cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 131 results. Next

A006505 Number of partitions of an n-set into boxes of size >2.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 11, 36, 92, 491, 2557, 11353, 60105, 362506, 2169246, 13580815, 91927435, 650078097, 4762023647, 36508923530, 292117087090, 2424048335917, 20847410586719, 185754044235873, 1711253808769653, 16272637428430152
Offset: 0

Views

Author

Keywords

References

  • J. Riordan, A budget of rhyme scheme counts, pp. 455 - 465 of Second International Conference on Combinatorial Mathematics, New York, April 4-7, 1978. Edited by Allan Gewirtz and Louis V. Quintas. Annals New York Academy of Sciences, 319, 1979.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A293024.
Cf. A293038.

Programs

  • Maple
    Copy ZL := [ B,{B=Set(Set(Z, card>=3))}, labeled ]: [seq(combstruct[count](ZL, size=n), n=0..25)]; # Zerinvary Lajos, Mar 13 2007
    G:={P=Set(Set(Atom,card>=3))}:combstruct[gfsolve](G,unlabeled,x):seq(combstruct[count]([P,G,labeled],size=i),i=0..25); # Zerinvary Lajos, Dec 16 2007
    g:=proc(n) option remember; if n=0 then RETURN(1); fi; if n<=2 then RETURN(0); fi; if n<=5 then RETURN(x); fi; expand(x*add(binomial(n-1,i)*g(i),i=0..n-3)); end; [seq(subs(x=1,g(n)),n=0..60)]; # N. J. A. Sloane, Jul 20 2011
  • Mathematica
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ Exp @ x - 1 - x - x^2 / 2], {x, 0, n}]] (* Michael Somos, Jul 20 2011 *)
    a[0] = 1; a[n_] := n!*Sum[Sum[k!*(-1)^(m-k)*Binomial[m, k]*Sum[StirlingS2[i+k, k]* Binomial[m-k, n-m-i]*2^(-n+m+i)/(i+k)!, {i, 0, n-m}], {k, 0, m}]/m!, {m, 1, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 03 2015, after Vladimir Kruchinin *)
    Table[Sum[(-1)^j * Binomial[n, j] * BellB[n-j] * 2^((j-1)/2) * HypergeometricU[(1 - j)/2, 3/2, 1/2], {j, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Feb 09 2020 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( exp( x + x * O(x^n)) - 1 - x - x^2 / 2), n))} /* Michael Somos, Jul 20 2011 */

Formula

E.g.f.: exp ( exp x - 1 - x - (1/2)*x^2 ).
a(n) = Sum_{k=1..[n/3]} A059022(n,k), n>=3. - R. J. Mathar, Nov 08 2008
a(n) = n! * sum(m=1..n, sum(k=0..m, k!*(-1)^(m-k) *binomial(m,k) *sum(i=0..n-m, stirling2(i+k,k) *binomial(m-k,n-m-i) *2^(-n+m+i)/ (i+k)!))/m!); a(0)=1. - Vladimir Kruchinin, Feb 01 2011
Define polynomials g_n by g_0=1, g_1=g_2=0, g_3=g_4=g_5=x; g(n) = x*Sum_{i=0..n-3} binomial(n-1,i)*g_i; then a(n) = g_n(1). [Riordan]
a(0) = 1; a(n) = Sum_{k=0..n-3} binomial(n-1,k+2) * a(n-k-3). - Seiichi Manyama, Sep 22 2023

Extensions

More terms from Christian G. Bower, Nov 09 2000
Edited by N. J. A. Sloane, Jul 20 2011

A050370 Number of ways to factor n into composite factors.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 1, 0, 2, 1, 1, 1, 3, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 0, 1, 1, 4, 1, 1, 0, 1, 1, 1, 0, 4, 0, 1, 1, 1, 1, 1, 0, 3, 2, 1, 0, 3, 1, 1, 1, 2, 0, 3, 1, 1, 1, 1, 1, 5, 0, 1, 1, 3, 0, 1
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).

Crossrefs

Programs

  • Maple
    with(numtheory):
    g:= proc(n, k) option remember; `if`(n>k, 0, 1)+
          `if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d)),
             d=divisors(n) minus {1, n}))
        end:
    a:= proc(n) a(n):= add(mobius(n/d)*g(d$2), d=divisors(n)) end:
    seq(a(n), n=1..100);  # Alois P. Heinz, May 16 2014
  • Mathematica
    g[n_, k_] := g[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, g[n/d, d]], {d, Divisors[n] ~Complement~ {1, n}}]]; a[n_] := Sum[ MoebiusMu[n/d]*g[d, d], {d, Divisors[n]}]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 23 2017, after Alois P. Heinz *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import mobius, divisors, isprime
    @cacheit
    def g(n, k): return (0 if n>k else 1) + (0 if isprime(n) else sum((0 if d>k else g(n//d, d)) for d in divisors(n)[1:-1]))
    def a(n): return sum(mobius(n//d)*g(d, d) for d in divisors(n))
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 19 2017, after Maple code

Formula

Dirichlet g.f.: Product_{n is composite}(1/(1-1/n^s)).
Moebius transform of A001055. - Vladeta Jovovic, Mar 17 2004

A126390 a(n) = Sum_{i=0..n} 2^i*B(i)*binomial(n,i) where B(n) = Bell numbers A000110(n).

Original entry on oeis.org

1, 3, 13, 71, 457, 3355, 27509, 248127, 2434129, 25741939, 291397789, 3510328695, 44782460313, 602513988107, 8518757813637, 126179029108463, 1952609274344353, 31492811964616163, 528249539951292461, 9197240228562763687, 165923214676585626729
Offset: 0

Views

Author

N. J. A. Sloane, Aug 04 2007

Keywords

Crossrefs

Programs

  • Maple
    with(combstruct):seq(count(([S, {N=Union(Z, S, P), S=Set(Union(Z, P), card>=0), P=Set(Union(Z, Z), card>=1)}, labeled], size=n)), n=0..20); # Zerinvary Lajos, Mar 18 2008
  • Mathematica
    Table[ Sum[ 2^k Binomial[n, k] BellB[k], {k, 0, n}], {n, 0, 30}] (* Karol A. Penson and Olivier Gérard, Oct 22 2007 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace((exp(exp(2*x)-1+x)))) \\ Joerg Arndt, May 13 2013

Formula

E.g.f.: exp(exp(2*x)-1+x). - Vladeta Jovovic, Aug 04 2007
a(n) = e^(-1)* 2^n * Sum_{k>=0} (k + 1/2)^n / k!. This is a Dobinski-type formula. - Karol A. Penson and Olivier Gérard, Oct 22 2007
G.f.: 1/Q(0), where Q(k)= 1 - (2*k+3)*x - 4*(k+1)*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: 1/Q(0), where Q(k)= 1 - x - 2*x/(1 - 2*x*(2*k+1)/(1 - x - 2*x/(1 - 2*x*(2*k+2)/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, May 13 2013
a(0) = 1; a(n) = a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * 2^k * a(n-k). - Ilya Gutkovskiy, Jun 21 2022
From Vaclav Kotesovec, Jun 22 2022: (Start)
a(n) ~ Bell(n) * (2 + LambertW(n)/n)^n.
a(n) ~ Bell(n) * 2^n * sqrt(n) * log(n)^(-1/2 + 1/(2*log(n)) - 1/(2*log(n)^2)) * exp(log(log(n))^2/(4*log(n)^2)). (End)
a(n) ~ 2^n * n^(n + 1/2) * exp(n/LambertW(n) - n - 1) / (sqrt(1 + LambertW(n)) * LambertW(n)^(n + 1/2)). - Vaclav Kotesovec, Jun 27 2022

A105794 Inverse of a generalized Stirling number triangle of first kind.

Original entry on oeis.org

1, -1, 1, 1, -1, 1, -1, 1, 0, 1, 1, -1, 1, 2, 1, -1, 1, 0, 5, 5, 1, 1, -1, 1, 10, 20, 9, 1, -1, 1, 0, 21, 70, 56, 14, 1, 1, -1, 1, 42, 231, 294, 126, 20, 1, -1, 1, 0, 85, 735, 1407, 924, 246, 27, 1, 1, -1, 1, 170, 2290, 6363, 6027, 2400, 435, 35, 1
Offset: 0

Views

Author

Paul Barry, Apr 20 2005

Keywords

Comments

Inverse of number triangle A105793. Row sums are the generalized Bell numbers A000296.
T(n,k)*(-1)^(n-k) gives the inverse Sheffer matrix of A094645. In the umbral notation (cf. Roman, p. 17, quoted in A094645) this is Sheffer for (1-t,-log(1-t)). - Wolfdieter Lang, Jun 20 2011
From Peter Bala, Jul 10 2013: (Start)
For a graph G and a positive integer k, the graphical Stirling number S(G;k) is the number of partitions of the vertex set of G into k nonempty independent sets (an independent set in G is a subset of the vertices, no two elements of which are adjacent). Omitting the first two rows and columns of this triangle produces the triangle of graphical Stirling numbers of cycles on n vertices (interpreting a 2-cycle as a single edge). In comparison, the classical Stirling numbers of the second kind, A008277, are the graphical Stirling numbers of path graphs on n vertices. See Galvin and Than. See also A227341.
This is the triangle of connection constants for expressing the polynomial sequence (x-1)^n in terms of the falling factorial polynomials, that is, (x-1)^n = Sum_{k = 0..n} T(n,k)*x_(k), where x_(k) = x*(x-1)*...*(x-k+1) denotes the falling factorial.
The row polynomials are a particular case of the Actuarial polynomials - see Roman 4.3.4. (End)

Examples

			The triangle starts with
  n=0:  1;
  n=1: -1,  1;
  n=2:  1, -1, 1;
  n=3: -1,  1, 0, 1;
  n=4:  1, -1, 1, 2, 1;
  n=5: -1,  1, 0, 5, 5, 1;
  ... - _Wolfdieter Lang_, Jun 20 2011
		

References

  • S. Roman, The umbral calculus, Pure and Applied Mathematics 111, Academic Press Inc., New York, 1984. Reprinted by Dover in 2005.

Crossrefs

Cf. A000296 (row sums), A105793 (matrix inverse), A227341.

Programs

  • Maple
    B:= Matrix(12,12,shape=triangular[lower],(n,k) -> combinat:-stirling1(n-1,k-1)+(n-1)*combinat:-stirling1(n-2,k-1)):
    A:= B^(-1):
    seq(seq(A[i,j],j=1..i),i=1..12); # Robert Israel, Jan 19 2015
    T := (n, k) -> add((-1)^(n - i)*binomial(n, i)*Stirling2(i, k), i=0..n):
    seq(seq(T(n, k), k=0..n), n=0..9);  # Peter Luschny, Feb 15 2025
  • Mathematica
    Table[Sum[(-1)^(n - i)*Binomial[n, i] StirlingS2[i, k], {i, 0, n}], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 14 2019 *)

Formula

Term k in row n is given by {(-1)^(k+n) * (Sum_{j=0..k} (-1)^j * binomial(k,j) * (1-j)^n) / k! }; i.e., a finite difference. - Tom Copeland, Jun 05 2006
O.g.f. for row n = n-th finite difference of the Touchard (Bell) polynomials, T(x,j) and so the e.g.f. for these finite differences and therefore the sequence = exp{x*[exp(t)-1]-t} = exp{t*[T(x,.)-1]} umbrally. - Tom Copeland, Jun 05 2006
The e.g.f. A(x,t) = exp(x*(exp(t)-1)-t) satisfies the partial differential equation x*dA/dx - dA/dt = (1-x)*A.
Recurrence relation: T(n+1,k) = T(n,k-1) + (k-1)*T(n,k).
Let f(x) = ((x-1)/x)*exp(x). For n >= 1, the n-th row polynomial R(n,x) = x*exp(-x)*(x*d/dx)^(n-1)(f(x)) and satisfies the recurrence equation R(n+1,x) = (x-1)*R(n,x) + x*R'(n,x). - Peter Bala, Oct 28 2011
Let f(x) = exp(exp(x)-x). Then R(n,exp(x)) = 1/f(x)*(d/dx)^n(f(x)). Similar formulas hold for A008277, A039755, A111577, A143494 and A154537. - Peter Bala, Mar 01 2012
From Peter Bala, Jul 10 2013: (Start)
T(n,k) = Sum_{i = 0..n-1} (-1)^i*Stirling2(n-1-i,k-1), for n >= 1, k >= 1.
The k-th column o.g.f. is (1/(1+x))*x^k/((1-x)*(1-2*x)*...*(1-(k-1)*x)) (the empty product occurring in the denominator when k = 0 and k = 1 is taken equal to 1).
Dobinski-type formula for the row polynomials: R(n,x) = exp(-x)*Sum_{k >= 0} (k-1)^n*x^k/k!.
Sum_{k = 0..n} binomial(n,k)*R(k,x) = n-th Bell polynomial (n-th row polynomial of A048993). (End)
From Peter Bala, Jan 13 2014: (Start)
T(n,k) = Sum_{i = 0..n} (-1)^(n-i)*binomial(n,i)*Stirling2(i,k).
T(n,k) = Sum_{i = 0..n} (-2)^(n-i)*binomial(n,i)*Stirling2(i+1,k+1).
Matrix product P^(-1) * S = P^(-2) * S1, where P = A007318, S = A048993 and S1 = A008277. (End)
From Werner Schulte, Feb 15 2025: (Start)
Conjecture 1: Sum_{k=0..n} (-1)^(n-k) * T(n, k) * (k+m)! / m! = (m+2)^n for m >= 0.
Conjecture 2: (-1)^n - B(n) = Sum_{k=1..n} (-1)^k * T(n, k) * (k-1)! / (k+1) where B(n) = B(n, 0) is n-th Bernoulli number. (End)

A126617 a(n) = Sum_{i=0..n} (-2)^(n-i)*B(i)*binomial(n,i) where B(n) = Bell numbers A000110(n).

Original entry on oeis.org

1, -1, 2, -3, 7, -10, 31, -21, 204, 307, 2811, 12100, 74053, 432211, 2768858, 18473441, 129941283, 956187814, 7351696139, 58897405759, 490681196604, 4242903803727, 38014084430983, 352341755256348, 3373662303816313, 33326335433122711, 339232538387804530
Offset: 0

Views

Author

N. J. A. Sloane, Aug 04 2007

Keywords

Comments

a(n) is positive starting at n=8. - Karol A. Penson and Olivier Gérard, Oct 22 2007
Hankel transform is A000178. - Paul Barry, Apr 23 2009

Examples

			G.f.: 1 - 1*x + 2*x^2 - 3*x^3 + 7*x^4 - 10*x^5 + 31*x^6 - 21*x^7 + 204*x^8 + 307*x^9 + 2811*x^10 + 12100*x^11 + 74053*x^12 + 432211*x^13 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[ Sum[ (-2)^(n - k) Binomial[n, k] BellB[k], {k, 0, n}], {n, 0, 50}] (* Karol A. Penson and Olivier Gérard, Oct 22 2007 *)
    With[{nn=30},CoefficientList[Series[Exp[Exp[x]-2x-1],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 19 2025 *)

Formula

E.g.f.: exp(exp(x)-2*x-1). - Vladeta Jovovic, Aug 04 2007
a(n) = e^(-1) * Sum_{k>=0} (k-2)^n / k!. This is a Dobinski-type formula. - Karol A. Penson and Olivier Gérard, Oct 22 2007
G.f.: 1/(1+x-x^2/(1-2x^2/(1-x-3x^2/(1-2x-4x^2/(1-3x-5x^2/(1-.... (continued fraction). - Paul Barry, Apr 23 2009
Let A be the upper Hessenberg matrix of order n defined by: A[i,i-1]=-1, A[i,j]=binomial(j-1,i-1), (i<=j), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=(-1)^(n)charpoly(A,2). - Milan Janjic, Jul 08 2010
G.f.: -1/U(0) where U(k) = x*k - 1 - x - x^2*(k+1)/U(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Sep 28 2012
G.f.: 1/G(0) where G(k) = 1 + 2*x/(1 + 1/(1 - 2*x*(k+1)/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 23 2012
G.f.: G(0)/(1+3*x) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-2*x-1) - x*(2*k+1)*(2*k+3)*(2*x*k-2*x-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k-x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 19 2012
From Sergei N. Gladkovskii, Feb 13 2013: (Start)
Conjecture: if the e.g.f. is E(x)= exp( exp(x) -1 + p*x) then
g.f.: (x+1-p*x)/x/(G(0)-x) - 1/x where G(k) = 2*x + 1 - p*x - x*k + x*(x*k - x - 1 + p*x)/G(k+1); (continued fraction).
So, for this sequence (p=-2), g.f.: (3*x+1)/x/( G(0)-x ) - 1/x where G(k) = 4*x + 1 - x*k + x*(x*k - 3*x - 1)/G(k+1);
(End)
G.f.: 1/Q(0), where Q(k) = 1 + 2*x - x/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
a(0) = 1; a(n) = -2 * a(n-1) + Sum_{k=0..n-1} binomial(n-1,k) * a(k). - Ilya Gutkovskiy, Jul 30 2021
a(n) ~ n^(n-2) * exp(n/LambertW(n) - n - 1) / (sqrt(1 + LambertW(n)) * LambertW(n)^(n-2)). - Vaclav Kotesovec, Jun 27 2022

Extensions

More terms from Karol A. Penson and Olivier Gérard, Oct 22 2007

A324166 Number of totally crossing set partitions of {1,...,n}.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 18, 57, 207, 842, 3673, 17062, 84897
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

A set partition is totally crossing if every pair of distinct blocks is of the form {{...x...y...}, {...z...t...}} for some x < z < y < t or z < x < t < y.

Examples

			The a(6) = 18 totally crossing set partitions:
  {{1,2,3,4,5,6}}
  {{1,4,6},{2,3,5}}
  {{1,4,5},{2,3,6}}
  {{1,3,6},{2,4,5}}
  {{1,3,5},{2,4,6}}
  {{1,3,4},{2,5,6}}
  {{1,2,5},{3,4,6}}
  {{1,2,4},{3,5,6}}
  {{4,6},{1,2,3,5}}
  {{3,6},{1,2,4,5}}
  {{3,5},{1,2,4,6}}
  {{2,6},{1,3,4,5}}
  {{2,5},{1,3,4,6}}
  {{2,4},{1,3,5,6}}
  {{1,5},{2,3,4,6}}
  {{1,4},{2,3,5,6}}
  {{1,3},{2,4,5,6}}
  {{1,4},{2,5},{3,6}}
		

Crossrefs

Cf. A000108 (non-crossing partitions), A000110, A000296, A002662, A016098 (crossing partitions), A054726, A099947 (topologically connected partitions), A305854, A306006, A306418, A306438, A319752.

Programs

  • Mathematica
    nn=6;
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x
    				

A057814 Number of partitions of an n-set into blocks of size > 4.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 127, 463, 1255, 3004, 6722, 140570, 1039260, 5371627, 23202077, 90048525, 814737785, 7967774337, 62895570839, 417560407223, 2455461090505, 18440499041402, 179627278800426, 1770970802250146
Offset: 0

Views

Author

Steven C. Fairgrieve (fsteven(AT)math.wvu.edu), Nov 06 2000

Keywords

Crossrefs

Column k=4 of A293024.
Row sums of A059024.
Cf. A293040.

Programs

  • Maple
    G:={P=Set(Set(Atom,card>=5))}:combstruct[gfsolve](G,labeled,x):seq(combstruct[count]([P,G,labeled],size=i),i=0..27); # Zerinvary Lajos, Dec 16 2007
  • Mathematica
    max = 27; CoefficientList[ Series[ Exp[ Exp[x] - Normal[ Series[ Exp[x], {x, 0, 4}]]], {x, 0, max}], x]*Range[0, max]!(* Jean-François Alcover, Apr 25 2012, from e.g.f. *)

Formula

E.g.f.: exp(exp(x)-1-x-x^2/2-x^3/6-x^4/24).
a(0) = 1; a(n) = Sum_{k=5..n} binomial(n-1,k-1) * a(n-k). - Ilya Gutkovskiy, Feb 09 2020

A057837 Number of partitions of a set of n elements where the partitions are of size > 3.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 36, 127, 337, 793, 7525, 48764, 238954, 997790, 6401435, 49107697, 345482807, 2150694855, 14656830110, 116678887407, 978172378669, 7886661080873, 63905475745765, 553437891603452, 5122279358273976, 48331088541366296, 458771027309344261
Offset: 0

Views

Author

Steven C. Fairgrieve (fsteven(AT)math.wvu.edu), Nov 06 2000

Keywords

Crossrefs

Column k=3 of A293024.
Row sums of A059023.
Cf. A293039.

Programs

  • Maple
    G:={P=Set(Set(Atom,card>=4))}:combstruct[gfsolve](G,unlabeled,x):seq(combstruct[count]([P,G,labeled],size=i),i=0..26); # Zerinvary Lajos, Dec 16 2007
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[Exp[x]-1-x-x^2/2-x^3/6],{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Jun 28 2012 *)

Formula

E.g.f.: exp(exp(x)-1-x-x^2/2-x^3/6).
a(0) = 1; a(n) = Sum_{k=4..n} binomial(n-1,k-1) * a(n-k). - Ilya Gutkovskiy, Feb 09 2020

Extensions

Corrected and extended by Christian G. Bower and James Sellers, Nov 09 2000

A106436 Difference array of Bell numbers A000110 read by antidiagonals.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 1, 2, 3, 5, 4, 5, 7, 10, 15, 11, 15, 20, 27, 37, 52, 41, 52, 67, 87, 114, 151, 203, 162, 203, 255, 322, 409, 523, 674, 877, 715, 877, 1080, 1335, 1657, 2066, 2589, 3263, 4140, 3425, 4140, 5017, 6097, 7432, 9089, 11155, 13744, 17007, 21147
Offset: 0

Views

Author

Philippe Deléham, May 29 2005

Keywords

Comments

Essentially Aitken's array A011971 with first column A000296.
Mirror image of A182930. - Alois P. Heinz, Jan 29 2019

Examples

			   1;
   0,  1;
   1,  1,  2;
   1,  2,  3,  5;
   4,  5,  7, 10, 15;
  11, 15, 20, 27, 37, 52;
  ...
		

Crossrefs

T(2n,n) gives A020556.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          b(n-j)*binomial(n-1, j-1), j=1..n))
        end:
    T:= proc(n, k) option remember; `if`(k=0, b(n),
          T(n+1, k-1)-T(n, k-1))
        end:
    seq(seq(T(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Jan 29 2019
  • Mathematica
    bb = Array[BellB, m = 12, 0];
    dd[n_] := Differences[bb, n];
    A = Array[dd, m, 0];
    Table[A[[n-k+1, k+1]], {n, 0, m-1}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 26 2019 *)
    a[0,0]:=1; a[n_,0]:=a[n-1,n-1]-a[n-1,0]; a[n_,k_]/;0Oliver Seipel, Nov 23 2024 *)

Formula

Double-exponential generating function: sum_{n, k} a(n-k, k) x^n/n! y^k/k! = exp(exp{x+y}-1-x). a(n,k) = Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,i-k)*Bell(i). - Vladeta Jovovic, Oct 14 2006

A124311 a(n) = Sum_{i=0..n} (-2)^i*binomial(n,i)*B(i) where B(n) = Bell numbers A000110(n).

Original entry on oeis.org

1, -1, 5, -21, 121, -793, 5917, -49101, 447153, -4421105, 47062773, -535732805, 6484924585, -83079996041, 1121947980173, -15915567647101, 236442490569825, -3668776058118881, 59316847871113445, -997182232031471477, 17397298225094055897, -314449131128077197561
Offset: 0

Views

Author

N. J. A. Sloane, Aug 04 2007

Keywords

Comments

The sequence has strictly alternating signs. The variant Dobinski-type formula e^(-1)* (2)^n * Sum_{k >= 0} ( (k-1/2)^n / k! ) is strictly positive. - Karol A. Penson and Olivier Gérard, Oct 22 2007

Crossrefs

Programs

  • Magma
    A124311:= func< n | (&+[(-2)^k*Binomial(n,k)*Bell(k): k in [0..n]]) >;
    [A124311(n): n in [0..30]]; // G. C. Greubel, Aug 25 2023
  • Mathematica
    Table[ Sum[ (-2)^(k) Binomial[n, k] BellB[k], {k, 0, n}], {n, 0, 50}] (* Karol A. Penson and Olivier Gérard, Oct 22 2007 *)
    With[{nn=30},CoefficientList[Series[Exp[Exp[-2x]-1+x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 04 2016 *)
  • Sage
    def A124311_list(n):  # n>=1
        T = [0]*(n+1); R = [1]
        for m in (1..n-1):
            a,b,c = 1,0,0
            for k in range(m,-1,-1):
                r = a + 2*(k*(b+c)+c)
                if k < m : T[k+2] = u;
                a,b,c = T[k-1],a,b
                u = r
            T[1] = u;
            R.append((-1)^m*sum(T))
        return R
    A124311_list(22)  # Peter Luschny, Nov 02 2012
    
  • SageMath
    def A124311(n): return sum( (-2)^k*binomial(n,k)*bell_number(k) for k in range(n+1) )
    [A124311(n) for n in range(31)] # G. C. Greubel, Aug 25 2023
    

Formula

E.g.f.: exp(exp(-2*x) - 1 + x). - Vladeta Jovovic, Aug 04 2007
G.f.: 1/U(0) where U(k)= 1 + x*(2*k+1) - 4*x^2*(k+1)/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 11 2012
a(n) ~ (-2)^n * n^(n - 1/2) * exp(n/LambertW(n) - n - 1) / (sqrt(1 + LambertW(n)) * LambertW(n)^(n - 1/2)). - Vaclav Kotesovec, Jun 26 2022
a(0) = 1; a(n) = a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * (-2)^k * a(n-k). - Ilya Gutkovskiy, Nov 29 2023
Previous Showing 21-30 of 131 results. Next