cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 58 results. Next

A238087 A129779(n+2)/A006954(n).

Original entry on oeis.org

-1, 1, -1, 1, -5, 63, -315, 99, -675675, 135135, -1640925, 83329155, -4583103525, 5791834125, -71152682225625, 14230536445125, -26797763435625, 24833960277501375, -73881031825566590625, 8546099690638125, -106610328924292590271875
Offset: 0

Views

Author

Paul Curtz, Feb 24 2014

Keywords

Comments

In A129779 or A097801 there is no mention of a link with the Bernoulli numbers.
It appears that a(n+6) is divisible by 4*(n+4)^2-1 and that the sum of the digits of a(n+5) is a multiple of 9.

Examples

			a(0) = -1/1, a(1) = 2/2, a(2) = -6/6, a(3) = 30/30, a(4) = -210/42 =-5.
		

Crossrefs

Cf. A000466.

Programs

  • Mathematica
    a[0] = -1; a[1] = 1; a[n_] := (-1)^(n+1)*(2*n)!/(2^(n-1)*n!*Denominator[BernoulliB[2*n-2]]); Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 24 2014 *)

Formula

a(n+2) = -A004193(n+1)/A000367(n+1).

Extensions

More terms from Jean-François Alcover, Feb 24 2014

A247829 a(3*k) = k*(k+1), a(3*k+1) = (2*k-1)*(2*k+1), a(3*k+2) = (2*k-1)*(2*k+3).

Original entry on oeis.org

0, -1, -3, 2, 3, 5, 6, 15, 21, 12, 35, 45, 20, 63, 77, 30, 99, 117, 42, 143, 165, 56, 195, 221, 72, 255, 285, 90, 323, 357, 110, 399, 437, 132, 483, 525, 156, 575, 621, 182, 675, 725, 210, 783, 837, 240, 899, 957, 272, 1023, 1085, 306, 1155, 1221, 342, 1295
Offset: 0

Views

Author

Paul Curtz, Dec 01 2014

Keywords

Comments

A permutation of A061037(n) = -1, -3, 0, 5, 3, 21, 2, 45, 15, 77, 6, ... and of A214297(n) = -1, 0, -3, 2, 3, 6, 5, 12, ... .
Among consequences: b(n) = 4*a(n) + (sequence of period 3:repeat 1, 4, 16) = 1, 0, 4, 9, 16, 36, 25, 64, 100, ... , is a permutation of the squares of the nonnegative integers A000290(n).
And a(n)/b(n) = 0/1, -1/0, -3/4, 2/9, 3/16, 5/36, ... is a permutation of the Balmer series A061037(n)/A061038(n) = -1/0, -3/4, 0/1, 5/36, 3/16, ... .
a(5n) is divisible by 5.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(3*x^7-3*x^6-14*x^4-6*x^3-2*x^2+3*x+1)/((x-1)^3*(x^2 +x+1)^3))); // G. C. Greubel, Sep 20 2018
  • Maple
    seq(op([k*(k+1),(2*k-1)*(2*k+1),(2*k-1)*(2*k+3)]), k=0..100); # Robert Israel, Dec 01 2014
  • Mathematica
    Table[Sequence @@ {n*(n+1), (2*n-1)*(2*n+1), (2*n-1)*(2*n+3)}, {n, 0, 18}] (* Jean-François Alcover, Dec 16 2014 *)
  • PARI
    concat(0, Vec(x*(3*x^7-3*x^6-14*x^4-6*x^3-2*x^2+3*x+1)/((x-1)^3*(x^2+x+1)^3) + O(x^100))) \\ Colin Barker, Dec 02 2014
    

Formula

a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9).
a(3*k) + a(3*k+1) + a(3*k+2) = 9*k^2 + 5*k - 4.
G.f.: x*(3*x^7 - 3*x^6 - 14*x^4 - 6*x^3 - 2*x^2 + 3*x + 1)/((x-1)^3*(x^2 +x+1)^3). - Robert Israel, Dec 01 2014
a(n) = -(n^2 + n + floor(n/3)*(27*floor(n/3)^3 - 18*(n+1)*floor(n/3)^2 + (3*n^2 + 21*n - 14)*floor(n/3) - (5*n^2 - n + 5)))/2. - Luce ETIENNE, Mar 13 2017
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/2.
Sum_{n>=1} (-1)^n/a(n) = Pi/4 + 1 - 2*log(2). (End)

A284359 Double triangle (2*n+2 terms by row). Every row is 2*n + 1 followed by 2*n + 1 times 2*n + 2.

Original entry on oeis.org

1, 2, 3, 4, 4, 4, 5, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 8, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17
Offset: 0

Views

Author

Paul Curtz, Mar 25 2017

Keywords

Comments

In essence the same as A167991. - R. J. Mathar, Mar 27 2017

Examples

			1,  2,
3,  4,  4,  4,
5,  6,  6,  6,  6,  6,
7,  8,  8,  8,  8,  8,  8,  8,
9, 10, 10, 10, 10, 10, 10, 10, 10, 10,
... .
The row sum is A000466(n+1).
		

Crossrefs

Cf. A000466, A005408, A103517 (main diagonal), A167381.

Programs

  • Mathematica
    Table[2 n + 2 - Boole[k == 1], {n, 0, 8}, {k, 2 n + 2}] // Flatten (* Michael De Vlieger, Mar 25 2017 *)
  • PARI
    for(n=0, 10, for(k=1, 2*n + 2, print1(2*n + 2 - (k==1), ", ");); print();) \\ Indranil Ghosh, Mar 26 2017, translated from Mathematica code
    
  • Python
    for n in range(0, 11):
        print([2*n + 2 -(k==1) for k in range(1, 2*n + 3)])
    # Indranil Ghosh, Mar 26 2017

Formula

a(n) = A167381(n+1) - A167381(n).

A320085 Triangle read by rows, 0 <= k <= n: T(n,k) is the numerator of the derivative of the k-th Bernstein basis polynomial of degree n evaluated at the interval midpoint t = 1/2; denominator is A320086.

Original entry on oeis.org

0, -1, 1, -1, 0, 1, -3, -3, 3, 3, -1, -1, 0, 1, 1, -5, -15, -5, 5, 15, 5, -3, -3, -15, 0, 15, 3, 3, -7, -35, -63, -35, 35, 63, 35, 7, -1, -3, -7, -7, 0, 7, 7, 3, 1, -9, -63, -45, -63, -63, 63, 63, 45, 63, 9, -5, -5, -135, -15, -105, 0, 105, 15, 135, 5, 5
Offset: 0

Views

Author

Keywords

Comments

If n = 2*k, then T(n,k) = 0 since the k-th Bernstein basis polynomial of degree n has a single unique local maximum occurring at t = k/n, which coincides with the interval midpoint t = 1/2 (T(0,0) = 0 because the only 0 degree Bernstein basis polynomial is the constant 1).

Examples

			Triangle begins:
   0;
  -1,   1;
  -1,   0,    1;
  -3,  -3,    3,   3;
  -1,  -1,    0,   1,    1;
  -5, -15,   -5,   5,   15,  5;
  -3,  -3,  -15,   0,   15,  3,   3;
  -7, -35,  -63, -35,   35, 63,  35,  7;
  -1,  -3,   -7,  -7,    0,  7,   7,  3,   1;
  -9, -63,  -45, -63,  -63, 63,  63, 45,  63, 9;
  -5,  -5, -135, -15, -105,  0, 105, 15, 135, 5, 5;
  ...
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) n*(binomial(n-1,k-1)-binomial(n-1,k))/gcd(n*(binomial(n-1,k-1)-binomial(n-1,k)),2^(n-1)); end proc: seq(seq(T(n,k),k=0..n),n=0..11); # Muniru A Asiru, Oct 06 2018
  • Mathematica
    Table[Numerator[n*(Binomial[n-1, k-1] - Binomial[n-1, k])/2^(n-1)], {n, 0, 12}, {k, 0, n}]//Flatten
  • Maxima
    T(n, k) := n*(binomial(n - 1, k - 1) - binomial(n - 1, k))/gcd(n*(binomial(n - 1, k - 1) - binomial(n - 1, k)), 2^(n - 1))$
    tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, n))$
    
  • Sage
    def A320085(n,k): return numerator(n*(binomial(n-1, k-1) - binomial(n-1, k))/2^(n-1))
    flatten([[A320085(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 19 2021

Formula

T(n, k) = numerator of 2*A141692(n,k)/A000079(n).
T(n, k) = n*(binomial(n-1, k-1) - binomial(n-1, k))/gcd(n*(binomial(n-1, k-1) - binomial(n-1, k)), 2^(n-1)).
T(n, n-k) = -T(n,k).
T(n, 0) = -n.
T(2*n+1, 1) = -A000466(n).
T(2*n, 1) = -A069834(n-1), n > 1.
T(n, k)/A320086(n,k) = 4*n*(k/n - 1/2)*A319861(n,k)/A319861(n,k).
Sum_{k=0..n} k*T(n,k)/A320086(n,k) = n.
Sum_{k=0..n} k^2*T(n,k)/A320086(n,k) = n^2.
Sum_{k=0..n} k*(k-1)*T(n,k)/A320086(n,k) = n*(n - 1).

A340728 a(n) is the number of divisors d of n such that n/d - d is prime.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 1, 0, 0, 3, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 0, 1, 1, 0, 2, 0, 1, 0, 3, 0, 2, 0, 0, 0, 3, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 4, 0, 2, 1, 0, 0, 3, 0, 2, 0, 1, 0, 1, 0, 1, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 0, 1, 0, 1, 0, 3, 0, 1, 0, 0, 0, 1, 0, 3, 1
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 17 2021

Keywords

Comments

If n is odd, then a(n) = 0 unless n is in A000466, in which case a(n) = 1.

Examples

			a(8) = 2; among the divisors {1,2,4,8} of 8, there are two cases where 8/d-d is prime: 8/1-1 = 7 and 8/2-2 = 2.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local D,i,m;
      D:= sort(convert(numtheory:-divisors(n),list));
      m:= nops(D);
      nops(select(i -> isprime(D[m+1-i]-D[i]), [$1..(m+1)/2]));
    end proc:
    map(f, [$1..100]);
  • PARI
    a(n) = sumdiv(n, d, isprime(n/d-d)); \\ Michel Marcus, Jan 18 2021

Formula

a(n) = Sum_{d|n} c(n/d-d), where c is the prime characteristic (A010051). - Wesley Ivan Hurt, Jan 18 2021

A341780 Starts of runs of 3 consecutive anti-tau numbers (A046642).

Original entry on oeis.org

3, 15, 195, 255, 483, 783, 1023, 1155, 1295, 1443, 1599, 2703, 3363, 4623, 4899, 5183, 6399, 6723, 7395, 7743, 8463, 8835, 10815, 11235, 11663, 12099, 12543, 15375, 16383, 16899, 17955, 18495, 20163, 24963, 25599, 26895, 27555, 31683, 33855, 35343, 36099, 37635
Offset: 1

Views

Author

Amiram Eldar, Feb 19 2021

Keywords

Comments

Since the even anti-tau numbers (A268066) are square numbers, all the terms are of the form 4*k^2 - 1, and there cannot be a run of more than 3 consecutive anti-tau numbers.

Examples

			3 is a term since 3, 4 and 5 are all anti-tau numbers: gcd(3, tau(3)) = gcd(3, 2) = 1, gcd(4, tau(4)) = gcd(4, 3) = 1 and gcd(5, tau(5)) = gcd(5, 2) = 1.
		

Crossrefs

Subsequence of A000466, A046642 and A341779.

Programs

  • Mathematica
    antiTauQ[n_] := CoprimeQ[n, DivisorSigma[0, n]]; Select[4*Range[100]^2 - 1, AllTrue[# + {0, 1, 2}, antiTauQ] &]

A069076 a(n) = (4*n^2 - 1)^3.

Original entry on oeis.org

27, 3375, 42875, 250047, 970299, 2924207, 7414875, 16581375, 33698267, 63521199, 112678587, 190109375, 307546875, 480048687, 726572699, 1070599167, 1540798875, 2171747375, 3004685307, 4088324799, 5479701947, 7245075375
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

References

  • Konrad Knopp, Theory and application of infinite series, Dover, p. 269.

Crossrefs

Programs

  • Mathematica
    (4Range[30]^2-1)^3 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{27,3375,42875,250047,970299,2924207,7414875},30] (* Harvey P. Dale, Jan 20 2012 *)

Formula

Sum_{n>=1} 1/a(n) = (32 - 3*Pi^3)/64.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7); a(1)=27, a(2)=3375, a(3)=42875, a(4)=250047, a(5)=970299, a(6)=2924207, a(7)=7414875. - Harvey P. Dale, Jan 20 2012
G.f: x*(x^6 - 34*x^5 - 3165*x^4 - 19852*x^3 - 19817*x^2 - 3186*x - 27)/(x-1)^7. - Harvey P. Dale, Jan 20 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^3/128 + 3*Pi/32 - 1/2. - Amiram Eldar, Feb 25 2022

A123754 Positive numbers of the form 4*n^2 - 1 which are not semiprimes.

Original entry on oeis.org

3, 63, 99, 195, 255, 399, 483, 575, 675, 783, 1023, 1155, 1295, 1443, 1599, 1935, 2115, 2303, 2499, 2703, 2915, 3135, 3363, 3843, 4095, 4355, 4623, 4899, 5475, 5775, 6083, 6399, 6723, 7055, 7395, 7743, 8099, 8463, 8835, 9215, 9603, 9999, 10815
Offset: 1

Views

Author

Roger L. Bagula, Nov 16 2006

Keywords

Comments

Positive numbers of the form 4*n^2 - 1 which are semiprimes can be found in A037074.
Or, all positive products of the form A014076(i)*[A014076(i)+-2], duplicates removed. - R. J. Mathar, Aug 08 2007

Crossrefs

Programs

  • Mathematica
    Select[4*(Range[54])^2-1, Not[PrimeQ[Sqrt[(#+ 1)]-1] && PrimeQ[Sqrt[(#+1)]+1]]&]
    Select[4*Range[100]^2-1,PrimeOmega[#]!=2&] (* Harvey P. Dale, Jul 24 2016 *)

Formula

Equals ( A000466 - {-1} ) - A001358. - R. J. Mathar, Aug 08 2007

Extensions

Edited by N. J. A. Sloane, Aug 03 2007

A185669 a(n) = 4*n^2 + 3*n + 2.

Original entry on oeis.org

2, 9, 24, 47, 78, 117, 164, 219, 282, 353, 432, 519, 614, 717, 828, 947, 1074, 1209, 1352, 1503, 1662, 1829, 2004, 2187, 2378, 2577, 2784, 2999, 3222, 3453, 3692, 3939, 4194, 4457, 4728, 5007, 5294, 5589, 5892, 6203, 6522, 6849, 7184, 7527, 7878, 8237, 8604, 8979, 9362, 9753, 10152, 10559, 10974, 11397, 11828
Offset: 0

Views

Author

Paul Curtz, Feb 09 2011

Keywords

Comments

Natural numbers A000027 written clockwise as a square spiral:
.
43--44--45--46--47--48--49
|
42 21--22--23--24--25--26
| | |
41 20 7---8---9--10 27
| | | | |
40 19 6 1---2 11 28
| | | | | |
39 18 5---4---3 12 29
| | | |
38 17--16--15--14--13 30
| |
37--36--35--34--33--32--31
.
Walking in straight lines away from the center:
1, 2, 11, ... = A054552(n) = 1 -3*n+4*n^2,
1, 8, 23, ... = A033951(n) = 1 +3*n+4*n^2,
1, 3, 13, ... = A054554(n+1) = 1 -2*n-4*n^2,
1, 7, 21, ... = A054559(n+1) = 1 +2*n+4*n^2,
1, 4, 15, ... = A054556(n+1) = 1 -n+4*n^2,
1, 6, 19, ... = A054567(n+1) = 1 +n+4*n^2,
1, 5, 17, ... = A053755(n) = 1 +4*n^2,
1, 9, 25, ... = A016754(n) = 1 +4*n+4*n^2 = (1+2*n)^2,
2, 8, 22, ... = 2*A084849(n) = 2 +2*n+4*n^2,
2, 12, 30, ... = A002939(n+1) = 2 +6*n+4*n^2,
2, 9, 24, ... = a(n) = 2 +3*n+4*n^2,
2, 10, 26, ... = A069894(n) = 2 +4*n+4*n^2,
3, 11, 27, ... = A164897(n) = 3 +4*n+4*n^2,
3, 12, 29, ... = A054552(n+1)+1 = 3 +5*n+4*n^2,
3, 14, 33, ... = A033991(n+1) = 3 +7*n+4*n^2,
3, 15, 35, ... = A000466(n+1) = 3 +8*n+4*n^2,
4, 14, 32, ... = 2*A130883(n+1) = 4 +6*n+4*n^2,
4, 16, 36, ... = A016742(n+1) = 4 +8*n+4*n^2 = (2+2*n)^2,
5, 18, 39, ... = A007742(n+1) = 5 +9*n+4*n^2,
5, 19, 41, ... = A125202(n+2) = 5+10*n+4*n^2.

Programs

Formula

a(n) = a(n-1) + 8*n - 1.
a(n) = 2*a(n-1) - a(n-2) + 8.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (2 +3*x +3*x^2)/(1-x)^3 . - R. J. Mathar, Feb 11 2011
a(n) = A033954(n) + 2. - Bruno Berselli, Apr 10 2011
E.g.f.: (4*x^2 + 7*x + 2)*exp(x). - G. C. Greubel, Jul 09 2017

A214630 a(n) is the reduced numerator of 1/4 - 1/A109043(n)^2 = (1 - 1/A026741(n)^2)/4.

Original entry on oeis.org

-1, 0, 0, 2, 3, 6, 2, 12, 15, 20, 6, 30, 35, 42, 12, 56, 63, 72, 20, 90, 99, 110, 30, 132, 143, 156, 42, 182, 195, 210, 56, 240, 255, 272, 72, 306, 323, 342, 90, 380, 399, 420, 110, 462, 483, 506, 132, 552, 575, 600, 156
Offset: 0

Views

Author

Paul Curtz, Jul 23 2012

Keywords

Comments

The unreduced fractions are -1/0, 0/4, 0/1, 8/36, 3/16, 24/100, 2/9, 48/196, 15/64, 80/324, 6/25, ... = c(n)/A061038(n), say.
Note that c(n)=A061037(n) + (period of length 2: repeat 0, 3).
c(n) is a permutation of A198442(n). The corresponding ranks are (the 0's have been swapped for convenience) 0,2,1,6,4,10,... = A145979(n-2).
Define the following sequences, satisfying the recurrence a(n) = 2*a(n-4) - a(n-8),
e(n) = -1, 0, 0, 2, 1, 4, 1, 6, 3, 8, 2, 10, 5, ... (after -1, a permutation of A004526(n) or mix A026741(n-1), 2*n),
f(n) = 1, 2, 1, 4, 3, 6, 2, 8, 5, 10, 3, 12, 7, ..., (another permutation of A004526(n+2) or mix A026741(n+1), 2*n+2).
f(n) - e(n) = periodic of period length 4: repeat 2, 2, 1, 2.
e(n) + f(n) = 0, 2, 1, 6, 4, 10, ... = A145979(n-2).
Then c(n) = e(n)*f(n).
Note that A061038(n) - 4*c(n) = periodic of period length 4: repeat 4, 4, 1, 4.
After division (by period 2: repeat 1, 4, A010685(n)), the reduced fractions of c(n) are -1/0, 0/1 ?, 0/4 ?, 2/9, 3/16, 6/25, 2/9, 12/49, 15/64, 20/81, 6/25, ... = a(n)/b(n).
Note that a(1+4*n) + a(2+4*n) + a(3+4*n) = 2,20,56,... = A002378(1+3*n) = A194767(3*n).
A061037(n-2) - a(n-2) = 0, -3, 0, -3, 0, 3, 0, 15, 0, 33, 0, 57, ... = Fip(n-2).
Fip(n-2)/3 = 0,-1,0,-1,0,1,0,5,0,11,0,19,0,29, .... Without 0's: A165900(n) (a Fibonacci polynomial); also -A110331(n+1) (Pell numbers).
g(n) = -1, 0, 0, 1, 1, 2, 1, 3, 3, 4, ... = mix A026741(n-1), n.
h(n) = 1, 1, 1, 2, 3, 3, 2, 4, 5, 5, ... = mix A026741(n+1), n+1.
h(n) - g(n) = (period 2: repeat 2, 1, 1, 1 = A177704(n-1)).
k(n) = 1, 1, 0, 2, 3, 3, 1, 4, 5, 5, ... = mix A174239(n), n+1.
l(n) = -1, 0, 1, 1, 1, 2, 2, 3, 3, 4, ... .
k(n) - l(n) = period 4: repeat 2, 1, -1, 1.
2) By the second formula in the definition, we take first 1 - 1/A026741(n)^2.
Hence, using a convention for the first fraction, -1/0, 0/1, 0/1, 8/9, 3/4, 24/25, 8/9, 48/49, 15/16, 80/81, 24/25, ... = (A005563(n-1) - A033996(n))/A168077(n) = q(n)/A168077(n).
For a(n), we divide by 4.
Note that A214297 is the reduced numerator of 1/4 - 1/A061038(n).
Note also that A168077(n) = A026741(n)^2.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1)/((1-x)^3*(x+1)^3*(x^2+1)^3))); // G. C. Greubel, Sep 20 2018
  • Mathematica
    CoefficientList[Series[(2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1)/((1-x)^3*(x+1)^3*(x^2+1)^3), {x, 0, 50}], x] (* G. C. Greubel, Sep 20 2018 *)
    LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{-1,0,0,2,3,6,2,12,15,20,6,30},60] (* Harvey P. Dale, Jul 01 2019 *)
  • PARI
    Vec(-(2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1)/((x-1)^3*(x+ 1)^3*(x^2+1)^3) + O(x^100)) \\ Colin Barker, Jan 22 2015
    

Formula

a(4*n) = 4*n^2-1 = (2*n-1)*(2*n+1), a(2*n+1) = a(4*n+2) = n(n+1).
a(n)= A198442(n)/(period of length 4: repeat 1,1,4,1=A010121(n+2)).
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). Is this the shortest possible recurrence? See A214297.
a(n+2) - a(n-2) = 0, 2, 4, 6, 2, 10, 12, 14, 4, ... = 2*A214392(n). a(-2)=a(-1)=0=a(1)=a(2).
a(n+4) - a(n-4) = 0, 4, 2, 12, 16, 20, 6, 28, 32, 36,... = 2*A188167(n). a(-4)=3=a(4), a(-3)=2=a(3).
a(n) = g(n) * h(n).
a(n) = k(n) * l(n).
G.f.: -(2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1) / ((x-1)^3*(x+1)^3*(x^2+1)^3). - Colin Barker, Jan 22 2015
From Luce ETIENNE, Apr 08 2017: (Start)
a(n) = (13*n^2-28-3*(n^2+4)*(-1)^n+3*(n^2-4)*((-1)^((2*n-1+(-1)^n)/4)+(-1)^((2*n+1-(-1)^n)/4)))/64.
a(n) = (13*n^2-28-3*(n^2+4)*cos(n*Pi)+6*(n^2-4)*cos(n*Pi/2))/64. (End)

Extensions

Edited by N. J. A. Sloane, Aug 04 2012
Previous Showing 41-50 of 58 results. Next