cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 105 results. Next

A320294 Number of series-reduced rooted trees whose leaves are non-singleton integer partitions whose multiset union is an integer partition of n with no 1's.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 3, 7, 8, 15, 19, 37, 48, 87, 126, 227, 342, 611, 964, 1719, 2806, 4975, 8327, 14782, 25157, 44609, 76972, 136622, 237987, 422881, 742149, 1320825, 2331491, 4156392, 7370868, 13164429, 23433637, 41928557, 74871434, 134203411, 240284935, 431437069
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2018

Keywords

Comments

Also phylogenetic trees with no singleton leaves on integer partitions of n with no 1's.

Examples

			The a(4) = 1 through a(10) = 15 trees:
  (22)  (32)  (33)   (43)   (44)        (54)        (55)
              (42)   (52)   (53)        (63)        (64)
              (222)  (322)  (62)        (72)        (73)
                            (332)       (333)       (82)
                            (422)       (432)       (433)
                            (2222)      (522)       (442)
                            ((22)(22))  (3222)      (532)
                                        ((22)(23))  (622)
                                                    (3322)
                                                    (4222)
                                                    (22222)
                                                    ((22)(24))
                                                    ((22)(33))
                                                    ((23)(23))
                                                    ((22)(222))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    pgtm[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[pgtm/@p]],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Sum[Length[Select[pgtm[m],FreeQ[#,{_}]&]],{m,Select[IntegerPartitions[n],FreeQ[#,1]&]}],{n,10}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(p=1/prod(k=2, n, 1 - x^k + O(x*x^n)), v=vector(n)); for(n=2, n, v[n]=polcoef(p, n) - 1 + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, Oct 25 2018

A320295 Number of series-reduced rooted trees whose leaves are non-singleton integer partitions whose multiset union is an integer partition of n.

Original entry on oeis.org

0, 1, 2, 5, 8, 19, 34, 80, 165, 394, 892, 2192, 5232, 13057, 32271, 81568, 205748, 525735, 1344828, 3467415, 8960849, 23280323, 60639680, 158559047, 415631368, 1092734050, 2879420753, 7605713020, 20130266302, 53386744298, 141836904569, 377479973474, 1006189769886
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2018

Keywords

Comments

Also phylogenetic trees with no singleton leaves on integer partitions of n.

Examples

			The a(2) = 1 through a(6) = 19 trees:
  (11)  (21)   (22)        (32)         (33)
        (111)  (31)        (41)         (42)
               (211)       (221)        (51)
               (1111)      (311)        (222)
               ((11)(11))  (2111)       (321)
                           (11111)      (411)
                           ((11)(12))   (2211)
                           ((11)(111))  (3111)
                                        (21111)
                                        (111111)
                                        ((11)(13))
                                        ((11)(22))
                                        ((12)(12))
                                        ((11)(112))
                                        ((12)(111))
                                        ((11)(1111))
                                        ((111)(111))
                                        ((11)(11)(11))
                                        ((11)((11)(11)))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    pgtm[m_]:=Prepend[Join@@Table[Union[Sort/@Tuples[pgtm/@p]],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Sum[Length[Select[pgtm[m],FreeQ[#,{_}]&]],{m,IntegerPartitions[n]}],{n,14}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(p=1/prod(k=1, n, 1 - x^k + O(x*x^n)), v=vector(n)); for(n=1, n, v[n]=polcoef(p, n) - 1 + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(12) and beyond from Andrew Howroyd, Oct 25 2018

A320296 Number of series-reduced rooted trees whose leaves form an integer partition of n with no 1's.

Original entry on oeis.org

0, 1, 1, 2, 2, 5, 6, 15, 22, 51, 86, 195, 354, 781, 1512, 3286, 6602, 14269, 29424, 63494, 133298, 287909, 612188, 1325375, 2844448, 6176145, 13348858, 29074164, 63187176, 138044144, 301350424, 660265471, 1446678326, 3178246273, 6985464590, 15384556290
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2018

Keywords

Comments

Also phylogenetic trees with n unlabeled objects and no singleton leaves.

Examples

			The a(2) = 1 through a(9) = 22 trees:
2   3   4     5     6        7        8           9
        (22)  (23)  (24)     (25)     (26)        (27)
                    (33)     (34)     (35)        (36)
                    (222)    (223)    (44)        (45)
                    (2(22))  ((22)3)  (224)       (225)
                             (2(23))  (233)       (234)
                                      (2222)      (333)
                                      ((22)4)     (2223)
                                      (2(24))     ((22)5)
                                      ((23)3)     (2(25))
                                      (2(33))     ((23)4)
                                      (2(222))    (2(34))
                                      (22(22))    ((24)3)
                                      ((22)(22))  ((33)3)
                                      (2(2(22)))  (2(22)3)
                                                  (2(223))
                                                  (22(23))
                                                  (3(222))
                                                  ((2(22))3)
                                                  ((22)(23))
                                                  (2((22)3))
                                                  (2(2(23)))
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    t[n_]:=t[n]=If[PrimeQ[n],{n},Join@@Table[Union[Sort/@Tuples[t/@fac]],{fac,Select[facs[n],Length[#]>1&]}]];
    Table[Sum[Length[t[Times@@Prime/@ptn]],{ptn,Select[IntegerPartitions[n],FreeQ[#,1]&]}],{n,15}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=vector(n)); for(n=2, n, v[n]=1 + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018

Extensions

Terms a(26) and beyond from Andrew Howroyd, Oct 25 2018

A330654 Number of series/singleton-reduced rooted trees on normal multisets of size n.

Original entry on oeis.org

1, 1, 2, 12, 112, 1444, 24099, 492434, 11913985
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2019

Keywords

Comments

A series/singleton-reduced rooted tree on a multiset m is either the multiset m itself or a sequence of series/singleton-reduced rooted trees, one on each part of a multiset partition of m that is neither minimal (all singletons) nor maximal (only one part).
A finite multiset is normal if it covers an initial interval of positive integers.
First differs from A316651 at a(6) = 24099, A316651(6) = 24086. For example, ((1(12))(2(11))) and ((2(11))(1(12))) are considered identical for A316651 (series-reduced rooted trees), but {{{1},{1,2}},{{2},{1,1}}} and {{{2},{1,1}},{{1},{1,2}}} are different series/singleton-reduced rooted trees.

Examples

			The a(0) = 1 through a(3) = 12 trees:
  {}  {1}  {1,1}  {1,1,1}
           {1,2}  {1,1,2}
                  {1,2,2}
                  {1,2,3}
                  {{1},{1,1}}
                  {{1},{1,2}}
                  {{1},{2,2}}
                  {{1},{2,3}}
                  {{2},{1,1}}
                  {{2},{1,2}}
                  {{2},{1,3}}
                  {{3},{1,2}}
		

Crossrefs

The orderless version is A316651.
The strongly normal case is A330471.
The unlabeled version is A330470.
The balanced version is A330655.
The case with all atoms distinct is A000311.
The case with all atoms equal is A196545.
Normal multiset partitions are A255906.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    ssrtrees[m_]:=Prepend[Join@@Table[Tuples[ssrtrees/@p],{p,Select[mps[m],Length[m]>Length[#1]>1&]}],m];
    Table[Sum[Length[ssrtrees[s]],{s,allnorm[n]}],{n,0,5}]

A007151 Number of planted evolutionary trees of magnitude n.

Original entry on oeis.org

1, 3, 19, 198, 2906, 55018, 1275030, 34947664, 1105740320, 39661089864, 1590232358584, 70482038536880, 3421732373367504, 180574681050278960, 10292371442183694832, 630125771602386523392, 41239934114630205030656
Offset: 1

Views

Author

Keywords

Comments

Also number of labeled rooted trees with n generators. (A generator is a leaf or a node with just one child.) - Christian G. Bower, Jun 07 2005

References

  • L. R. Foulds and R. W. Robinson, Counting certain classes of evolutionary trees with singleton labels, Congress. Num., 44 (1984), 65-88.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A007151 := proc(n)
        local k,j,i,m ,a;
        if n =1 then
            1;
        else
            a := 0 ;
            for k from 1 to n-1 do
            for j from 1 to k do
            for i from 0 to n-1 do
            for m from 0 to j do
                 a := a+(n+k-1)! /(k-j)! *binomial(j+i-1,j-1) *2^m *(-1)^(m+i) *combinat[stirling2](n-m+j-i-1,j-m) / m! /(n-m+j-i-1)! ;
            end do:
            end do:
            end do:
            end do:
            a ;
        end if;
    end proc:
    seq(A007151(n),n=1..10) ; # R. J. Mathar, Mar 19 2018
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[(1 - E^x + 2*x)/(1 + x),{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 08 2014 *)
  • Maxima
    a(n):=if n=1 then 1 else (sum((n+k-1)!*sum(1/((k-j)!)*sum(binomial(j+i-1,j-1)*sum((2^m*(-1)^(m+i)*stirling2(n-m+j-i-1,j-m))/(m!*(n-m+j-i-1)!),m,0,j),i,0,n-1),j,1,k),k,1,n-1)); /* Vladimir Kruchinin, Aug 07 2012 */
    
  • PARI
    for(n=1,20, print1(if(n==1,1,sum(k=1,n-1, (n+k-1)!*sum(j=1,k, (1/(k-j)!)* sum(i=0,n-1, binomial(j+i-1,j-1)*sum(m=0,j, 2^m*(-1)^(m+i)* stirling(n-m+j-i-1,j-m,2)/(m!*(n-m+j-i-1)!)))))), ", ")) \\ G. C. Greubel, Nov 26 2017

Formula

E.g.f. satisfies (2-x)*A(x) = x - 1 + exp(A(x)). - Christian G. Bower, Jun 07 2005
a(n) = Sum_{k=1..(n-1)} (n+k-1)!*Sum_{j=1..k} (1/(k-j)!)*Sum_{i=0..(n-1)} binomial(j+i-1,j-1)*Sum_{m=0..j} 2^m*(-1)^(m+i)*Stirling2(n-m+j-i-1,j-m)/(m!*(n-m+j-i-1)!), n>1, a(1)=1. - Vladimir Kruchinin, Aug 07 2012
a(n) ~ sqrt(LambertW(1)+1) * n^(n-1) * (LambertW(1))^n / (exp(n) * (2*LambertW(1)-1)^(n-1/2)). - Vaclav Kotesovec, Jan 08 2014

A052526 Number of labeled rooted trees with n leaves in which the degrees of the root and all internal nodes are >= 3.

Original entry on oeis.org

0, 0, 0, 1, 1, 11, 36, 372, 2311, 26252, 243893, 3173281, 38916879, 583922418, 8808814262, 151530476047, 2694658394356, 52607648010035, 1072975736368359, 23516009286474813, 539838208864165036
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Old name was "Non-planar labeled trees with neither unary nor binary nodes". "Non-planar" presumably indicates that we are only concerned with the abstract tree, not with a particular embedding in the plane.

Examples

			For n=5 there are 2 unlabeled trees of this type. In the first, the root node has 5 children which are all leaves. In the second, the root has 3 children; 2 are leaves and 1 has 3 children which are leaves. The first has only one labeling; the second has binomial(5,2)=10 labelings. So a(5) = 1 + 10 = 11.
		

Crossrefs

Unlabeled trees of this type are counted by A052525. Labeled trees in which the degrees of non-leaf nodes are >= 2 are counted by A000311.
Cf. A226572.

Programs

  • Maple
    Non spec := [S,{B=Union(S,Z),S=Set(B,3 <= card)},labeled]: seq(combstruct[count](spec, size=n), n=0..20);
  • Mathematica
    ClearAll[a]; max = 20; Z[x_] := Sum[ a[k]*x^k, {k, 0, max}]; a[0] = 0; a[1] = 1/2; a[2] = 0; se = Normal[ Series[ (2*E^Z[x] - 4*Z[x] + 2*x - 2 - Z[x]^2) - x, {x, 0, max}]]; sol = SolveAlways[se == 0, x] // First; A052526 = Join[{0, 0, 0}, Table[k!*2^k*a[k], {k, 3, max}]] /. sol (* _Jean-François Alcover, Sep 25 2012, from first e.g.f. *)
    CoefficientList[InverseSeries[Series[1+2*x+1/2*x^2-E^x, {x, 0, 20}], x]-x,x] * Range[0, 20]! (* Vaclav Kotesovec, May 04 2015 *)
  • Maxima
    a(n):=sum((n+k-1)!*sum(1/(k-j)!*sum((-1)^(l)*sum((2^(l-2*i)*stirling2(n+j-i-l-1,j-l))/(i!*(l-i)!*(n+j-i-l-1)!),i,0,l),l,0,j),j,1,k),k,1,n-1); /* Vladimir Kruchinin, Sep 25 2012 */

Formula

E.g.f.: RootOf(2*exp(Z)-4*Z+2*x-2-Z^2)-x.
E.g.f.: reversed[1+2*x+1/2*x^2-exp(x)]-x, a(n):=sum(k=1..n-1, (n+k-1)!*sum(j=1..k, 1/(k-j)!*sum(l=0..j, (-1)^(l)*sum(i=0..l, (2^(l-2*i)*stirling2(n+j-i-l-1,j-l))/(i!*(l-i)!*(n+j-i-l-1)!))))). [Vladimir Kruchinin, Sep 25 2012]
a(n) ~ n^(n-1) / (sqrt(c-1) * exp(n) * (c^2/2 - c - 1)^(n-1/2)), where c = A226572 = -LambertW(-1, -exp(-2)) = 3.146193220620582585237... . - Vaclav Kotesovec, May 04 2015

Extensions

Edited by Dean Hickerson, Jun 07 2006

A058387 Number of series-parallel networks with n unlabeled edges, multiple edges not allowed.

Original entry on oeis.org

0, 1, 1, 2, 4, 8, 18, 40, 94, 224, 548, 1356, 3418, 8692, 22352, 57932, 151312, 397628, 1050992, 2791516, 7447972, 19950628, 53635310, 144664640, 391358274, 1061628772, 2887113478, 7869761108, 21497678430, 58841838912, 161356288874
Offset: 0

Views

Author

N. J. A. Sloane, Dec 20 2000

Keywords

Comments

This is a series-parallel network: o-o; all other series-parallel networks are obtained by connecting two series-parallel networks in series or in parallel. See A000084 for examples.
Order is not considered significant in series configurations. - Andrew Howroyd, Dec 22 2020

Examples

			From _Andrew Howroyd_, Dec 22 2020: (Start)
In the following examples, elements in series are juxtaposed and elements in parallel are separated by '|'. The unit element (an edge) is denoted by 'o'.
a(1) = 1: (o).
a(2) = 1: (oo).
a(3) = 2: (ooo), (o|oo).
a(4) = 4: (oooo), (o(o|oo)), (o|ooo), (oo|oo).
a(5) = 8: (ooooo), (oo(o|oo)), (o(o|ooo)), (o(oo|oo)), (o|oooo), (o|o(o|oo)),  (oo|ooo), (o|oo|oo).
(End)
		

Crossrefs

A000084 is the case that multiple edges are allowed.
A058381 is the case that edges are labeled.
A339290 is the case that order is significant in series configurations.

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(s=p=vector(n)); p[1]=1; for(n=2, n, s[n]=EulerT(p[1..n])[n]; p[n]=vecsum(EulerT(s[1..n])[n-1..n])-s[n]); concat([0], p+s)} \\ Andrew Howroyd, Dec 22 2020

Formula

a(n) = A058385(n) + A058386(n).

A181996 Triangle of Ward numbers T(n,k) (n>=0, k=0 if n=0, otherwise 0 <= k <= n-1) read by rows.

Original entry on oeis.org

1, 1, 3, 1, 15, 10, 1, 105, 105, 25, 1, 945, 1260, 490, 56, 1, 10395, 17325, 9450, 1918, 119, 1, 135135, 270270, 190575, 56980, 6825, 246, 1, 2027025, 4729725, 4099095, 1636635, 302995, 22935, 501, 1, 34459425, 91891800, 94594500, 47507460, 12122110, 1487200, 74316, 1012, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 05 2012

Keywords

Comments

It appears that the sum of row(n) is A000311(n+1). - Michel Marcus, Feb 07 2013
Conjecture on row sums was proved in the first paragraph of the formula section of the reverse matrix A134991 in 2008 (e.g.f. evaluated at t=1). - Tom Copeland, Jan 03 2016

Examples

			Triangle begins:
      1
      1
      3     1
     15    10    1
    105   105   25    1
    945  1260  490   56   1
  10395 17325 9450 1918 119 1 ...
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1950, p. 172, Table C_{m, i}.

Crossrefs

See A134991, which is the mirror image and is the main entry for this triangle, for further information.
Cf. A000311.

Programs

  • Maple
    A181996 := (n,k) -> add((-1)^(n - k + m)*binomial(2*n - k, n + m)*Stirling2(n + m, m), m = 0..n-k):
    seq(seq(A181996(n, k), k = 0..n-1+0^n), n=0..8); # Peter Luschny, Feb 19 2021
  • PARI
    T(n,k) = {if (n == 0, return(1)); if (k == 0, return (prod(x=2,n, 2*x-1))); if (k == n, return (0)); return((2*n-1-k)*T(n-1,k) + (n-k)*T(n-1, k-1));} \\ Michel Marcus, Feb 07 2013

Formula

T(n, k) = Sum_{m = 0..n-k} (-1)^(n - k + m)*C(2*n - k, n + m)*Stirling2(n + m, m). - Peter Luschny, Feb 19 2021

Extensions

More terms from Michel Marcus, Feb 07 2013

A225170 Number of non-degenerate fanout-free Boolean functions of n variables having AND rank 1.

Original entry on oeis.org

2, 4, 32, 416, 7552, 176128, 5018624, 168968192, 6563282944, 288909131776, 14212910809088, 772776684683264, 46017323176296448, 2978458881388183552, 208198894960190160896, 15631251601179130462208, 1254492810303112820555776, 107174403941451434687463424
Offset: 1

Views

Author

N. J. A. Sloane, Apr 30 2013

Keywords

Comments

Apart from initial term, same as A005172, which is the main entry for this sequence.

Crossrefs

Column 1 of A225171.

Programs

  • Mathematica
    max = 16; s = -ProductLog[-Exp[x-1/2]/2] + O[x]^max; Join[{2}, Drop[CoefficientList[s, x]*Range[0, max-1]!, 2]] (* Jean-François Alcover, Oct 18 2016 *)
    a[1] = 2; a[n_] := (Sum[(n + k - 1)!*Sum[(-1)^j/(k - j)!*Sum[(-1)^i*2^(n - i + j - 1)*StirlingS1[n - i + j - 1, j - i]/((n - i + j - 1)!*i!), {i, 0, j}], {j, 1, k}], {k, 1, n - 1}]);
    Array[a, 20] (* Jean-François Alcover, Jun 24 2018, after Vladimir Kruchinin *)
  • PARI
    seq(n) = Vec(serlaplace(serreverse((1 + 2*x - exp(x + O(x*x^n)))/2 ))) \\ Andrew Howroyd, Mar 28 2025

Formula

Hayes (1976, Theorem 3) gives a recurrence.
G.f.: 1/Q(0) + 1, where Q(k)= 1 - 2*x*(k+1) - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 18 2013
a(n) ~ (log(2)-1/2)^(1/2 - n) * n^(n-1) / exp(n). - Vaclav Kotesovec, Oct 19 2016
a(n) = 2^n * A000311(n). - Andrew Howroyd, Mar 28 2025

A318847 Number of tree-partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 12, 8, 28, 20, 32, 38, 112, 76, 116, 58, 352, 236, 1296, 176, 540, 288, 4448, 374, 612, 1144, 1812, 824, 16640, 1316, 59968, 612, 2336, 4528, 3208, 2924, 231168, 18320, 10632, 2168, 856960, 7132, 3334400, 3776, 11684, 74080, 12679424, 4919, 19192
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A tree-partition of m is either m itself or a sequence of tree-partitions, one of each part of a multiset partition of m with at least two parts.

Examples

			The a(6) = 6 tree-partitions of {1,1,2}:
  (112)
  ((1)(12))
  ((2)(11))
  ((1)(1)(2))
  ((1)((1)(2)))
  ((2)((1)(1)))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    allmsptrees[m_]:=Prepend[Join@@Table[Tuples[allmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Length[allmsptrees[nrmptn[n]]],{n,20}]

Formula

a(n) = A281118(A181821(n)).
a(prime(n)) = A289501(n).
a(2^n) = A005804(n).

Extensions

More terms from Jinyuan Wang, Jun 26 2020
Previous Showing 71-80 of 105 results. Next