cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 76 results. Next

A018211 Alkane (or paraffin) numbers l(10,n).

Original entry on oeis.org

1, 4, 20, 60, 170, 396, 868, 1716, 3235, 5720, 9752, 15912, 25236, 38760, 58200, 85272, 122661, 173052, 240460, 328900, 444158, 592020, 780572, 1017900, 1315015, 1682928, 2136304, 2689808, 3362600, 4173840, 5148144, 6310128
Offset: 0

Views

Author

N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

Comments

Equals (1/2) * ((1, 8, 36, 120, 330, 792,...) + (1, 0, 4, 0, 10, 0, 20,...)); where (1, 8, 36,..) = A000580 = C(n,7), and (1, 4, 10,...) = the Tetrahedral numbers.

References

  • S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
  • Winston C. Yang (paper in preparation).

Crossrefs

Cf. A282011.

Programs

  • Maple
    a:= n-> (Matrix([[1, 0$7, -1, -4, -20, -60]]). Matrix(12, (i,j)-> `if`(i=j-1, 1, `if`(j=1, [4, -2, -12, 17, 8, -28, 8, 17, -12, -2, 4, -1][i], 0)))^n)[1,1]: seq(a(n), n=0..31); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    LinearRecurrence[{4, -2, -12, 17, 8, -28, 8, 17, -12, -2, 4, -1},{1, 4, 20, 60, 170, 396, 868, 1716, 3235, 5720, 9752, 15912},32] (* Ray Chandler, Sep 23 2015 *)

Formula

G.f.: (1+6*x^2+x^4)/((1-x)^4*(1-x^2)^4). [ N. J. A. Sloane ]
l(c, r) = 1/2 binomial(c+r-3, r) + 1/2 d(c, r), where d(c, r) is binomial((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, binomial((c + r - 4)/2, r/2) if c is even and r is even, binomial((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
a(n) = (1/(2*7!))*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7) + (1/3)*(1/2^5)*(n+2)*(n+4)*(n+6)*(1/2)*(1+(-1)^n) [Yosu Yurramendi Jun 23 2013]

A034877 Rows of (Pascal's triangle - Losanitsch's triangle) (n >= 0, k >= 0).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 4, 4, 2, 3, 6, 10, 6, 3, 3, 9, 16, 16, 9, 3, 4, 12, 28, 32, 28, 12, 4, 4, 16, 40, 60, 60, 40, 16, 4, 5, 20, 60, 100, 126, 100, 60, 20, 5, 5, 25, 80, 160, 226, 226, 160, 80, 25, 5, 6, 30, 110, 240, 396, 452, 396, 240, 110, 30, 6, 6, 36, 140, 350, 636, 848
Offset: 0

Views

Author

Keywords

Comments

Same as A034852, but omitting the border of 0's.

Examples

			Triangle begins:
  1;
  1, 1;
  2, 2,  2;
  2, 4,  4,  2;
  3, 6, 10,  6, 3;
  3, 9, 16, 16, 9, 3;
  ...
		

References

  • S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.

Crossrefs

Row sums are essentially A032085. Central column is A032095.

Programs

  • Haskell
    a034877 n k = a034877_tabl !! n !! k
    a034877_row n = a034877_tabl !! n
    a034877_tabl = map (init . tail) $ drop 2 a034852_tabl
    -- Reinhard Zumkeller, Dec 16 2013

Extensions

More terms from James Sellers, May 04 2000

A086200 Number of unrooted steric quartic trees with 2n (unlabeled) nodes and possessing a bicentroid; number of 2n-carbon alkanes C(2n)H(4n +2) with a bicentroid when stereoisomers are regarded as different.

Original entry on oeis.org

1, 3, 15, 66, 406, 2775, 19900, 152076, 1206681, 9841266, 82336528, 702993756, 6105180250, 53822344278, 480681790786, 4342078862605, 39621836138886, 364831810979041, 3386667673687950, 31669036266203766
Offset: 1

Views

Author

Steve Strand (snstrand(AT)comcast.net), Aug 28 2003

Keywords

Comments

The degree of each node is <= 4.
A bicentroid is an edge which connects two subtrees of exactly m/2 nodes, where m is the number of nodes in the tree. If a bicentroid exists it is unique. Clearly trees with an odd number of nodes cannot have a bicentroid.
Regarding stereoisomers as different means that only the alternating group A_4 acts at each node, not the full symmetric group S_4. See A010373 for the analogous sequence when stereoisomers are not counted as different.

Crossrefs

For even n A000628(n) = A086194(n) + a(n/2), for odd n A000628(n) = A086194(n), since every tree has either a centroid or a bicentroid but not both.

Formula

G.f.: replace each term x in g.f. for A000625 by x(x+1)/2. Interpretation: ways to pick 2 specific radicals (order not important) from all n carbon radicals is number of 2n carbon bicentered alkanes (join the two radicals with an edge).

A125064 Number of simple graphs on at most 16 unlabeled vertices with maximal degree at most 4 with a single cycle of length 16-n.

Original entry on oeis.org

1, 2, 11, 39, 169, 534, 1612, 3894, 8771, 16307, 29391, 43291, 69429, 83571
Offset: 0

Views

Author

Parthasarathy Nambi, Jan 05 2007

Keywords

Comments

In the terms of the paper by Hendrickson and Parks, a(n) is the number of monocyclic skeletons with up to 16 nodes with a ring of size 16-n.

Crossrefs

Formula

Sum_n a(n) = Sum_{k=3..16} A036671(k).

Extensions

Edited by Andrey Zabolotskiy, Feb 02 2025

A006010 Number of paraffins (see Losanitsch reference for precise definition).

Original entry on oeis.org

1, 5, 20, 52, 117, 225, 400, 656, 1025, 1525, 2196, 3060, 4165, 5537, 7232, 9280, 11745, 14661, 18100, 22100, 26741, 32065, 38160, 45072, 52897, 61685, 71540, 82516, 94725, 108225, 123136, 139520, 157505, 177157, 198612, 221940, 247285, 274721, 304400
Offset: 1

Views

Author

Keywords

Comments

This is also the square of the sum of the odd numbers plus the square of the sum of the even numbers, up to n. E.g., a(4) = (1+3)^2 + (2+4)^2 = 52. - Scott R. Shannon, Feb 20 2019
The area of a square whose side is a segment connecting the ends of a broken line (snake), the adjacent links of which are perpendicular and equal to the numbers 1, 2, 3, 4, ..., n. For example, a(5) = 9^2 + 6^2 = 117. - Nicolay Avilov, Aug 02 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005994, A186424 (2nd differences), A317614 (1st differences), A335648 (partial sums).

Programs

  • Mathematica
    CoefficientList[Series[-(x^4 + 2 x^3 + 6 x^2 + 2 x + 1)/((x - 1)^5 (x + 1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 14 2013 *)
    LinearRecurrence[{3,-1,-5,5,1,-3,1},{1,5,20,52,117,225,400},40] (* Harvey P. Dale, Dec 13 2018 *)
  • PARI
    Vec(-x*(x^4+2*x^3+6*x^2+2*x+1)/((x-1)^5*(x+1)^2) + O(x^100)) \\ Colin Barker, Oct 05 2015

Formula

Sum of [ 1, 3, 9, ... ](A005994) + [ 0, 0, 1, 3, 9, ... ] + 2*[ 0, 1, 5, 15, 35, ... ](binomial(n, 4)).
If n is odd then a(n) = (1/8) * (n^4 + 2*n^3 + 2*n^2 + 2*n + 1) = Det(Transpose[M]*M) where M is the 2 X 3 matrix whose rows are [(n-1)/2, (n-1)/2], [(n-1)/2 + 1, 0] and [(n-1)/2 + 1, (n-1)/2 + 1]. If n is even then a(n) = (1/8) * (n^4 + 2*n^3 + 2*n^2) = Det(Transpose[M]*M) where M is the 2 X 3 matrix whose rows are [n/2, 0], [n/2, n/2] and [n/2 + 1, 0]. - Gerald McGarvey, Oct 30 2007
G.f.: -x*(x^4+2*x^3+6*x^2+2*x+1) / ((x-1)^5*(x+1)^2). - Colin Barker, Mar 20 2013
E.g.f.: (x*(7 + 15*x + 8*x^2 + x^3)*cosh(x) + (1 + 5*x + 15*x^2 + 8*x^3 + x^4)*sinh(x))/8. - Stefano Spezia, Jul 08 2020

Extensions

More terms from David W. Wilson

A018214 Alkane (or paraffin) numbers l(13,n).

Original entry on oeis.org

1, 6, 36, 146, 511, 1512, 4032, 9752, 21942, 46252, 92504, 176484, 323554, 572264, 981024, 1634776, 2656511, 4218786, 6562556, 10016006, 15024009, 22177584, 32258304, 46282704, 65567164, 91792792, 127097712, 174169352
Offset: 0

Views

Author

N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

References

  • S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
  • Winston C. Yang (paper in preparation).

Programs

  • Magma
    [(1/(2*Factorial(10)))*(n+2)*(n+4)*(n+6)*(n+8)*(n+10)*((n+1)*(n+3)*(n+5)*(n+7)*(n+9)+1*3*5*7*9)-(1/6)*(1/2^8)*(n^4+22*n^3+170*n^2+539*n+579)*(1/2)*(1-(-1)^n): n in [0..40]]; // Vincenzo Librandi, Oct 16 2013
  • Mathematica
    CoefficientList[Series[-(5 x^4 + 10 x^2 + 1)/((x - 1)^11 (x + 1)^5), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 16 2013 *)
    LinearRecurrence[{6, -10, -10, 50, -34, -66, 110, 0, -110, 66, 34, -50, 10, 10, -6, 1},{1, 6, 36, 146, 511, 1512, 4032, 9752, 21942, 46252, 92504, 176484, 323554, 572264, 981024, 1634776},28] (* Ray Chandler, Sep 23 2015 *)

Formula

l(c, r) = 1/2 C(c+r-3, r) + 1/2 d(c, r), where d(c, r) is C((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, C((c + r - 4)/2, r/2) if c is even and r is even, C((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
G.f.: -(5*x^4+10*x^2+1)/((x-1)^11*(x+1)^5). [Colin Barker, Aug 06 2012]
a(n) = (1/(2*10!))*(n+2)*(n+4)*(n+6)*(n+8)*(n+10)*((n+1)*(n+3)*(n+5)*(n+7)*(n+9) + 1*3*5*7*9)- (1/6)*(1/2^8)*(n^4+22*n^3+170*n^2+539*n+579)*(1/2)*(1-(-1)^n). [Yosu Yurramendi, Jun 23 2013]

A000673 Number of bicentered 3-valent (or boron, or binary) trees with n nodes.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 2, 6, 8, 18, 30, 67, 127, 275, 551, 1192, 2507, 5475, 11820, 26007, 57077, 126686, 281625, 630660, 1416116, 3195784, 7232624, 16430563, 37429146, 85528079, 195940960, 450074270, 1036226173, 2391193488, 5529420585
Offset: 0

Views

Author

Keywords

References

  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 451).
  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    n = 50; (* algorithm from Rains and Sloane *)
    S2[f_,h_,x_] := f[h,x]^2/2 + f[h,x^2]/2;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S2[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + (T[h,z] - T[h-1,z])^2/2 + (T[h,z^2] - T[h-1,z^2])/2, z],n+1], {h,0,n/2}] (* Robert A. Russell, Sep 15 2018 *)

A000675 Number of centered 3-valent (or boron, or binary) trees with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 4, 5, 10, 19, 36, 68, 138, 277, 581, 1218, 2591, 5545, 12026, 26226, 57719, 127685, 284109, 634919, 1425516, 3212890, 7269605, 16504439, 37592604, 85876345, 196717882, 451768247, 1039990913, 2399476030, 5547849750
Offset: 0

Views

Author

Keywords

References

  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 451).
  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    n = 50; (* algorithm from Rains and Sloane *)
    S2[f_,h_,x_] := f[h,x]^2/2 + f[h,x^2]/2;
    S3[f_,h_,x_] := f[h,x]^3/6 + f[h,x] f[h,x^2]/2 + f[h,x^3]/3;
    T[-1,z_] := 1;  T[h_,z_] := T[h,z] = Table[z^k, {k,0,n}].Take[CoefficientList[z^(n+1) + 1 + S2[T,h-1,z]z, z], n+1];
    Sum[Take[CoefficientList[z^(n+1) + S3[T,h-1,z]z - S3[T,h-2,z]z - (T[h-1,z] - T[h-2,z]) (T[h-1,z]-1),z], n+1], {h,1,n/2}] + PadRight[{1,1}, n+1] (* Robert A. Russell, Sep 15 2018 *)

A005996 G.f.: 2*(1-x^3)/((1-x)^5*(1+x)^2).

Original entry on oeis.org

2, 6, 16, 30, 54, 84, 128, 180, 250, 330, 432, 546, 686, 840, 1024, 1224, 1458, 1710, 2000, 2310, 2662, 3036, 3456, 3900, 4394, 4914, 5488, 6090, 6750, 7440, 8192, 8976, 9826, 10710, 11664, 12654, 13718, 14820, 16000, 17220, 18522, 19866, 21296, 22770, 24334
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of triples (w,x,y) having all terms in {0,...,n} and wClark Kimberling, Jun 10 2012
a(n) is also the sum of all elements of the square matrix M(n-1) = M1(n-1) x M2(n-1), where M1(n) is the square matrix with elements m1(i,j)= (1+(-1)^(i+j+1))/2, A057212; and M2(n) is the square matrix given by m2(i,j)= (1+(-1)^(i+j))/2, A057212. - Enrique Pérez Herrero, Jun 15 2013
Also the number of longest paths in the (n+1)-web graph for n > 2. - Eric W. Weisstein, Mar 27 2018
a(n) also is the number of undirected rook moves on an n X n chessboard, taken up to 180 degree rotation and axial reflections (horizontal and vertical), for n >= 2. - Hilko Koning, Aug 16 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially twice A034828.

Programs

  • Mathematica
    Table[(1/4)*(1 + n)*(-2 + 5*n + n^2 + 2*Ceiling[1/2 - n/2] - 4*Floor[n/2]), {n, 1, 200}] (* Enrique Pérez Herrero, Aug 03 2012 *)
    CoefficientList[Series[2 (1 - x^3)/((1 - x)^5 (1 + x)^2), {x, 0, 40}], x] (* Harvey P. Dale, Apr 08 2013 *)
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {2, 6, 16, 30, 54, 84}, 40] (* Harvey P. Dale, Apr 08 2013 *)
    Table[(n + 1) (2 n (n + 2) + 1 - (-1)^n)/8, {n, 20}] (* Eric W. Weisstein, Mar 27 2018 *)

Formula

a(n) = 2*(A006918(n) + A006918(n-1) + A006918(n-2)), n>1. - Ralf Stephan, Apr 26 2003
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6), with a(1)=2, a(2)=6, a(3)=16, a(4)=30, a(5)=54, a(6)=84. - Harvey P. Dale, Apr 08 2013
From Ayoub Saber Rguez, Nov 20 2021: (Start)
a(n) = A143785(n) - A002620(n+1).
a(n) = A128624(n) + A002620(n+1).
a(n) = (n^3 + 3*n^2 + 2*n + 1 + n*(n mod 2) - ((n+1) mod 2))/4. (End)

Extensions

Edited by N. J. A. Sloane, Aug 03 2012

A006006 Weight distribution of [ 128,29,32 ] 2nd-order Reed-Muller code.

Original entry on oeis.org

1, 0, 0, 0, 10668, 0, 5291328, 112881664, 300503590, 112881664, 5291328, 0, 10668, 0, 0, 0, 1
Offset: 0

Views

Author

Keywords

Examples

			x^128+10668*x^96*y^32+5291328*x^80*y^48+112881664*x^72*y^56+300503590*x^64*y^64+112881664*x^56*y^72+5291328*x^48*y^80+10668*x^32*y^96+y^128
The weight distribution is:
i A_i
0 1
32 10668
48 5291328
56 112881664
64 300503590
72 112881664
80 5291328
96 10668
128 1
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978.

Programs

  • Magma
    R := ReedMullerCode(2,7); W := WeightEnumerator(R); W;
Previous Showing 51-60 of 76 results. Next