A254871
Seventh partial sums of fifth powers (A000584).
Original entry on oeis.org
1, 39, 495, 3705, 19995, 85917, 311493, 989235, 2823990, 7383610, 17931498, 40889862, 88304970, 181852230, 359140470, 683363994, 1257722271, 2246496825, 3905261425, 6623425575, 10983195405, 17840105595, 28431558675, 44521334325, 68589834300, 104081944356
Offset: 1
Second differences: 30, 180, 570, 1320, 2550, ... (A068236)
First differences: 1, 31, 211, 781, 2101, 4651, ... (A022521)
------------------------------------------------------------------------
The fifth powers: 1, 32, 243, 1024, 3125, 7776, ... (A000584)
------------------------------------------------------------------------
First partial sums: 1, 33, 276, 1300, 4425, 12201, ... (A000539)
Second partial sums: 1, 34, 310, 1610, 6035, 18236, ... (A101092)
Third partial sums: 1, 35, 345, 1955, 7990, 26226, ... (A101099)
Fourth partial sums: 1, 36, 381, 2336, 10326, 36552, ... (A254644)
Fifth partial sums: 1, 37, 418, 2754, 13080, 49632, ... (A254682)
Sixth partial sums: 1, 38, 456, 3210, 16290, 65922, ... (A254471)
Seventh partial sums: 1, 39, 495, 3705, 19995, 85917, ... (this sequence)
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Cf.
A000539,
A000584,
A022521,
A101092,
A101099,
A254471,
A254644,
A254682,
A254869,
A254870,
A254872.
-
[n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)*(7+n)*(-21+49*n +56*n^2+14*n^3+n^4)/3991680: n in [1..30]]; // Vincenzo Librandi, Feb 19 2015
-
Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (6 + n) (7 + n) ((-21 + 49 n + 56 n^2 + 14 n^3 + n^4)/3991680), {n, 23}] (* or *)
CoefficientList[Series[(- 1 - 26 x - 66 x^2 - 26 x^3 - x^4)/(- 1 + x)^13, {x, 0, 22}], x]
-
vector(50, n, n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(-21 + 49*n + 56*n^2 + 14*n^3 + n^4)/3991680) \\ Derek Orr, Feb 19 2015
A002594
a(n) = n^2*(16*n^4-20*n^2+7)/3.
Original entry on oeis.org
1, 244, 3369, 20176, 79225, 240276, 611569, 1370944, 2790801, 5266900, 9351001, 15787344, 25552969, 39901876, 60413025, 89042176, 128177569, 180699444, 250043401, 340267600, 456123801, 603132244, 787660369, 1017005376, 1299480625, 1644505876, 2062701369, 2565985744, 3167677801, 3882602100, 4727198401, 5719634944, 6879925569, 8230050676
Offset: 1
- F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- F. E. Croxton and D. J. Cowden, Applied General Statistics, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1955 [Annotated scans of just pages 742-743]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
The old definition was wrong, entry revised by
N. J. A. Sloane, Jun 10 2012
A123094
Sum of first n 12th powers.
Original entry on oeis.org
0, 1, 4097, 535538, 17312754, 261453379, 2438235715, 16279522916, 84998999652, 367428536133, 1367428536133, 4505856912854, 13421957361110, 36720042483591, 93413954858887, 223160292749512, 504635269460168, 1087257506689929, 2244088888116105, 4457403807182266
Offset: 0
Sequences of the form Sum_{j=0..n} j^m :
A000217 (m=1),
A000330 (m=2),
A000537 (m=3),
A000538 (m=4),
A000539 (m=5),
A000540 (m=6),
A000541 (m=7),
A000542 (m=8),
A007487 (m=9),
A023002 (m=10),
A123095 (m=11), this sequence (m=12),
A181134 (m=13).
-
[(&+[j^12: j in [0..n]]): j in [0..30]]; // G. C. Greubel, Jul 21 2021
-
[seq(add(i^12, i=1..n), n=0..18)];
-
Table[Sum[k^12, {k, n}], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
Accumulate[Range[0,30]^12] (* Harvey P. Dale, Apr 26 2011 *)
-
A123094_list, m = [0], [479001600, -2634508800, 6187104000, -8083152000, 6411968640, -3162075840, 953029440, -165528000, 14676024, -519156, 4094, -1, 0 , 0]
for _ in range(10**2):
for i in range(13):
m[i+1]+= m[i]
A123094_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
-
[bernoulli_polynomial(n,13)/13 for n in range(1, 30)] # Zerinvary Lajos, May 17 2009
A123095
Sum of first n 11th powers.
Original entry on oeis.org
0, 1, 2049, 179196, 4373500, 53201625, 415998681, 2393325424, 10983260016, 42364319625, 142364319625, 427675990236, 1170684360924, 2962844754961, 7012409924625, 15662165784000, 33254351828416, 67526248136049, 131794658215281, 248284917113500, 453084917113500
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Sequences of the form Sum_{j=0..n} j^m :
A000217 (m=1),
A000330 (m=2),
A000537 (m=3),
A000538 (m=4),
A000539 (m=5),
A000540 (m=6),
A000541 (m=7),
A000542 (m=8),
A007487 (m=9),
A023002 (m=10), this sequence (m=11),
A123094 (m=12),
A181134 (m=13).
-
[(&+[j^11: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Jul 21 2021
-
[seq(add(i^11, i=1..n), n=0..20)];
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^11 od: seq(a[n], n=0..13); # Zerinvary Lajos, Feb 22 2008
-
Table[Sum[k^11, {k, n}], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
Accumulate[Range[0,20]^11] (* Harvey P. Dale, Sep 17 2021 *)
-
A123095_list, m = [0], [39916800, -199584000, 419126400, -479001600, 322494480, -129230640, 29607600, -3498000, 171006, -2046, 1, 0 , 0]
for _ in range(10**2):
for i in range(12):
m[i+1]+= m[i]
A123095_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
-
[(bernoulli_polynomial(n+1, 12) - bernoulli(12))/12 for n in (0..30)] # G. C. Greubel, Jul 21 2021
A135276
a(0)=0, a(1)=1; for n>1, a(n) = a(n-1) + n^0 if n odd, a(n) = a(n-1) + n^1 if n is even.
Original entry on oeis.org
0, 1, 3, 4, 8, 9, 15, 16, 24, 25, 35, 36, 48, 49, 63, 64, 80, 81, 99, 100, 120, 121, 143, 144, 168, 169, 195, 196, 224, 225, 255, 256, 288, 289, 323, 324, 360, 361, 399, 400, 440, 441, 483, 484, 528, 529, 575, 576, 624, 625, 675, 676, 728, 729, 783, 784, 840, 841, 899, 900, 960, 961
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Girtrude Hamm, Classification of lattice triangles by their two smallest widths, arXiv:2304.03007 [math.CO], 2023.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
-
[(2*n^2+6*n+1+(2*n-1)*(-1)^n)/8 : n in [0..100]]; // Wesley Ivan Hurt, Mar 22 2016
-
A135276:=n->( 2*n^2 + 6*n + 1 + (2*n-1)*(-1)^n )/8: seq(A135276(n), n=0..100); # Wesley Ivan Hurt, Mar 22 2016
-
a = {}; r = 0; s = 1; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 0, 100}]; a (* Artur Jasinski *)
LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 3, 4, 8}, 50] (* G. C. Greubel, Oct 08 2016 *)
-
A135276(n)=if(n%2,((n+1)/2)^2,(n/2+1)^2-1) \\ M. F. Hasler, May 17 2008
-
my(x='x+O('x^200)); concat(0, Vec(x*(1+2*x-x^2)/((1+x)^2*(1-x)^3))) \\ Altug Alkan, Mar 23 2016
A181134
Sum of 13th powers: a(n) = Sum_{j=0..n} j^13.
Original entry on oeis.org
0, 1, 8193, 1602516, 68711380, 1289414505, 14350108521, 111239118928, 660994932816, 3202860761145, 13202860761145, 47725572905076, 154718778284148, 457593884876401, 1251308658130545, 3197503726489920
Offset: 0
- Bruno Berselli, Table of n, a(n) for n = 0..10000.
- Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian), 2008.
- Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
Sequences of the form Sum_{j=0..n} j^m :
A000217 (m=1),
A000330 (m=2),
A000537 (m=3),
A000538 (m=4),
A000539 (m=5),
A000540 (m=6),
A000541 (m=7),
A000542 (m=8),
A007487 (m=9),
A023002 (m=10),
A123095 (m=11),
A123094 (m=12),
A181134 (m=13).
-
[(&+[j^13: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Jul 21 2021
-
A181134 := proc(n) (bernoulli(14,n+1) - bernoulli(14))/14 ; end proc: seq(A181134(n), n=0..10); # R. J. Mathar, Oct 14 2010
-
Accumulate[Range[0,20]^13] (* Harvey P. Dale, Oct 30 2017 *)
-
A181134_list, m = [0], [6227020800, -37362124800, 97037740800, -142702560000, 130456085760, -76592355840, 28805736960, -6711344640, 901020120, -60780720, 1569750, -8190, 1, 0 , 0]
for _ in range(10**2):
for i in range(14):
m[i+1]+= m[i]
A181134_list.append(m[-1]) # Chai Wah Wu, Nov 06 2014
-
[(bernoulli_polynomial(n+1, 14) - bernoulli(14))/14 for n in (0..30)] # G. C. Greubel, Jul 21 2021
A218116
G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^6 * y^k] * x^n/n ) = Sum_{n>=0,k=0..n} T(n,k)*x^n*y^k, as a triangle of coefficients T(n,k) read by rows.
Original entry on oeis.org
1, 1, 1, 1, 33, 1, 1, 276, 276, 1, 1, 1300, 12695, 1300, 1, 1, 4425, 221495, 221495, 4425, 1, 1, 12201, 2185350, 11534720, 2185350, 12201, 1, 1, 29008, 14794261, 285715550, 285715550, 14794261, 29008, 1, 1, 61776, 76579851, 4276969276, 15781532964
Offset: 0
G.f.: A(x,y) = 1 + (1+y)*x + (1+33*y+y^2)*x^2 + (1+276*y+276*y^2+y^3)*x^3 + (1+1300*y+12695*y^2+1300*y^3+y^4)*x^4 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 2^6*y + y^2)*x^2/2
+ (1 + 3^6*y + 3^6*y^2 + y^3)*x^3/3
+ (1 + 4^6*y + 6^6*y^2 + 4^6*y^3 + y^4)*x^4/4
+ (1 + 5^6*y + 10^6*y^2 + 10^6*y^3 + 5^6*y^4 + y^5)*x^5/5 +...
Triangle begins:
1;
1, 1;
1, 33, 1;
1, 276, 276, 1;
1, 1300, 12695, 1300, 1;
1, 4425, 221495, 221495, 4425, 1;
1, 12201, 2185350, 11534720, 2185350, 12201, 1;
1, 29008, 14794261, 285715550, 285715550, 14794261, 29008, 1;
1, 61776, 76579851, 4276969276, 15781532964, 4276969276, 76579851, 61776, 1;
1, 120825, 324104715, 44480357175, 478591541712, 478591541712, 44480357175, 324104715, 120825, 1; ...
Note that column 1 forms the sum of fifth powers (A000539).
-
{T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^6*y^j)*x^m/m)+O(x^(n+1))), n, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
A253475
Indices of centered square numbers (A001844) which are also centered hexagonal numbers (A003215).
Original entry on oeis.org
1, 6, 55, 540, 5341, 52866, 523315, 5180280, 51279481, 507614526, 5024865775, 49741043220, 492385566421, 4874114620986, 48248760643435, 477613491813360, 4727886157490161, 46801248083088246, 463284594673392295, 4586044698650834700, 45397162391834954701
Offset: 1
6 is in the sequence because the 6th centered square number is 61, which is also the 5th centered hexagonal number.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
- Editors, L'Intermédiaire des Mathématiciens, Query 4500: The equation x(x+1)/2 = y*(y+1)/3, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
- Index entries for linear recurrences with constant coefficients, signature (11,-11,1).
-
LinearRecurrence[{11, -11, 1}, {1, 6, 55}, 25] (* Paolo Xausa, May 30 2025 *)
-
Vec(x*(5*x-1)/((x-1)*(x^2-10*x+1)) + O(x^100))
A259181
a(n) = n*(n+1)*(n+2)*(n+3)*(2*n^2+6*n+7)/360.
Original entry on oeis.org
0, 1, 9, 43, 147, 406, 966, 2058, 4026, 7359, 12727, 21021, 33397, 51324, 76636, 111588, 158916, 221901, 304437, 411103, 547239, 719026, 933570, 1198990, 1524510, 1920555, 2398851, 2972529, 3656233, 4466232, 5420536, 6539016, 7843528, 9358041, 11108769
Offset: 0
a(0) = 0; a(1) = 1*1; a(2) = 4*1+1*5 = 9; a(3) = 9*1+4*5+1*14 = 43.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Luce ETIENNE, illustration of initial terms
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 14.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Cf.
A060060: (1/6)*Sum_{i=0..n} (i+1)*(i+2)*(2*i+3)*i^2.
-
vector(100, n, n--; n*(n+1)*(n+2)*(n+3)*(2*n^2+6*n+7)/360) \\ Altug Alkan, Nov 08 2015
-
concat(0, Vec(-x*(x+1)^2 / (x-1)^7 + O(x^100))) \\ Colin Barker, Nov 08 2015
A140144
a(1)=1, a(n)=a(n-1)+n^1 if n odd, a(n)=a(n-1)+ n^0 if n is even.
Original entry on oeis.org
1, 2, 5, 6, 11, 12, 19, 20, 29, 30, 41, 42, 55, 56, 71, 72, 89, 90, 109, 110, 131, 132, 155, 156, 181, 182, 209, 210, 239, 240, 271, 272, 305, 306, 341, 342, 379, 380, 419, 420, 461, 462, 505, 506, 551, 552, 599, 600, 649, 650, 701, 702, 755, 756, 811, 812, 869
Offset: 1
-
a = {}; r = 1; s = 0; Do[k = 0; Do[k = k + (Sin[Pi m/2]^2) m^r + (Cos[Pi m/2]^2) m^s, {m, 1, n}]; AppendTo[a, k], {n, 1, 100}]; a
Comments