cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 324 results. Next

A179606 Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + x)/(1 - 3*x - 5*x^2).

Original entry on oeis.org

1, 4, 17, 71, 298, 1249, 5237, 21956, 92053, 385939, 1618082, 6783941, 28442233, 119246404, 499950377, 2096083151, 8788001338, 36844419769, 154473265997, 647641896836, 2715292020493, 11384085545659, 47728716739442
Offset: 0

Views

Author

Johannes W. Meijer, Jul 28 2010

Keywords

Comments

a(n) represents the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.
The sequence above corresponds to 24 red king vectors, i.e., A[5] vectors, with decimal values 27, 30, 51, 54, 57, 60, 90, 114, 120, 147, 150, 153, 156, 177, 180, 210, 216, 240, 282, 306, 312, 402, 408 and 432. These vectors lead for the corner squares to A015523 and for the side squares to A152187.
This sequence belongs to a family of sequences with g.f. (1 + (k-4)*x)/(1 - 3*x - k*x^2). Red king sequences that are members of this family are A007483 (k= 2), A015521 (k=4), A179606 (k=5; this sequence), A154964 (k=6), A179603 (k=7) and A179599 (k=8). We observe that there is no red king sequence for k=3. Other members of this family are A006190 (k=1), A133494 (k=0) and A168616 (k=-2).
Inverse binomial transform of A052918.
The sequence b(n+1) = 6*a(n), n >= 0 with b(0)=1, is a berserker sequence, see A180147. The b(n) sequence corresponds to 16 A[5] vectors with decimal values between 111 and 492. These vectors lead for the corner squares to sequence c(n+1)=4*A179606(n), n >= 0 with c(0)=1, and for the side squares to A180140. - Johannes W. Meijer, Aug 14 2010
Equals the INVERT transform of A063782: (1, 3, 10, 32, 104, ...). Example: a(3) = 71 = (1, 1, 4, 7) dot (32, 10, 3, 1) = (32 + 10 + 12 + 17). - Gary W. Adamson, Aug 14 2010

Crossrefs

Cf. A179597 (central square).

Programs

  • Maple
    with(LinearAlgebra): nmax:=22; m:=5; A[1]:= [0,1,0,1,1,0,0,0,0]: A[2]:= [1,0,1,1,1,1,0,0,0]: A[3]:= [0,1,0,0,1,1,0,0,0]: A[4]:= [1,1,0,0,1,0,1,1,0]: A[5]:= [0,0,0,1,1,1,0,0,1]: A[6]:= [0,1,1,0,1,0,0,1,1]: A[7]:= [0,0,0,1,1,0,0,1,0]: A[8]:= [0,0,0,1,1,1,1,0,1]: A[9]:= [0,0,0,0,1,1,0,1,0]: A:=Matrix([A[1],A[2],A[3],A[4],A[5],A[6],A[7],A[8],A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    CoefficientList[Series[(1+x)/(1-3*x-5*x^2), {x, 0, 22}],x] (* or *) LinearRecurrence[{3,5,0},{1,4},23] (* Indranil Ghosh, Mar 05 2017 *)
  • PARI
    print(Vec((1 + x)/(1- 3*x - 5*x^2) + O(x^23))); \\ Indranil Ghosh, Mar 05 2017

Formula

G.f.: (1+x)/(1 - 3*x - 5*x^2).
a(n) = A015523(n) + A015523(n+1).
a(n) = 3*a(n-1) + 5*a(n-2) with a(0) = 1 and a(1) = 4.
a(n) = ((29 + 7*sqrt(29))*A^(-n-1) + (29-7*sqrt(29))*B^(-n-1))/290 with A = (-3+sqrt(29))/10 and B = (-3-sqrt(29))/10
Limit_{k->oo} a(n+k)/a(k) = (-1)^(n+1)*A000351(n)*A130196(n)/(A015523(n)*sqrt(29) - A072263(n)) for n >= 1.

A193685 5-Stirling numbers of the second kind.

Original entry on oeis.org

1, 5, 1, 25, 11, 1, 125, 91, 18, 1, 625, 671, 217, 26, 1, 3125, 4651, 2190, 425, 35, 1, 15625, 31031, 19981, 5590, 740, 45, 1, 78125, 201811, 170898, 64701, 12250, 1190, 56, 1, 390625, 1288991, 1398097, 688506, 174951, 24150, 1806, 68, 1, 1953125, 8124571, 11075670, 6906145, 2263065, 416451, 44016, 2622, 81, 1, 9765625, 50700551, 85654261, 66324830, 27273730, 6427575, 900627, 75480, 3675, 95, 1
Offset: 0

Views

Author

Wolfdieter Lang, Oct 06 2011

Keywords

Comments

This is the lower triangular Sheffer matrix (exp(5*x),exp(x)-1). For Sheffer matrices see the W. Lang link under A006232 with references, and the rules for the conversion to the umbral notation of S. Roman's book.
The general case is Sheffer (exp(r*x),exp(x)-1), r=0,1,..., corresponding to r-Stirling2 numbers with row and column offsets 0. See the Broder link for r-Stirling2 numbers with offset [r,r].
a(n,m), n >= m >= 0, gives the number of partitions of the set {1.2....,n+5} into m+5 nonempty distinct subsets such that 1,2,3,4 and 5 belong to distinct subsets.
a(n,m) appears in the following normal ordering of Bose operators a and a* satisfying the Lie algebra [a,a*]=1: (a*a)^n (a*)^5 = Sum_{m=0..n} a(n,m)*(a*)^(5+m)*a^m, n >= 0. See the Mikhailov papers, where a(n,m) = S(n+5,m+5,5).
With a->D=d/dx and a*->x we also have
(xD)^n x^5 = Sum_{m=0..n} a(n,m)*x^(5+m)*D^m, n >= 0.

Examples

			n\m  0    1    2   3  4  5 ...
0    1
1    5    1
2   25   11    1
3  125   91   18   1
4  625  671  217  26  1
5 3125 4651 2190 425 35  1
...
5-restricted S2: a(1,0)=5 from 1,6|2|3|4|5, 2,6|1|3|4|5,
3,6|1|2|4|5, 4,6|1|2|3|5 and 5,6|1|2|3|4.
Recurrence: a(4,2) = (5+2)*a(3,2)+ a(3,1) = 7*18 + 91 = 217.
Normal ordering (n=1): (xD)^1 x^5 = Sum_{m=0..1} a(1,m)*x^(5+m)*D^m = 5*x^5 + 1*x^6*D.
a(2,1) = Sum_{j=0..1} S1(5,5-j)*S2(7-j,6) = 1*21 - 10*1 = 11.
		

Crossrefs

Cf. A196834 (row sums), A196835 (alternating row sums).
Columns: A000351 (m=0), A005062 (m=1), A019757 (m=2), A028165 (m=3), ...

Programs

  • Mathematica
    a[n_, m_] := Sum[ StirlingS1[5, 5-j]*StirlingS2[n+5-j, m+5], {j, 0, Min[5, n-m]}]; Flatten[ Table[ a[n, m], {n, 0, 10}, {m, 0, n}] ] (* Jean-François Alcover, Dec 02 2011, after Wolfdieter Lang *)

Formula

E.g.f. of row polynomials s(n,x):=Sum_{m=0..n} a(n,m)*x^m: exp(5*z + x(exp(z)-1)).
E.g.f. of column no. m (with leading zeros):
exp(5*x)*((exp(x)-1)^m)/m!, m >= 0 (Sheffer).
O.g.f. of column no. m (without leading zeros):
1/Product_{j=0..m} (1-(5+j)*x), m >= 0. (Compute the first derivative of the column e.g.f. and compare its Laplace transform with the partial fraction decomposition of the o.g.f. x^(m-1)/Product_{j=0..m} (1-(5+j)*x). This works for every r-restricted Stirling2 triangle.)
Recurrence: a(n,m) = (5+m)*a(n-1,m) + a(n-1,m-1), a(0,0)=1, a(n,m)=0 if n < m, a(n,-1)=0.
a(n,m) = Sum_{j=0..min(5,n-m)} S1(5,5-j)*S2(n+5-j,m+5), n >= m >= 0, with S1 and S2 the Stirling1 and Stirling2 numbers A008275 and A048993, respectively (see the Mikailov papers).
Dobinski-type formula for the row polynomials: R(n,x) = exp(-x)*Sum_{k>=0} k*(4+k)^(n-1)*x^(k-1)/k!. - Peter Bala, Jun 23 2014

A222281 T(n,k) = number of n X k 0..5 arrays with no entry increasing mod 6 by 5 rightwards or downwards, starting with upper left zero.

Original entry on oeis.org

1, 5, 5, 25, 105, 25, 125, 2205, 2205, 125, 625, 46305, 194485, 46305, 625, 3125, 972405, 17153945, 17153945, 972405, 3125, 15625, 20420505, 1513010465, 6354787485, 1513010465, 20420505, 15625, 78125, 428830605, 133450391205
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2013

Keywords

Comments

1/6 the number of 6-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
........1................5......................25..........................125
........5..............105....................2205........................46305
.......25.............2205..................194485.....................17153945
......125............46305................17153945...................6354787485
......625...........972405..............1513010465................2354171487645
.....3125.........20420505............133450391205..............872117822449905
....15625........428830605..........11770577485085...........323081602357856985
....78125.......9005442705........1038187247574145........119687637492011211885
...390625.....189114296805.......91570083319317865......44339047670574481807485
..1953125....3971400232905.....8076654937439905005...16425682631297501047982145
..9765625...83399404891005...712376276332499775685.6084998755694142903356375385
.48828125.1751387502711105.62832938018547611186345
...
Some solutions for n=3, k=4:
..0..0..0..0....0..0..0..0....0..0..0..0....0..3..0..0....0..0..0..0
..4..2..0..1....1..2..0..4....0..0..0..1....0..0..3..1....0..2..3..0
..0..4..1..4....1..4..1..2....3..4..4..1....3..0..4..4....4..5..1..3
		

Crossrefs

Columns 1-7 are A000351(n-1), 5*A009965(n-1), A222276, A222277, A222278, A222279, A222280.
Main diagonal is A068256.
Cf. A078099 (3 colorings), A222444 (4 colorings), A222144 (5 colorings), A198982 (unlabeled 6 colorings), A222340 (7 colorings), A222462 (8 colorings).

Formula

T(n, k) = 5 * (24*A198982(n,k) - 12*A198715(n,k) - 8*A207997(n,k) - 3) for n*k > 1. - Andrew Howroyd, Jun 27 2017

A303660 Number of ways to write 2*n+1 as p + 3^k + 5^m, where p is a prime, and k and m are nonnegative integers.

Original entry on oeis.org

0, 1, 2, 3, 3, 4, 4, 4, 4, 5, 3, 4, 4, 3, 6, 7, 5, 6, 8, 5, 5, 9, 6, 5, 8, 3, 6, 8, 4, 4, 7, 6, 4, 8, 6, 5, 9, 4, 4, 8, 3, 6, 8, 7, 4, 9, 6, 4, 9, 5, 5, 9, 6, 6, 11, 7, 7, 9, 5, 3, 8, 5, 3, 9, 7, 7, 11, 8, 8, 12
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 28 2018

Keywords

Comments

Note that a(21323543) = 0, i.e., the odd number 2*21323543 + 1 = 42647087 cannot be written as the sum of a prime, a power of 3 and a power of 5.

Examples

			a(2) = 1 since 2*2+1 = 3 + 3^0 + 5^0 with 3 prime.
a(3) = 2 since 2*3+1 = 3 + 3^1 + 5^0 = 5 + 3^0 + 5^0 with 3 and 5 prime.
		

Crossrefs

Programs

  • Mathematica
    tab={};Do[r=0;Do[If[PrimeQ[2n+1-5^x-3^y],r=r+1],{x,0,Log[5,2n]},{y,0,Log[3,2n+1-5^x]}];tab=Append[tab,r],{n,1,70}];Print[tab]

A008566 Digits of powers of 5.

Original entry on oeis.org

1, 5, 2, 5, 1, 2, 5, 6, 2, 5, 3, 1, 2, 5, 1, 5, 6, 2, 5, 7, 8, 1, 2, 5, 3, 9, 0, 6, 2, 5, 1, 9, 5, 3, 1, 2, 5, 9, 7, 6, 5, 6, 2, 5, 4, 8, 8, 2, 8, 1, 2, 5, 2, 4, 4, 1, 4, 0, 6, 2, 5, 1, 2, 2, 0, 7, 0, 3, 1, 2, 5, 6, 1, 0, 3, 5, 1, 5, 6, 2, 5, 3, 0, 5, 1, 7, 5, 7, 8, 1, 2, 5, 1, 5, 2, 5, 8, 7, 8
Offset: 0

Views

Author

Keywords

Comments

Irregular table with row length sequence A210435. - Jason Kimberley, Nov 26 2012
The constant whose decimal expansion is this sequence is irrational (Mahler, 1981). - Amiram Eldar, Mar 23 2025

Examples

			Triangle begins:
  1;
  5;
  2, 5;
  1, 2, 5;
  6, 2, 5;
  3, 1, 2, 5;
  1, 5, 6, 2, 5;
  7, 8, 1, 2, 5,
  3, 9, 0, 6, 2, 5;
  ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[IntegerDigits/@(5^Range[0,20])] (* Harvey P. Dale, Jan 18 2012 *)

A111395 First digit of powers of 5.

Original entry on oeis.org

1, 5, 2, 1, 6, 3, 1, 7, 3, 1, 9, 4, 2, 1, 6, 3, 1, 7, 3, 1, 9, 4, 2, 1, 5, 2, 1, 7, 3, 1, 9, 4, 2, 1, 5, 2, 1, 7, 3, 1, 9, 4, 2, 1, 5, 2, 1, 7, 3, 1, 8, 4, 2, 1, 5, 2, 1, 6, 3, 1, 8, 4, 2, 1, 5, 2, 1, 6, 3, 1, 8, 4, 2, 1, 5, 2, 1, 6, 3, 1, 8, 4, 2, 1, 5, 2, 1, 6
Offset: 0

Views

Author

Almerio A. Castro (almerio.castro(AT)gmail.com), Nov 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    First[IntegerDigits[#]]&/@(5^Range[0,100]) (* Harvey P. Dale, Jan 13 2015 *)
  • PARI
    a(n) = digits(5^n)[1]; \\ Michel Marcus, Jan 07 2014

Formula

a(n) = A000030(A000351(n)). - Seiichi Manyama, Jul 15 2023

Extensions

a(0)=1 prepended, and more terms from Michel Marcus, Jan 07 2014

A308566 Number of ways to write n as w^2 + x*(x+1) + 4^y*5^z with w,x,y,z nonnegative integers.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 3, 1, 3, 4, 2, 2, 3, 2, 4, 5, 2, 3, 5, 4, 6, 4, 2, 6, 8, 4, 4, 6, 3, 6, 8, 3, 4, 6, 6, 5, 5, 2, 6, 8, 3, 6, 4, 3, 6, 9, 2, 4, 7, 4, 6, 4, 4, 4, 8, 3, 4, 6, 4, 7, 8, 3, 4, 6, 5, 7, 5, 3, 7, 11, 3, 6, 6, 4, 8, 8, 2, 2, 10, 7, 9, 5, 5, 9, 10, 3, 6, 7, 3, 6, 11, 5, 5, 10, 7, 7, 8, 4, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 07 2019

Keywords

Comments

Recall an observation of Euler: {w^2 + x*(x+1): w,x = 0,1,2,...} = {a*(a+1)/2 + b*(b+1)/2: a,b = 0,1,...}.
Conjecture: a(n) > 0 for all n > 0. Equivalently, each n = 1,2,3,... can be written as a*(a+1)/2 + b*(b+1)/2 + 4^c*5^d with a,b,c,d nonnegative integers.
See also A308584 for a similar conjecture.
We have verified a(n) > 0 for all n = 1..5*10^8.
a(n) > 0 for 0 < n < 10^10. - Giovanni Resta, Jun 08 2019

Examples

			a(1) = 1 with 1 = 0^2 + 0*1 + 4^0*5^0.
a(2) = 1 with 2 = 1^2 + 0*1 + 4^0*5^0.
a(3) = 1 with 3 = 0^2 + 1*2 + 4^0*5^0.
a(9) = 1 with 9 = 2^2 + 0*1 + 4^0*5^1.
a(303) = 1 with 303 = 16^2 + 6*7 + 4^0*5^1.
a(585) = 1 with 585 = 5^2 + 15*16 + 4^3*5^1.
a(37863) = 2 with 37863 = 166^2 + 101*102 + 4^0*5^1 = 179^2 + 26*27 + 4^5*5^1.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[n-4^k*5^m-x(x+1)],r=r+1],{k,0,Log[4,n]},{m,0,Log[5,n/4^k]},{x,0,(Sqrt[4(n-4^k*5^m)+1]-1)/2}];tab=Append[tab,r],{n,1,100}];Print[tab]

A308584 Number of ways to write n as a*(a+1)/2 + b*(b+1)/2 + 5^c*8^d, where a,b,c,d are nonnegative integers with a <= b.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 3, 2, 2, 4, 3, 1, 4, 2, 2, 4, 2, 2, 2, 4, 2, 3, 2, 3, 5, 2, 3, 5, 3, 3, 5, 2, 2, 4, 4, 4, 3, 4, 3, 5, 3, 5, 5, 2, 6, 7, 1, 3, 6, 4, 4, 4, 4, 2, 9, 3, 2, 4, 3, 7, 4, 4, 5, 5, 4, 6, 5, 3, 6, 8, 2, 5, 7, 3, 5, 7, 3, 3, 7, 5, 7, 3, 5, 5, 8, 1, 4, 8, 1, 7, 6, 3, 3, 9, 5, 4, 6, 4, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 08 2019

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0. Equivalently, each n = 1,2,3,... can be written as w^2 + x*(x+1) + 5^y*8^z with w,x,y,z nonnegative integers.
We have verified a(n) > 0 for all n = 1..4*10^8.
See also A308566 for a similar conjecture.
a(n) > 0 for all 0 < n < 10^10. - Giovanni Resta, Jun 10 2019

Examples

			a(13) = 1 with 13 = 3*4/2 + 3*4/2 + 5^0*8^0.
a(48) = 1 with 48 = 5*6/2 + 7*8/2 + 5^1*8^0.
a(87) = 1 with 87 = 1*2/2 + 12*13/2 + 5^0*8^1.
a(90) = 1 with 90 = 4*5/2 + 10*11/2 + 5^2*8^0.
a(423) = 1 with 423 = 9*10/2 + 22*23/2 + 5^3*8^0.
a(517) = 1 with 517 = 17*18/2 + 24*25/2 + 5^0*8^2.
a(985) = 1 with 985 = 19*20/2 + 34*35/2 + 5^2*8^1.
a(2694) = 1 with 2694 = 7*8/2 + 68*69/2 + 5^1*8^2.
a(42507) = 1 with 42507 = 178*179/2 + 223*224/2 + 5^2*8^2.
a(544729) = 1 with 544729 = 551*552/2 + 857*858/2 + 5^5*8^1.
a(913870) = 1 with 913870 = 559*560/2 + 700*701/2 + 5^3*8^4.
a(1843782) = 1 with 1843782 = 808*809/2 + 1668*1669/2 + 5^6*8^1.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]];
    tab={};Do[r=0;Do[If[TQ[n-5^k*8^m-x(x+1)/2],r=r+1],{k,0,Log[5,n]},{m,0,Log[8,n/5^k]},{x,0,(Sqrt[4(n-5^k*8^m)+1]-1)/2}];tab=Append[tab,r],{n,1,100}];Print[tab]

A056451 Number of palindromes using a maximum of five different symbols.

Original entry on oeis.org

1, 5, 5, 25, 25, 125, 125, 625, 625, 3125, 3125, 15625, 15625, 78125, 78125, 390625, 390625, 1953125, 1953125, 9765625, 9765625, 48828125, 48828125, 244140625, 244140625, 1220703125, 1220703125, 6103515625, 6103515625, 30517578125, 30517578125, 152587890625, 152587890625
Offset: 0

Views

Author

Keywords

Comments

Number of achiral rows of n colors using up to five colors. For a(3) = 25, the rows are AAA, ABA, ACA, ADA, AEA, BAB, BBB, BCB, BDB, BEB, CAC, CBC, CCC, CDC, CEC, DAD, DBD, DCD, DDD, DED, EAE, EBE, ECE, EDE, and EEE. - Robert A. Russell, Nov 09 2018

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column k=5 of A321391.
Cf. A000351 (oriented), A032122 (unoriented), A032088(n>1) (chiral).

Programs

  • Magma
    [5^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
    
  • Mathematica
    LinearRecurrence[{0,5},{1,5},30] (* or *) Riffle[5^Range[0, 20], 5^Range[20]] (* Harvey P. Dale, Jul 28 2018 *)
    Table[5^Ceiling[n/2], {n,0,40}] (* Robert A. Russell, Nov 07 2018 *)
  • PARI
    vector(40, n, n--; 5^floor((n+1)/2)) \\ G. C. Greubel, Nov 07 2018

Formula

a(n) = 5^floor((n+1)/2).
a(n) = 5*a(n-2). - Colin Barker, May 06 2012
G.f.: (1+5*x) / (1-5*x^2). - Colin Barker, May 06 2012 [Adapted to offset 0 by Robert A. Russell, Nov 07 2018]
a(n) = C(5,0)*A000007(n) + C(5,1)*A057427(n) + C(5,2)*A056453(n) + C(5,3)*A056454(n) + C(5,4)*A056455(n) + C(5,5)*A056456(n). - Robert A. Russell, Nov 08 2018
E.g.f.: cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x). - Stefano Spezia, Jun 06 2023

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 07 2018

A118738 Number of ones in binary expansion of 5^n.

Original entry on oeis.org

1, 2, 3, 6, 5, 6, 7, 8, 12, 13, 11, 15, 13, 14, 17, 20, 20, 20, 24, 19, 26, 29, 25, 27, 30, 19, 31, 33, 29, 36, 37, 33, 39, 34, 42, 40, 44, 42, 38, 46, 53, 54, 49, 52, 52, 53, 50, 49, 54, 60, 58, 60, 54, 64, 58, 74, 61, 67, 74, 65, 61, 77, 74, 81, 86, 78, 87, 85, 82, 89, 83, 79
Offset: 0

Views

Author

Zak Seidov, May 22 2006

Keywords

Comments

Also binary weight of 10^n, which is verified easily enough: 10^n = 2^n * 5^n; it is obvious that 2^n in binary is a single 1 followed by n 0's, therefore, in the binary expansion of 2^n * 5^n, the 2^n contributes only the trailing zeros. - Alonso del Arte, Oct 28 2012
Conjecture: a(n)/n -> log_4(5) = 1.160964... as n -> oo. - M. F. Hasler, Apr 17 2024

Examples

			a(2) = 3 because 5^2 = 25 is 11001, which has 3 on bits.
		

Crossrefs

Cf. A000120 (Hamming weight), A000351 (5^n), A061785 (floor(log_2(5^n))), A118737 (number of bits 0 in 5^n).
Cf. A011754 (analog for 3^n).

Programs

  • Magma
    [&+Intseq(5^n, 2): n in [0..100]]; // Vincenzo Librandi, Nov 13 2024
  • Maple
    seq(convert(convert(5^n,base,2),`+`),n=0..100); # Robert Israel, Dec 24 2017
  • Mathematica
    Table[DigitCount[5^n, 2, 1], {n, 0, 71}] (* Ray Chandler, Sep 29 2006 *)
  • PARI
    a(n) = hammingweight(5^n) \\ Iain Fox, Dec 24 2017
    
  • Python
    A118738 = lambda n: (5**n).bit_count() # For Python 3.10 and later. - M. F. Hasler, Apr 17 2024
    

Formula

a(n) + A118737(n) = A061785(n) + 1 for n >= 1. - Robert Israel, Dec 24 2017 [corrected by Amiram Eldar, Jul 27 2023]
a(n) = A000120(A000351(n)) = Hammingweight(5^n). - M. F. Hasler, Apr 17 2024
Previous Showing 61-70 of 324 results. Next