cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 74 results. Next

A000568 Number of outcomes of unlabeled n-team round-robin tournaments.

Original entry on oeis.org

1, 1, 1, 2, 4, 12, 56, 456, 6880, 191536, 9733056, 903753248, 154108311168, 48542114686912, 28401423719122304, 31021002160355166848, 63530415842308265100288, 244912778438520759443245824, 1783398846284777975419600287232, 24605641171260376770598003978281472
Offset: 0

Views

Author

Keywords

Comments

Harary and Palmer give incorrect values for a(24) and a(25); the correct values are a(24) = 195692027657521876084316842660833482785173437775365039898624 and a(25) = 131326696677895002131450257709457767457170027052967027982788816896. - Vladeta Jovovic, Apr 08 2001
a(n) appears to be the number of even graphs with n vertices; see comment in A334335. - Pontus von Brömssen, May 05 2020 [This has been proved by Royle et al. 2023. - Pontus von Brömssen, Apr 06 2022]

References

  • R. L. Davis, Structure of dominance relations, Bull. Math. Biophys., 16 (1954), 131-140.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 157 and 523.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 126 and 245.
  • J. W. Moon, Topics on Tournaments. Holt, NY, 1968, p. 87.
  • K. B. Reid and L. W. Beineke "Tournaments", pp. 169-204 in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006125 for the labeled analog, A051337.
Euler transform of A334335.

Programs

  • Maple
    with(combinat):with(numtheory): for n from 1 to 30 do p:=partition(n): s:=0:for k from 1 to nops(p) do ex:=1:for i from 1 to nops(p[k]) do if p[k][i] mod 2=0 then ex:=0:break:fi:od:
    if ex=1 then q:=convert(p[k],multiset): for i from 1 to n do a(i):=0:od:for i from 1 to nops(q) do a(q[i][1]):=q[i][2]:od:
    c:=1:ord:=1:for i from 1 to n do c:=c*a(i)!*i^a(i): if a(i)<>0 then ord:=lcm(ord,i):fi:od: g:=0:for d from 1 to ord do if ord mod d=0 then g1:=0:for del from 1 to n do if d mod del=0 then g1:=g1+del*a(del):fi:od:g:=g+phi(ord/d)*g1*(g1-1):fi:od: s:=s+2^(g/ord/2)/c:fi:
    od: print(n,s); od: # Vladeta Jovovic
  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i-1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]], 2], {i, 1, Length[v]}];
    oddp[v_] := (For[i = 1, i <= Length[v], i++, If[BitAnd[v[[i]], 1] == 0, Return[0]]]; 1);
    a[n_] := a[n] = (s = 0; Do[If[oddp[p] == 1, s += permcount[p]*2^edges[p]], {p, IntegerPartitions[n]}]; s/n!);
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 13 2017, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
    oddp(v) = {for(i=1, #v, if(bitand(v[i],1)==0, return(0)));1}
    a(n) = {my(s=0); forpart(p=n, if(oddp(p), s+=permcount(p)*2^edges(p))); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import product
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A000568(n): return int(sum(Fraction(1<<(sum(p[r]*p[s]*gcd(r,s) for r,s in product(p.keys(),repeat=2))-sum(p.values())>>1),prod(q**p[q]*factorial(p[q]) for q in p)) for p in partitions(n) if all(q&1 for q in p))) # Chai Wah Wu, Jul 01 2024

Formula

Davis's formula: a(n) = Sum_{j} (1/(Product (k^(j_k) (j_k)!))) * 2^{t_j},
where j runs through all partitions of n into odd parts, say with j_1 parts of size 1, j_3 parts of size 3, etc.,
and t_j = (1/2)*[ Sum_{r=1..n, s=1..n} j_r j_s gcd(r,s) - Sum_{r} j_r ].

Extensions

More terms from Vladeta Jovovic

A000014 Number of series-reduced trees with n nodes.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 2, 2, 4, 5, 10, 14, 26, 42, 78, 132, 249, 445, 842, 1561, 2988, 5671, 10981, 21209, 41472, 81181, 160176, 316749, 629933, 1256070, 2515169, 5049816, 10172638, 20543579, 41602425, 84440886, 171794492, 350238175, 715497037, 1464407113
Offset: 0

Views

Author

Keywords

Comments

Other terms for "series-reduced tree": (i) homeomorphically irreducible tree, (ii) homeomorphically reduced tree, (iii) reduced tree, (iv) topological tree.
In a series-reduced tree, vertices cannot have degree 2; they can be leaves or have >= 2 branches.

Examples

			G.f. = x + x^2 + x^4 + x^5 + 2*x^6 + 2*x^7 + 4*x^8 + 5*x^9 + 10*x^10 + ...
The star graph with n nodes (except for n=3) is a series-reduced tree. For n=6 the other series-reduced tree is shaped like the letter H. - _Michael Somos_, Dec 19 2014
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 284.
  • D. G. Cantor, personal communication.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62, Fig. 3.3.3.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 526.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000055 (trees), A001678 (series-reduced planted trees), A007827 (series-reduced trees by leaves), A271205 (series-reduced trees by leaves and nodes).

Programs

  • Maple
    with(powseries): with(combstruct): n := 30: Order := n+3: sys := {B = Prod(C,Z), S = Set(B,1 <= card), C = Union(Z,S)}:
    G001678 := (convert(gfseries(sys,unlabeled,x) [S(x)], polynom)) * x^2: G0temp := G001678 + x^2:
    G059123 := G0temp / x + G0temp - (G0temp^2+eval(G0temp,x=x^2))/(2*x):
    G000014 := ((x-1)/x) * G059123 + ((1+x)/x^2) * G0temp - (1/x^2) * G0temp^2:
    A000014 := 0,seq(coeff(G000014,x^i),i=1..n); # Ulrich Schimke (ulrschimke(AT)aol.com)
  • Mathematica
    a[n_] := If[n<1, 0, A = x/(1-x^2) + x*O[x]^n; For[k=3, k <= n-1, k++, A = A/(1 - x^k + x*O[x]^n)^SeriesCoefficient[A, k]]; s = ((Normal[A] /. x -> x^2) + O[x]^(2n))*(1-x) + A*(2-A)*(1+x); SeriesCoefficient[s, n]/2]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 02 2016, adapted from PARI *)
  • PARI
    {a(n) = my(A); if( n<1, 0, A = x / (1 - x^2) + x * O(x^n); for(k=3, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff( (subst(A, x, x^2) * (1 - x) + A * (2 - A) * (1 + x)) / 2, n))}; /* Michael Somos, Dec 19 2014 */

Formula

G.f.: A(x) = ((x-1)/x)*f(x) + ((1+x)/x^2)*g(x) - (1/x^2)*g(x)^2 where f(x) is g.f. for A059123 and g(x) is g.f. for A001678. [Harary and E. M. Palmer, p. 62, Eq. (3.3.10) with extra -(1/x^2)*Hbar(x)^2 term which should be there according to eq.(3.3.14), p. 63, with eq.(3.3.9)]. [corrected by Wolfdieter Lang, Jan 09 2001]
a(n) ~ c * d^n / n^(5/2), where d = A246403 = 2.189461985660850..., c = 0.684447272004914061023163279794145361469033868145768075109924585532604582794... - Vaclav Kotesovec, Aug 25 2014

A054923 Triangle read by rows: number of connected graphs with k >= 0 edges and n nodes (1<=n<=k+1).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 2, 3, 0, 0, 0, 1, 5, 6, 0, 0, 0, 1, 5, 13, 11, 0, 0, 0, 0, 4, 19, 33, 23, 0, 0, 0, 0, 2, 22, 67, 89, 47, 0, 0, 0, 0, 1, 20, 107, 236, 240, 106, 0, 0, 0, 0, 1, 14, 132, 486, 797, 657, 235, 0, 0, 0, 0, 0, 9, 138, 814, 2075, 2678, 1806, 551, 0, 0, 0, 0, 0, 5, 126, 1169, 4495, 8548, 8833, 5026, 1301
Offset: 0

Views

Author

Keywords

Comments

The diagonal n = k+1 is A000055(n). - Jonathan Vos Post, Aug 10 2008

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 1, 2;
  0, 0, 0, 2, 3;
  0, 0, 0, 1, 5   6;
  0, 0, 0, 1, 5, 13,  11;
  0, 0, 0, 0, 4, 19,  33,  23;
  0, 0, 0, 0, 2, 22,  67,  89,  47;
  0, 0, 0, 0, 1, 20, 107, 236, 240, 106;
  ... (so with 5 edges there's 1 graph with 4 nodes, 5 with 5 nodes and 6 with 6 nodes). [Typo corrected by Anders Haglund, Jul 08 2008]
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 93, Table 4.2.2; p. 241, Table A2.

Crossrefs

Main diagonal is A000055.
Subsequent diagonals give the number of connected unlabeled graphs with n nodes and n+k edges for k=0..2: A001429, A001435, A001436.
Cf. A002905 (row sums), A001349 (column sums), A008406, A046751 (transpose), A054924 (transpose), A046742 (w/o left column), A343088 (labeled).

Programs

  • PARI
    InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i), 1))}
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p,i->1+x^i)); s/n!}
    T(n)={Mat([Col(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])}
    {my(A=T(10)); for(n=1, #A, print(A[n,1..n]))} \\ Andrew Howroyd, Oct 23 2019

Extensions

a(83)-a(89) corrected by Andrew Howroyd, Oct 24 2019

A003049 Number of connected Eulerian graphs with n unlabeled nodes.

Original entry on oeis.org

1, 0, 1, 1, 4, 8, 37, 184, 1782, 31026, 1148626, 86539128, 12798435868, 3620169692289, 1940367005824561, 1965937435288738165, 3766548132138130650270, 13666503289976224080346733
Offset: 1

Views

Author

Keywords

Comments

These are connected graphs with every node of even degree (cf. A002854).

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 117.
  • Valery A. Liskovets, Enumeration of Euler graphs. (Russian), Vesci Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk 1970, No.6, 38-46 (1970). Math. Rev., Vol. 44, 1972, p. 1195, #6557.
  • R. W. Robinson, Enumeration of Euler graphs, pp. 147-153 of F. Harary, editor, Proof Techniques in Graph Theory. Academic Press, NY, 1969.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1979.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    A002854 = Import["https://oeis.org/A002854/b002854.txt", "Table"][[All, 2]];
    (* EulerInvTransform is defined in A022562 *)
    EulerInvTransform[A002854] (* Jean-François Alcover, Aug 27 2019, updated Mar 17 2020 *)
  • Python
    from functools import lru_cache
    from itertools import combinations
    from fractions import Fraction
    from math import prod, gcd, factorial
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A003049(n):
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<>1)-1)*r+(q*r*(r-1)>>1) for q, r in p.items())+any(q&1 for q in p),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
        @lru_cache(maxsize=None)
        def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
        return sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n # Chai Wah Wu, Jul 03 2024

Formula

Let B(x) = g.f. for A002854. Then g.f. A(x) for A003049 satisfies 1 + B(x) = exp(Sum_{n>=1} A(x^n)/n). - Robinson (1969).
Inverse Euler transform of A002854. (This is equivalent to the Robinson formula.) - Franklin T. Adams-Watters, Jul 24 2006
Let B(x) = g.f. for A002854. Then A(x) = Sum_{m >= 1} (mu(m)/m) * log(1 + B(x^m)), where mu(m) = A008683(m). (This is essentially a re-statement of the equation on p. 151 in Robinson (1969).) - Petros Hadjicostas, Feb 24 2021

Extensions

a(1)-a(26) were computed by R. W. Robinson
More terms from Vladeta Jovovic, Apr 18 2000

A033301 Number of 4-valent (or quartic) graphs with n nodes.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 2, 6, 16, 60, 266, 1547, 10786, 88193, 805579, 8037796, 86223660, 985883873, 11946592242, 152808993767, 2056701139136, 29051369533596, 429669276147047, 6640178380127244, 107026751932268789, 1796103830404560857, 31334029441145918974, 567437704731717802783
Offset: 0

Views

Author

Ronald C. Read

Keywords

Comments

Because the triangle A051031 is symmetric, a(n) is also the number of (n-5)-regular graphs on n vertices. - Jason Kimberley, Sep 22 2009

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.

Crossrefs

4-regular simple graphs: A006820 (connected), A033483 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), A005638 (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7).

Programs

Formula

Euler transform of A006820. - Martin Fuller, Dec 04 2006

Extensions

a(16) from Axel Kohnert (kohnert(AT)uni-bayreuth.de), Jul 24 2003
a(17)-a(19) from Jason Kimberley, Sep 12 2009
a(20)-a(21) from Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 25 2010
a(22) from Jason Kimberley, Oct 15 2011
a(22) corrected and a(23)-a(28) from Andrew Howroyd, Mar 08 2020

A322114 Regular triangle read by rows where T(n,k) is the number of unlabeled connected graphs with loops with n edges and k vertices, 1 <= k <= n+1.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 3, 2, 0, 0, 3, 6, 3, 0, 0, 2, 11, 14, 6, 0, 0, 1, 13, 35, 33, 11, 0, 0, 0, 10, 61, 112, 81, 23, 0, 0, 0, 5, 75, 262, 347, 204, 47, 0, 0, 0, 2, 68, 463, 1059, 1085, 526, 106, 0, 0, 0, 1, 49, 625, 2458, 4091, 3348, 1376, 235
Offset: 0

Views

Author

Gus Wiseman, Nov 26 2018

Keywords

Examples

			Triangle begins:
   1
   1   1
   0   1   1
   0   1   3   2
   0   0   3   6   3
   0   0   2  11  14   6
   0   0   1  13  35  33  11
Non-isomorphic representatives of the graphs counted in row 4:
  {{2}{3}{12}{13}}   {{4}{12}{23}{34}}   {{13}{24}{35}{45}}
  {{2}{3}{13}{23}}   {{4}{13}{23}{34}}   {{14}{25}{35}{45}}
  {{3}{12}{13}{23}}  {{4}{13}{24}{34}}   {{15}{25}{35}{45}}
                     {{4}{14}{24}{34}}
                     {{12}{13}{24}{34}}
                     {{14}{23}{24}{34}}
		

Crossrefs

Row sums are A191970. Last column is A000055.

Programs

  • PARI
    InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i), 1))}
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c+1)\2)*if(c%2, 1, t(c/2)))}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p,i->1+x^i)); s/n!}
    T(n)={Mat([Col(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])}
    {my(A=T(10)); for(n=1, #A, print(A[n,1..n]))} \\ Andrew Howroyd, Oct 22 2019

Extensions

Terms a(28) and beyond from Andrew Howroyd, Oct 22 2019

A076864 Number of connected loopless multigraphs with n edges.

Original entry on oeis.org

1, 1, 2, 5, 12, 33, 103, 333, 1183, 4442, 17576, 72810, 314595, 1410139, 6541959, 31322474, 154468852, 783240943, 4077445511, 21765312779, 118999764062, 665739100725, 3807640240209, 22246105114743, 132672322938379, 807126762251748
Offset: 0

Views

Author

N. J. A. Sloane, Nov 23 2002

Keywords

Comments

Inverse Euler transform of A050535.

Crossrefs

Programs

  • Mathematica
    A050535 = Cases[Import["https://oeis.org/A050535/b050535.txt", "Table"], {, }][[All, 2]];
    (* EulerInvTransform is defined in A022562 *)
    Join[{1}, EulerInvTransform[A050535 // Rest]] (* Jean-François Alcover, Feb 11 2020, updated Mar 17 2020 *)

Extensions

More terms from Sean A. Irvine, Oct 02 2011
Name and comment swapped by Gus Wiseman, Nov 28 2018
a(0)=1 prepended by Andrew Howroyd, Oct 23 2019

A191970 Number of connected graphs with n edges with loops allowed.

Original entry on oeis.org

1, 2, 2, 6, 12, 33, 93, 287, 940, 3309, 12183, 47133, 190061, 796405, 3456405, 15501183, 71681170, 341209173, 1669411182, 8384579797, 43180474608, 227797465130, 1229915324579, 6790642656907, 38311482445514, 220712337683628, 1297542216770482, 7779452884747298
Offset: 0

Views

Author

Alberto Tacchella, Jun 20 2011

Keywords

Comments

Inverse Euler transform of A053419.
From R. J. Mathar, Jul 25 2017: (Start)
The Multiset Transform gives the number of graphs with n edges (loops allowed) and k components (0<=k<=n):
1
0 2
0 2 3
0 6 4 4
0 12 15 6 5
0 33 36 24 8 6
0 93 111 64 33 10 7
0 287 324 207 92 42 12 8
0 940 1036 633 308 120 51 14 9
0 3309 3408 2084 966 409 148 60 16 10
0 12183 11897 6959 3243 1305 510 176 69 18 11
0 47133 43137 24415 10970 4432 1644 611 204 78 20 12
0 190061 163608 88402 38763 15125 5628 1983 712 232 87 22 13
0 796405 644905 332979 140671 53732 19316 6824 2322 813 260 96 24 14
0 3456405 2639871 1299054 529179 195517 68878 23515 8020 2661 914 288 105 26 15 (End)

Examples

			a(1)=2: Either one node with the edge equal to a loop, or two nodes connected by the edge. a(2)=2: Either three nodes on a chain connected by the two edges, or two nodes connected by an edge, one node with a loop. Apparently multi-loops are not allowed (?). - _R. J. Mathar_, Jul 25 2017
		

Crossrefs

Programs

  • PARI
    \\ See A322114 for InvEulerMT, G.
    seq(n)={vecsum([Vec(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])} \\ Andrew Howroyd, Oct 22 2019

Extensions

Terms a(25) and beyond from Andrew Howroyd, Oct 22 2019

A000220 Number of asymmetric trees with n nodes (also called identity trees).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 3, 6, 15, 29, 67, 139, 310, 667, 1480, 3244, 7241, 16104, 36192, 81435, 184452, 418870, 955860, 2187664, 5025990, 11580130, 26765230, 62027433, 144133676, 335731381, 783859852, 1834104934, 4300433063, 10102854473, 23778351222
Offset: 1

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 330.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 301 and 562.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 66, Eq. (3.3.22).
  • D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, pp. 386-88 describes methodology for generating similar sequence rapidly.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • A. J. Schwenk, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add(
          b(d)*d*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1))
        end:
    a:= n-> b(n)-(add(b(j)*b(n-j), j=0..n)+
           `if`(irem(n, 2)=0, b(n/2), 0))/2:
    seq(a(n), n=1..50);  # Alois P. Heinz, Feb 24 2015
  • Mathematica
    s[ n_, k_ ] := s[ n, k ]=a[ n+1-k ]+If[ n<2k, 0, -s[ n-k, k ] ]; a[ 1 ]=1; a[ n_ ] := a[ n ]=Sum[ a[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ a[ i ]-Sum[ a[ j ]a[ i-j ], {j, 1, i/2} ]+If[ OddQ[ i ], 0, a[ i/2 ](a[ i/2 ]-1)/2 ], {i, 1, 50} ] (* Robert A. Russell *)

Formula

G.f.: A(x)-A^2(x)/2-A(x^2)/2, where A(x) is g.f. for A004111.
a(n) ~ c * d^n / n^(5/2), where d = A246169 = 2.51754035263200389079535..., c = 0.29938828746578432274375484519722721162... . - Vaclav Kotesovec, Aug 25 2014

A003400 Number of asymmetric (not necessarily connected) graphs with n nodes.

Original entry on oeis.org

1, 0, 0, 0, 0, 8, 152, 3696, 135004, 7971848, 805364776, 144123121972
Offset: 1

Views

Author

Keywords

Comments

Number of simple graphs g on n nodes with |Aut(g)| = 1.

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 220, Section P3.4.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A124059 (connected simple asymmetric graphs).
Cf. A275867 (disconnected simple asymmetric graphs).
Cf. A000088 (simple graphs).

Programs

  • nauty
    for n in {1..10}; do geng -q ${n} | countg -q -a1 | grep altogether | awk '{print $1}'; done # - Sean A. Irvine, Apr 22 2015

Formula

a(n) = A124059(n) + A275867(n).

Extensions

a(8) and a(9) from Eric W. Weisstein, Jun 09 2004
a(10) and a(11) from Zoran Maksimovic, Vladeta Jovovic, Jan 21 2005
a(12) from Sean A. Irvine, Apr 22 2015
Previous Showing 21-30 of 74 results. Next