cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 104 results. Next

A024795 Numbers that are the sum of 3 nonzero squares, including repetitions.

Original entry on oeis.org

3, 6, 9, 11, 12, 14, 17, 18, 19, 21, 22, 24, 26, 27, 27, 29, 30, 33, 33, 34, 35, 36, 38, 38, 41, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 51, 53, 54, 54, 54, 56, 57, 57, 59, 59, 61, 62, 62, 65, 66, 66, 66, 67, 68, 69, 69, 70, 72, 73, 74, 74, 75, 75, 76, 77, 77, 78, 81, 81, 81, 82, 83, 83, 84, 86, 86
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000408.

A306212 Numbers that are the sum of squares of three distinct positive integers in arithmetic progression.

Original entry on oeis.org

14, 29, 35, 50, 56, 66, 77, 83, 93, 107, 110, 116, 126, 140, 149, 155, 158, 165, 179, 194, 197, 200, 210, 219, 224, 242, 245, 251, 261, 264, 275, 290, 293, 302, 308, 315, 318, 332, 341, 350, 365, 371, 372, 381, 395, 398, 413, 428, 434, 435, 440, 450, 461, 462, 464, 482
Offset: 1

Views

Author

Antonio Roldán, Jan 29 2019

Keywords

Examples

			35 = 1^2 + 3^2 + 5^2, with 3 - 1 = 5 - 3 = 2;
371 = 1^2 + 9^2 + 17^2, with 9 - 1 = 17 - 9 = 8. Also 371 = 9^2 + 11^2 + 13^2, with 11 - 9 = 13 - 11 = 2.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # for terms <= N
    S:= {seq(seq(3*a^2+2*b^2, b=1..min(a-1, floor(sqrt((N-3*a^2)/2)))),a=1..floor(sqrt(N/3)))}:
    sort(convert(S,list)); # Robert Israel, Jun 08 2020
  • PARI
    for(n=3, 600, k=sqrt(n/3); a=2; v=0; while(a<=k&&v==0, b=(n-3*a^2)/2; if(b==truncate(b)&&issquare(b), d=sqrt(b); if(d>=1&&d<=a-1, v=1; print1(n,", "))); a+=1))
    
  • PARI
    w=List(); for(n=3, 600, k=sqrt(n/3); for(a=2, k, for(c=1, a-1, v=(a-c)^2+a^2+(a+c)^2; if(v==n, listput(w,n))))); print(vecsort(Vec(w),,8))

A347802 Expansion of ( Sum_{k>=0} k^2 * q^(k^2) )^3.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 12, 0, 0, 48, 0, 27, 64, 0, 216, 0, 0, 432, 48, 243, 0, 384, 972, 0, 768, 0, 864, 804, 0, 3456, 600, 0, 0, 1968, 3888, 1350, 3072, 0, 5508, 0, 0, 7776, 2400, 6075, 1728, 9600, 1944, 0, 4096, 7776, 21600, 2022, 0, 3456, 17424, 0, 13824, 21552, 0, 19521, 0, 31104, 15984, 0, 0, 21600, 34896, 11907
Offset: 0

Views

Author

Seiichi Manyama, Sep 14 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(i=1, n, sum(j=1, n, sum(k=1, n, (i^2+j^2+k^2==n)*(i*j*k)^2)));
    
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=0, sqrtint(N), k^2*x^k^2)^3))

Formula

a(n) is sum of i^2 * j^2 * k^2 for positive integers i,j,k such that i^2+j^2+k^2=n.

A360530 a(n) is the smallest positive integer k such that n can be expressed as the arithmetic mean of k nonzero squares.

Original entry on oeis.org

1, 3, 3, 1, 2, 3, 3, 3, 1, 2, 3, 3, 2, 3, 3, 1, 2, 3, 3, 2, 4, 3, 3, 3, 1, 2, 3, 3, 2, 3, 3, 3, 3, 2, 3, 1, 2, 3, 3, 2, 2, 3, 3, 3, 2, 3, 3, 3, 1, 2, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 2, 3, 3, 1, 2, 3, 3, 2, 4, 3, 3, 3, 2, 2, 3, 3, 4, 3, 3, 2, 1, 2, 3, 4, 2, 3, 3
Offset: 1

Views

Author

Yifan Xie, Apr 05 2023

Keywords

Comments

a(n) is the smallest number k such that n*k can be expressed as the sum of k nonzero squares.

Examples

			For n = 2, if k = 1, 2*1 = 2 is a nonsquare; if k = 2, 2*2 = 4 cannot be expressed as the sum of 2 nonzero squares; if k = 3, 2*3 = 6 = 2^2+1^2+1^2, so a(2) = 3.
		

References

  • J. H. Conway, The Sensual (Quadratic) Form, M.A.A., 1997, p. 140.

Crossrefs

Cf. A362068 (allows zeros), A362110 (distinct).

Programs

  • PARI
    findsquare(k, m) = if(k == 1, issquare(m), for(j=1, m, if(j*j+k > m, return(0), if(findsquare(k-1, m-j*j), return(1)))));
    a(n) = for(t = 1, n+1, if(findsquare(t, n*t), return(t)));

Formula

a(n) <= 4. Proof: With Lagrange's four-square theorem, if 4*n is not the sum of 4 positive squares (see A000534), then it is easy to express 3*n as the sum of 3 positive squares. - Yifan Xie and Thomas Scheuerle, Apr 29 2023

A010002 a(0) = 1, a(n) = 9*n^2 + 2 for n>0.

Original entry on oeis.org

1, 11, 38, 83, 146, 227, 326, 443, 578, 731, 902, 1091, 1298, 1523, 1766, 2027, 2306, 2603, 2918, 3251, 3602, 3971, 4358, 4763, 5186, 5627, 6086, 6563, 7058, 7571, 8102, 8651, 9218, 9803, 10406, 11027, 11666, 12323, 12998, 13691, 14402, 15131, 15878, 16643
Offset: 0

Views

Author

Keywords

Comments

Apart from the first term, numbers of the form (r^2+2*s^2)*n^2+2 = (r*n)^2+(s*n-1)^2+(s*n+1)^2: in this case is r=1, s=2. After 1, all terms are in A000408. [Bruno Berselli, Feb 06 2012]
The identity (18*n^2+2)^2-(9*n^2+2)*(6*n)^2 = 4 can be written as A010008(n+1)^2-a(n+1)*A008588(n+1)^2 = 4. - Vincenzo Librandi, Feb 07 2012

Crossrefs

Cf. A206399.

Programs

Formula

G.f.: (1+x)*(1+7*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*9+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4+sqrt(2)/12 *Pi*coth(Pi/3*sqrt 2) = 1.1606262038.. - R. J. Mathar, May 07 2024

Extensions

More terms from Bruno Berselli, Feb 06 2012

A214328 Intersection of A004214 and A018825.

Original entry on oeis.org

1, 4, 7, 15, 16, 23, 28, 31, 39, 47, 55, 60, 63, 64, 71, 79, 87, 92, 95, 103, 111, 112, 119, 124, 127, 135, 143, 151, 156, 159, 167, 175, 183, 188, 191, 199, 207, 215, 220, 223, 231, 239, 240, 247, 252, 255, 256, 263, 271, 279, 284, 287, 295, 303, 311, 316, 319, 327, 335, 343, 348, 351, 359, 367, 368, 375, 380, 383, 391, 399, 407, 412, 415, 423, 431, 439
Offset: 1

Views

Author

N. J. A. Sloane, Jul 26 2012, following a suggestion from Hans Isdahl, Apr 19 2012

Keywords

Crossrefs

Formula

a(n) ~ 6 * n. - Bill McEachen, Mar 24 2024

A214329 Complement of A214328.

Original entry on oeis.org

2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 104, 105, 106, 107, 108, 109
Offset: 1

Views

Author

N. J. A. Sloane, Jul 26 2012, following a suggestion from Hans Isdahl, Apr 19 2012

Keywords

Comments

Numbers that are the sum of 2 or 3 nonzero squares. - Altug Alkan, Jan 13 2016

Crossrefs

Programs

  • PARI
    is2(n) = {for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2))}
    is3(n) = {my(a, b) ; a=1; while(a^2+1Altug Alkan, Jan 13 2016

A231632 Squares that are also sums of 2 and 3 nonzero squares.

Original entry on oeis.org

169, 225, 289, 625, 676, 841, 900, 1156, 1225, 1369, 1521, 1681, 2025, 2500, 2601, 2704, 2809, 3025, 3364, 3600, 3721, 4225, 4624, 4900, 5329, 5476, 5625, 6084, 6724, 7225, 7569, 7921, 8100, 8281, 9025, 9409, 10000, 10201, 10404, 10816, 11025, 11236, 11881, 12100, 12321, 12769, 13225, 13456, 13689, 14161
Offset: 1

Views

Author

Zak Seidov, Nov 12 2013

Keywords

Comments

All terms == {0, 1} (mod 4).
Intersection of A000290, A000404 and A000408.
A square n^2 is the sum of k positive squares for all 1 <= k <= n^2 - 14 iff n^2 is the sum of 2 and 3 positive squares (see A309778 and proof in Kuczma) . Consequently this is a duplicate of A018820. - Bernard Schott, Aug 17 2019

Examples

			169 = 13^2 = 5^2 + 12^2 = 3^2 + 4^2 + 12^2;
225 = 15^2 = 9^2 + 12^2 = 2^2 + 5^2 + 14^2.
		

References

  • Marcin E. Kuczma, International Mathematical Olympiads, 1986-1999, The Mathematical Association of America, 2003, pages 76-79.

Crossrefs

A269840 Lesser of twin primes where both are the sum of 3 nonzero squares.

Original entry on oeis.org

17, 41, 59, 107, 137, 179, 227, 281, 347, 419, 521, 569, 617, 641, 659, 809, 827, 857, 881, 1019, 1049, 1091, 1289, 1427, 1451, 1481, 1619, 1667, 1697, 1721, 1787, 1931, 2027, 2081, 2129, 2267, 2339, 2657, 2729, 2801, 2969, 3251, 3257, 3299, 3329, 3371, 3467, 3539
Offset: 1

Views

Author

Altug Alkan, Mar 13 2016

Keywords

Examples

			17 is a term because 17 = 2^2 + 2^2 + 3^2 and 19 = 1^2 + 3^2 + 3^2.
41 is a term because 41 = 3^2 + 4^2 + 4^2 and 43 = 3^2 + 3^2 + 5^2.
59 is a term because 59 = 3^2 + 5^2 + 5^2 and 61 = 3^2 + 4^2 + 6^2.
		

Crossrefs

Programs

  • PARI
    isA000408(n) = my(a, b) ; a=1 ; while(a^2+10, ); p-2}
    for(n=1, 1e2, if(isA000408(t(n)) && isA000408(t(n)+2), print1(t(n), ", ")));

A309779 Squares that can be expressed as the sum of two positive squares but not as the sum of three positive squares.

Original entry on oeis.org

25, 100, 400, 1600, 6400, 25600, 102400, 409600, 1638400, 6553600, 26214400, 104857600, 419430400, 1677721600, 6710886400, 26843545600, 107374182400, 429496729600, 1717986918400, 6871947673600, 27487790694400, 109951162777600, 439804651110400, 1759218604441600
Offset: 1

Views

Author

Bernard Schott, Aug 17 2019

Keywords

Comments

This sequence comes from the study of A309778, exactly, A309778(n) = 2 iff n^2 belongs to this sequence here.
According to Draxl link, a(n) is a term of this sequence iff a(n) = 5^2 * 4^(n-1) with n >= 1.
This sequence is a subsequence of A219222 whose terms are all of the form b_0 * 4^k with b_0 in A051952, hence, the only primitive term of this sequence here is 25.

Examples

			25 = 5^2 = 3^2 + 4^2,
100 = 10^2 = 6^2 + 8^2,
5^2 * 4^(n-1) = (5 * 2^(n-1))^2 = (3 * 2^(n-1))^2 + (4 * 2^(n-1))^2, but these terms are not the sum of three positive squares.
		

Crossrefs

Intersection of A000290 and A219222.

Programs

Formula

a(n) = 5^2 * 4^(n-1) with n >= 1.
a(n) = 4*a(n-1) for n > 1. G.f.: 25*x/(1 - 4*x). - Chai Wah Wu, Aug 29 2019
a(n) = 25 * A000302(n-1). - Alois P. Heinz, Aug 29 2019
E.g.f.: 25*(exp(4*x) - 1)/4. - Stefano Spezia, Oct 28 2023
Previous Showing 71-80 of 104 results. Next