k,n) - (k-n-1)*(k-n)*(8*k+n+5)*T(k,n+1) - (n+1)*(n+2)*(9-n+3)*T(k,n+2) + (n+1)*(n+2)*(n+3)*T(k,n+3) = 0
and
Sum_{m=1..k} (k*(5+7*k) + 12*n*(n-1-k))*T(k,n) = 0. (End)
P[k_]:= (2^k)/((2*k+1)!*(k+1)!)*(-1/(1+x))^{2k+1}[Sum_{r(1)+...+ r(L)=k} (-x/(1+x))^{k-L+1}* 1^{(3*r(1))}*(1+3*r(1)-1)^{(3*r(2))}*... *(1+Sum_{i=1..L-1} 3 r(i) -L+1)^{(3*r(L))}] where Sum_ r_i = k runs over all integer compositions of k, L is a number of parts of this composition and 1^{(3 r(1))} is a rising factorial. - Sergii Voloshyn, Sep 03 2021
Sum_{k} abs(T(n,k)) = A000309(n-1). - Sergii Voloshyn, Nov 20 2024
Previous Showing 31-40 of 48 results. Next