cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 288 results. Next

A350814 Numbers m such that the largest digit in the decimal expansion of 1/m is 3.

Original entry on oeis.org

3, 30, 33, 75, 300, 303, 330, 333, 429, 750, 813, 3000, 3003, 3030, 3125, 3300, 3330, 3333, 4290, 4329, 7500, 7575, 8130, 30000, 30003, 30030, 30300, 30303, 31250, 33000, 33300, 33330, 33333, 42900, 43290, 46875, 75000, 75075, 75750, 76923, 81103, 81300, 300000
Offset: 1

Views

Author

Bernard Schott, Jan 30 2022

Keywords

Comments

If m is a term, 10*m is also a term.
3 is the only prime up to 2.6*10^8 (see comments in A333237).
Some subsequences:
{3, 30, 300, ...} = A093138 \ {1}.
{3, 33, 333, ...} = A002277 \ {0}.
{3, 33, 303, 3003, ...} = 3 * A000533.
{3, 303, 30303, 3030303, ...} = 3 * A094028.

Examples

			As 1/33 = 0.0303030303..., 33 is a term.
As 1/75 = 0.0133333333..., 75 is a term.
As 1/429 = 0.002331002331002331..., 429 is a term.
		

Crossrefs

Similar with largest digit k: A333402 (k=1), A341383 (k=2), A333237 (k=9).
Subsequences: A002277 \ {0}, A093138 \ {1}.
Decimal expansion: A010701 (1/3), A010674 (1/33).

Programs

  • Mathematica
    Select[Range[10^5], Max[RealDigits[1/#][[1]]] == 3 &] (* Amiram Eldar, Jan 30 2022 *)
  • Python
    from fractions import Fraction
    from itertools import count, islice
    from sympy import n_order, multiplicity
    def repeating_decimals_expr(f, digits_only=False):
        """ returns repeating decimals of Fraction f as the string aaa.bbb[ccc].
            returns only digits if digits_only=True.
        """
        a, b = f.as_integer_ratio()
        m2, m5 = multiplicity(2,b), multiplicity(5,b)
        r = max(m2,m5)
        k, m = 10**r, 10**n_order(10,b//2**m2//5**m5)-1
        c = k*a//b
        s = str(c).zfill(r)
        if digits_only:
            return s+str(m*k*a//b-c*m)
        else:
            w = len(s)-r
            return s[:w]+'.'+s[w:]+'['+str(m*k*a//b-c*m)+']'
    def A350814_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda m:max(repeating_decimals_expr(Fraction(1,m),digits_only=True)) == '3',count(max(startvalue,1)))
    A350814_list = list(islice(A350814_gen(),10)) # Chai Wah Wu, Feb 07 2022

Extensions

More terms from Amiram Eldar, Jan 30 2022

A178500 a(n) = 10^n * signum(n).

Original entry on oeis.org

0, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, 100000000000, 1000000000000, 10000000000000, 100000000000000, 1000000000000000, 10000000000000000, 100000000000000000, 1000000000000000000, 10000000000000000000, 100000000000000000000
Offset: 0

Views

Author

Reinhard Zumkeller, May 28 2010

Keywords

Comments

a(n-1) is the minimum difference between an n-digit number (written in base 10, nonzero leading digit) and the product of its digits. For n > 1, it is also a number meeting that bound. See A070565. - Devin Akman, Apr 17 2019

Crossrefs

Programs

Formula

a(n) = A011557(n)*A057427(n).
For n > 0, a(n) = A011557(n).
a(n) = 10*A178501(n).
a(n) = A000533(n) - 1.
A061601(a(n)) = A109002(n+1).
From Elmo R. Oliveira, Jul 21 2025: (Start)
G.f.: 10*x/(1-10*x).
E.g.f.: 2*exp(5*x)*sinh(5*x).
a(n) = 10*a(n-1) for n > 1. (End)

A185121 Smallest prime factor of 10^(2^n) + 1.

Original entry on oeis.org

11, 101, 73, 17, 353, 19841, 1265011073, 257, 10753, 1514497, 1856104284667693057, 106907803649, 458924033, 3635898263938497962802538435084289
Offset: 0

Views

Author

Sergio Pimentel, Jan 22 2012

Keywords

Comments

10^k+1 can only be prime if k is a power of 2. So far the only known primes of this form are a(0) = 11 and a(1) = 101. [Edited by M. F. Hasler, Aug 03 2019]
a(n) >= 2^(n+1)+1; we have a(n) = 2^(n+1)+1 for n=3, n=7, and n=15.
a(14) > 10^16. - Max Alekseyev, Jun 28 2013
From the Keller link a(15)-a(20) = 65537, 8257537, 175636481, 639631361, 70254593, 167772161. - Ray Chandler, Dec 27 2013

Examples

			For n=2, a(2)=73 since 10^(2^2) + 1 = 10001 = 73 * 137.
		

Crossrefs

Essentially the same as A102050. - Sean A. Irvine, Feb 17 2013

Programs

  • Mathematica
    Table[With[{k = 2^n}, FactorInteger[10^k + 1]][[1, 1]], {n, 0, 13, 1}] (* Vincenzo Librandi, Jul 23 2013 *)
  • PARI
    a(n) = factor(10^(2^n)+1)[1, 1] \\ Michel Marcus, May 30 2013

Formula

a(n) = A038371(2^n). - M. F. Hasler, Jul 30 2019

A147757 Palindromes formed from the reflected decimal expansion of the concatenation of 1, 0 and infinite digits 1.

Original entry on oeis.org

1, 11, 101, 1001, 10101, 101101, 1011101, 10111101, 101111101, 1011111101, 10111111101, 101111111101, 1011111111101, 10111111111101, 101111111111101, 1011111111111101, 10111111111111101, 101111111111111101
Offset: 1

Views

Author

Omar E. Pol, Nov 11 2008

Keywords

Comments

a(n) is also A147758(n) written in base 2.
a(A016789(n)) is divisible by 3 for n > 0. - Altug Alkan, Dec 06 2015

Examples

			n .... Successive digits of a(n)
1 ............. ( 1 )
2 ............ ( 1 1 )
3 ........... ( 1 0 1 )
4 .......... ( 1 0 0 1 )
5 ......... ( 1 0 1 0 1 )
6 ........ ( 1 0 1 1 0 1 )
7 ....... ( 1 0 1 1 1 0 1 )
8 ...... ( 1 0 1 1 1 1 0 1 )
9 ..... ( 1 0 1 1 1 1 1 0 1 )
10 ... ( 1 0 1 1 1 1 1 1 0 1 )
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{w = {1, 0}}, Which[n == 1, w = {1}, n == 2, w = {1, 1}, n == 3, AppendTo[w, 1], n >= 4, w = Join[w, Table[1, {n - 4}], Reverse@ w]]; FromDigits@ w]; Array[f, 19] (* Michael De Vlieger, Dec 05 2015 *)
    LinearRecurrence[{11,-10},{1,11,101,1001,10101},20] (* Harvey P. Dale, Aug 02 2017 *)
  • PARI
    Vec( x+11*x^2+101*x^3 -91*x^4*(-11+10*x) / ( (10*x-1)*(x-1) ) + O(x^30)) \\ Michel Marcus, Dec 05 2015

Formula

G.f.: x+11*x^2+101*x^3-91*x^4*(-11+10*x) / ( (10*x-1)*(x-1) ). - R. J. Mathar, Aug 24 2011
a(n) = 11*a(n-1) - 10*a(n-2) for n>2. Wesley Ivan Hurt, Dec 06 2015

A349278 a(n) is the product of the sum of the last i digits of n, with i going from 1 to the total number of digits of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 0, 3, 8, 15, 24, 35, 48, 63, 80, 99, 0, 4, 10, 18, 28, 40, 54, 70, 88, 108, 0, 5, 12, 21, 32, 45, 60, 77, 96, 117, 0, 6, 14, 24, 36, 50, 66, 84, 104, 126, 0, 7, 16, 27, 40, 55, 72, 91, 112, 135, 0
Offset: 1

Views

Author

Michel Marcus, Nov 13 2021

Keywords

Comments

This is similar to A349194 but with digits taken in reversed order.
The only primes in the sequence are 2, 3, 5 and 7. - Bernard Schott, Dec 04 2021
The positive terms form a subsequence of A349194. - Bernard Schott, Dec 19 2021

Examples

			For n=256, a(256) = 6*(6+5)*(6+5+2) = 858.
		

Crossrefs

Cf. A349194, A349279 (fixed points).

Programs

  • Mathematica
    a[n_] := Times @@ Accumulate @ Reverse @ IntegerDigits[n]; Array[a, 70] (* Amiram Eldar, Nov 13 2021 *)
  • PARI
    a(n) = my(d=Vecrev(digits(n))); prod(i=1, #d, sum(j=1, i, d[j]));
    
  • Python
    from math import prod
    from itertools import accumulate
    def a(n): return 0 if n%10==0 else prod(accumulate(map(int, str(n)[::-1])))
    print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Nov 13 2021

Formula

From Bernard Schott, Dec 04 2021: (Start)
a(n) = 0 iff n is a multiple of 10 (A008592).
a(n) = 1 iff n = 1.
a(n) = 2 (resp. 3, 4, 5, 7, 9) iff n = 10^k+1 (A000533) (resp. 2*10^k+1 (A199682), 3*10^k+1 (A199683), 4*10^k+1 (A199684), 6*10^k+1 (A199686), 8*10^k+1 (A199689)).
a(R_n) = n! where R_n = A002275(n) is repunit > 0, and n! = A000142(n).
a(n) = A349194(n) if n is palindrome (A002113). (End)

A063945 Number of nonnegative integers with n digits.

Original entry on oeis.org

10, 90, 900, 9000, 90000, 900000, 9000000, 90000000, 900000000, 9000000000, 90000000000, 900000000000, 9000000000000, 90000000000000, 900000000000000, 9000000000000000, 90000000000000000, 900000000000000000, 9000000000000000000, 90000000000000000000
Offset: 1

Views

Author

Shyam Sunder Gupta, Sep 01 2001

Keywords

Comments

Also, first differences of A000533. - Omar E. Pol, Feb 24 2011

Crossrefs

Column k=1 of A216653.

Programs

  • Maple
    a:= n-> `if`(n=1, 10, 9*10^(n-1)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Sep 12 2012
  • Mathematica
    Join[{10},NestList[10#&,90,20]] (* Harvey P. Dale, Dec 31 2022 *)

Formula

a(1) = 10, a(2) = 90, a(n) = a(n-1)*10 for n>2.
a(n) = A052268(n), n>1. - R. J. Mathar, Oct 02 2008
From Stefano Spezia, Dec 01 2024: (Start)
G.f.: 10*x*(1 - x)/(1 - 10*x).
E.g.f.: (9*exp(10*x) - 9 + 10*x)/10. (End)

A086004 Primes which remain prime after one and after two and after three applications of the rotate-and-add operation of A086002.

Original entry on oeis.org

12917, 12919, 18911, 18913, 22907, 24907, 26903, 28901, 1088063, 1288043, 1408031, 1428029, 1528019, 100083679, 100280419, 100283849, 100483847, 100692793, 100880413, 101080159, 101283839, 101683093, 101683663, 102080149
Offset: 1

Views

Author

Chuck Seggelin, Jul 07 2003

Keywords

Comments

These are the primes of A086003 which in addition remain prime after one additional, third application of the rotate-and-add operation.
Note: Have not yet found any 4-Rotation Cycle Primes.
Conjecture 1: Rotation and addition of primes with even numbers of digits never yields a prime.
Conjecture 2: There are no 5-Rotation Cycle Primes.
[Conjecture 1 is true because rotation for even numbers of the form 10^k*a+b yields 10^k*b+a, so rotation-and-add yields (10^k+1)*(a+b), which obviously contains a divisor A000533. RJM, Sep 17 2009]
4-Rotation Cycle Primes exist and are listed in A261458. - Chai Wah Wu, Aug 20 2015

Examples

			a(1)=12917 is in the sequence because 2-fold rotate-and-add yields the prime 60659 as shown in A086003, and the third application yields 60659+59660 = 120319 which still is prime.
		

Crossrefs

Programs

  • Mathematica
    rot[n_]:=Module[{idn=IntegerDigits[n],len},len=Length[idn];If[OddQ[ len],FromDigits[ Join[ Take[idn,-Floor[len/2]],{idn[[(len+1)/2]]},Take[idn,Floor[len/2]]]],FromDigits[ Join[ Take[idn,-len/2],Take[idn,len/2]]]]]; a3rotQ[n_]:=AllTrue[Rest[NestList[ #+rot[ #]&,n,3]],PrimeQ]; Select[Prime[Range[5880000]],a3rotQ] (* Harvey P. Dale, Apr 26 2022 *)

Formula

{p in A086003: p+rot(p) in A086003}.

Extensions

Condensed by R. J. Mathar, Sep 17 2009

A102006 Indices of primes in sequence defined by A(0) = 13, A(n) = 10*A(n-1) - 27 for n > 0.

Original entry on oeis.org

0, 1, 4, 5, 10, 16, 17, 38, 55, 100, 104, 106, 122, 412, 425, 2606, 7667, 10469, 11020, 17752, 26926, 60775, 98287, 300475
Offset: 1

Views

Author

Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004

Keywords

Comments

Numbers n such that 10*10^n + 3 is prime.
Numbers n such that digit 1 followed by n >= 0 occurrences of digit 0 followed by digit 3 is prime.
Numbers corresponding to terms <= 425 are certified primes.
No other terms <99,999.

Examples

			100003 is prime, hence 4 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • PARI
    a=13;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-27)
    
  • PARI
    for(n=0,1500,if(isprime(10*10^n+3),print1(n,",")))

Formula

a(n) = A049054(n) - 1.

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(22)=60775, a(23)=98287 from Robert Price, Mar 03 2011
a(24) from A049054 by Ray Chandler, May 01 2015

A358350 Numbers that can be written as (m + sum of digits of m + product of digits of m) for some m.

Original entry on oeis.org

3, 6, 9, 11, 12, 14, 15, 17, 18, 20, 21, 22, 23, 24, 26, 27, 29, 30, 32, 33, 34, 35, 38, 42, 43, 44, 46, 48, 50, 53, 54, 55, 56, 58, 62, 63, 66, 68, 69, 73, 74, 76, 77, 78, 80, 82, 83, 86, 88, 90, 92, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108, 109, 110
Offset: 1

Views

Author

Bernard Schott, Nov 11 2022

Keywords

Comments

Integers that are in A161351.
(i) Can arbitrarily long sets of consecutive integers be found in this sequence?
(ii) Is the gap between two consecutive terms bounded?
A000533 \ {1} is a subsequence.
This has the same asymptotic density, approximately 0.9022222, as A176995, since the asymptotic density of non-pandigital numbers is 0. - Charles R Greathouse IV, Nov 16 2022

Examples

			A161351(23) = 23 + (2+3) + (2*3) = 34 so 34 is a term.
There is no integer du_10 such that du + (d+u) + (d*u) = 31, so 31 is not a term.
		

Crossrefs

Range of A161351.
Similar: A176995 (m+digitsum), A336826 (m*digitprod), A337718 (m+digitprod).
Cf. A000533.

Programs

  • Mathematica
    f[n_] := n + Total[(d = IntegerDigits[n])] + Times @@ d; With[{m = 110}, Select[Union[Table[f[n], {n, 1, m}]], # <= m &]] (* Amiram Eldar, Nov 11 2022 *)
  • PARI
    f(n) = my(d=digits(n)); n + vecsum(d) + vecprod(d); \\ A161351
    lista(nn) = select(x->(x<=nn), Set(vector(nn, k, f(k)))); \\ Michel Marcus, Nov 12 2022
    
  • Python
    from math import prod
    def sp(n): d = list(map(int, str(n))); return sum(d) + prod(d)
    def ok(n): return any(m + sp(m) == n for m in range(n))
    print([k for k in range(111) if ok(k)]) # Michael S. Branicky, Dec 19 2022

Formula

a(n) ~ kn with k approximately 1.108374, see comments. - Charles R Greathouse IV, Nov 16 2022

A147816 Concatenation of n digits 1 and 2(n-1) digits 0.

Original entry on oeis.org

1, 1100, 1110000, 1111000000, 1111100000000, 1111110000000000, 1111111000000000000, 1111111100000000000000, 1111111110000000000000000, 1111111111000000000000000000, 1111111111100000000000000000000, 1111111111110000000000000000000000
Offset: 1

Views

Author

Omar E. Pol, Nov 13 2008

Keywords

Comments

a(n) is also A016152(n) written in base 2.

Examples

			n ...... a(n)
1 ....... 1
2 ...... 1100
3 ..... 1110000
4 .... 1111000000
5 ... 1111100000000
		

Crossrefs

Programs

  • Mathematica
    Array[(10^#-1)*10^(2*#-2)/9 &, 20] (* or *)
    LinearRecurrence[{1100, -100000}, {1, 1100}, 20] (* Paolo Xausa, Feb 27 2024 *)
  • PARI
    Vec(x/((100*x-1)*(1000*x-1))  + O(x^100)) \\ Colin Barker, Sep 16 2013

Formula

a(n) = A138119(n)/10.
a(n) = 1100*a(n-1)-100000*a(n-2). G.f.: x / ((100*x-1)*(1000*x-1)). - Colin Barker, Sep 16 2013
Previous Showing 21-30 of 288 results. Next