cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 84 results. Next

A065140 a(n) = 2^n*(2*n)!.

Original entry on oeis.org

1, 4, 96, 5760, 645120, 116121600, 30656102400, 11158821273600, 5356234211328000, 3278015337332736000, 2491291656372879360000, 2301953490488540528640000, 2541356653499348743618560000, 3303763649549153366704128000000, 4995290638118319890456641536000000
Offset: 0

Views

Author

Karol A. Penson, Oct 16 2001

Keywords

Comments

From Enrique Navarrete, Aug 29 2025: (Start)
For n > 0, 1/2*a(n) is the number of ways to seat 2*n people on linearly ordered benches placing an even number of people (>=2) on each bench.
For example, 1/2*a(4)=322560 since the number of ways are (number of people in parentheses):
1 bench (8): 40320 ways;
2 benches (6,2): 80640 ways;
2 benches (4,4): 40320 ways;
3 benches (4,2,2): 120960 ways;
4 benches (2,2,2,2): 40320 ways.
If the benches are not linearly ordered the number of ways is A088026.
If we seat an odd number of people on linearly ordered benches the number of ways is A005443. (End)

Crossrefs

Programs

  • Mathematica
    Table[2^n (2n)!,{n,0,15}] (* Harvey P. Dale, Nov 28 2011 *)
  • PARI
    { for (n=0, 100, write("b065140.txt", n, " ", 2^n*(2*n)!) ) } \\ Harry J. Smith, Oct 11 2009

Formula

Hypergeometric generating function, in Maple notation: 1/sqrt(1-8*x), i.e., a(0)=1, a(n)=round(evalf(subs(x=0, n!*diff(1/(sqrt(1-8*x)), x$n)))), for n>=1.
Integral representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x>=0} x^n*exp(-sqrt(x/2))/(2*sqrt(2*x)) dx, for n>=0.
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - 4*x*(k+1)*(2*k+1)/(4*x*(k+1)*(2*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013
From Amiram Eldar, Aug 05 2020: (Start)
Sum_{n>=0} 1/a(n) = cosh(sqrt(2)/2).
Sum_{n>=0} (-1)^n/a(n) = cos(sqrt(2)/2). (End)
From Alexandre Herrera, Apr 18 2025: (Start)
Sum_{n>=0} x^(4*n)*(-1)^(n)/a(2n) = cos(x/2)*cosh(x/2).
Sum_{n>=0} x^(4*n+2)*(-1)^(n)/a(2n+1) = sin(x/2)*sinh(x/2).
Sum_{n>=0} x^(2*n)*(-1)^(n)/a(n) = cos(x*sqrt(2)/2).
Sum_{n>=0} x^(2*n)/a(n) = cosh(x*sqrt(2)/2). (End)

A177283 Number of permutations of 2 copies of 1..n with all adjacent differences <= 2 in absolute value.

Original entry on oeis.org

1, 1, 6, 90, 660, 3846, 24326, 148146, 850920, 4788114, 26548704, 144707622, 778116870, 4140736398, 21836757474, 114262071558, 593931441790, 3069689137294, 15786994900896, 80840741811238, 412406022128206, 2096937750144962, 10631278302356284, 53761972675284874
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Crossrefs

Cf. A000680.

Formula

a(n) = (2n)!/2^n for n<=3.

Extensions

Terms a(16) and beyond from Andrew Howroyd, May 14 2020

A292604 Triangle read by rows, coefficients of generalized Eulerian polynomials F_{2}(x).

Original entry on oeis.org

1, 1, 0, 5, 1, 0, 61, 28, 1, 0, 1385, 1011, 123, 1, 0, 50521, 50666, 11706, 506, 1, 0, 2702765, 3448901, 1212146, 118546, 2041, 1, 0, 199360981, 308869464, 147485535, 24226000, 1130235, 8184, 1, 0
Offset: 0

Views

Author

Peter Luschny, Sep 20 2017

Keywords

Comments

The generalized Eulerian polynomials F_{m}(x) are defined F_{m; 0}(x) = 1 for all m >= 0 and for n > 0:
F_{0; n}(x) = Sum_{k=0..n} A097805(n, k)*(x-1)^(n-k) with coeffs. in A129186.
F_{1; n}(x) = Sum_{k=0..n} A131689(n, k)*(x-1)^(n-k) with coeffs. in A173018.
F_{2; n}(x) = Sum_{k=0..n} A241171(n, k)*(x-1)^(n-k) with coeffs. in A292604.
F_{3; n}(x) = Sum_{k=0..n} A278073(n, k)*(x-1)^(n-k) with coeffs. in A292605.
F_{4; n}(x) = Sum_{k=0..n} A278074(n, k)*(x-1)^(n-k) with coeffs. in A292606.
The case m = 1 are the Eulerian polynomials whose coefficients are the Eulerian numbers which are displayed in Euler's triangle A173018.
Evaluated at x in {-1, 1, 0} these families of polynomials give for the first few m:
F_{m} : F_{0} F_{1} F_{2} F_{3} F_{4}
x = 1: A000012 A000142 A000680 A014606 A014608 ... (m*n)!/m!^n
x = 0: -- A000012 A000364 A002115 A211212 ... m-alternating permutations of length m*n.
Note that the constant terms of the polynomials are the generalized Euler numbers as defined in A181985. In this sense generalized Euler numbers are also generalized Eulerian numbers.

Examples

			Triangle starts:
[n\k][    0        1        2       3     4  5  6]
--------------------------------------------------
[0][      1]
[1][      1,       0]
[2][      5,       1,       0]
[3][     61,      28,       1,      0]
[4][   1385,    1011,     123,      1,    0]
[5][  50521,   50666,   11706,    506,    1, 0]
[6][2702765, 3448901, 1212146, 118546, 2041, 1, 0]
		

References

  • G. Frobenius. Über die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzungsber. Preuss. Akad. Wiss. Berlin, pages 200-208, 1910.

Crossrefs

F_{0} = A129186, F_{1} = A173018, F_{2} is this triangle, F_{3} = A292605, F_{4} = A292606.
First column: A000364. Row sums: A000680. Alternating row sums: A002105.

Programs

  • Maple
    Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
    A292604_row := proc(n) if n = 0 then return [1] fi;
    add(A241171(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
    for n from 0 to 6 do A292604_row(n) od;
  • Mathematica
    T[n_, k_] /; 1 <= k <= n := T[n, k] = k (2 k - 1) T[n - 1, k - 1] + k^2 T[n - 1, k]; T[, 1] = 1; T[, _] = 0;
    F[2, 0][] = 1; F[2, n][x_] := Sum[T[n, k] (x - 1)^(n - k), {k, 0, n}];
    row[n_] := If[n == 0, {1}, Append[CoefficientList[ F[2, n][x], x], 0]];
    Table[row[n], {n, 0, 7}] (* Jean-François Alcover, Jul 06 2019 *)
  • Sage
    def A292604_row(n):
        if n == 0: return [1]
        S = sum(A241171(n, k)*(x-1)^(n-k) for k in (0..n))
        return expand(S).list() + [0]
    for n in (0..6): print(A292604_row(n))

Formula

F_{2; n}(x) = Sum_{k=0..n} A241171(n, k)*(x-1)^(n-k) for n>0 and F_{2; 0}(x) = 1.

A327022 Partition triangle read by rows. Number of ordered set partitions of the set {1, 2, ..., 2*n} with all block sizes divisible by 2.

Original entry on oeis.org

1, 1, 1, 6, 1, 30, 90, 1, 56, 70, 1260, 2520, 1, 90, 420, 3780, 9450, 75600, 113400, 1, 132, 990, 924, 8910, 83160, 34650, 332640, 1247400, 6237000, 7484400, 1, 182, 2002, 6006, 18018, 270270, 252252, 630630, 1081080, 15135120, 12612600, 37837800, 189189000, 681080400, 681080400
Offset: 0

Views

Author

Peter Luschny, Aug 27 2019

Keywords

Comments

We call an irregular triangle T a partition triangle if T(n, k) is defined for n >= 0 and 0 <= k < A000041(n).
T_{m}(n, k) gives the number of ordered set partitions of the set {1, 2, ..., m*n} into sized blocks of shape m*P(n, k), where P(n, k) is the k-th integer partition of n in the 'canonical' order A080577. Here we assume the rows of A080577 to be 0-based and m*[a, b, c,..., h] = [m*a, m*b, m*c,..., m*h]. Here is case m = 2. For instance 2*P(4, .) = [[8], [6, 2], [4, 4], [4, 2, 2], [2, 2, 2, 2]].

Examples

			Triangle starts (note the subdivisions by ';' (A072233)):
[0] [1]
[1] [1]
[2] [1;   6]
[3] [1;  30;  90]
[4] [1;  56,  70; 1260; 2520]
[5] [1;  90, 420; 3780, 9450; 75600; 113400]
[6] [1; 132, 990,  924; 8910, 83160,  34650; 332640, 1247400; 6237000; 7484400]
.
T(4, 1) = 56 because [6, 2] is the integer partition 2*P(4, 1) in the canonical order and there are 28 set partitions which have the shape [6, 2] (an example is {{1, 3, 4, 5, 6, 8}, {2, 7}}). Finally, since the order of the sets is taken into account, one gets 2!*28 = 56.
		

Crossrefs

Row sums: A094088, alternating row sums: A028296, main diagonal: A000680, central column A281478, by length: A241171.
Cf. A178803 (m=0), A133314 (m=1), this sequence (m=2), A327023 (m=3), A327024 (m=4).

Programs

  • Sage
    def GenOrdSetPart(m, n):
        shapes = ([x*m for x in p] for p in Partitions(n))
        return [factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes]
    def A327022row(n): return GenOrdSetPart(2, n)
    for n in (0..6): print(A327022row(n))

A370505 T(n,k) is the difference between the number of k-dist-increasing and (k-1)-dist-increasing permutations of [n], where p is k-dist-increasing if k>=0 and p(i)=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 5, 6, 12, 0, 1, 9, 20, 30, 60, 0, 1, 19, 70, 90, 180, 360, 0, 1, 34, 175, 420, 630, 1260, 2520, 0, 1, 69, 490, 1960, 2520, 5040, 10080, 20160, 0, 1, 125, 1554, 5880, 15120, 22680, 45360, 90720, 181440, 0, 1, 251, 3948, 21000, 88200, 113400, 226800, 453600, 907200, 1814400
Offset: 0

Views

Author

Alois P. Heinz, Feb 20 2024

Keywords

Examples

			T(0,0) = 1: (only) the empty permutation is 0-dist-increasing.
T(4,2) = 5 = 6 - 1 = |{1234, 1243, 1324, 2134, 2143, 3142}| - |{1234}|.
Permutation 3142 is 2-dist-increasing and 4-dist-increasing but not 3-dist-increasing.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,   1;
  0, 1,   2,    3;
  0, 1,   5,    6,   12;
  0, 1,   9,   20,   30,    60;
  0, 1,  19,   70,   90,   180,   360;
  0, 1,  34,  175,  420,   630,  1260,  2520;
  0, 1,  69,  490, 1960,  2520,  5040, 10080, 20160;
  0, 1, 125, 1554, 5880, 15120, 22680, 45360, 90720, 181440;
  ...
		

Crossrefs

Columns k=0-2 give: A000007, A057427, A014495.
Row sums give A000142.
Main diagonal gives A001710.
T(2n,n+1) gives A000680 for n>=1.
T(2n,n) gives A370576.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k<1,
         `if`(n=k, 1, 0), n!/mul(iquo(n+i, k)!, i=0..k-1))
        end:
    T:= (n, k)-> b(n, k)-b(n, k-1):
    seq(seq(T(n, k), k=0..n), n=0..10);

Formula

T(n,k) = A248686(n,k) - A248686(n,k-1) for k>=2.
Sum_{k=0..n} (1+n-k) * T(n,k) = A248687(n) for n>=1.

A375222 a(n) is the number of permutations of the multiset 1,1, 2,2, ..., n,n such that exactly one pair k,k stays at its initial locations 2k-1, 2k.

Original entry on oeis.org

1, 0, 15, 296, 10965, 609864, 47880595, 5047886640, 688359502089, 117929734950320, 24798753695076471, 6280419381186155160, 1885582606127524251805, 662239984799385248609976, 268999138538324585872798395, 125133475474486312764311243744, 66091677106419135401506827779985
Offset: 1

Views

Author

Hugo Pfoertner, Aug 05 2024

Keywords

Comments

1

Examples

			a(3) = 15: The permutations with one stable pair are
  [1, 1, 2, 3, 2, 3], [1, 1, 2, 3, 3, 2], [1, 1, 3, 2, 2, 3], [1, 1, 3, 2, 3, 2],
  [1, 1, 3, 3, 2, 2], [1, 2, 1, 2, 3, 3], [1, 2, 2, 1, 3, 3], [1, 3, 2, 2, 1, 3],
  [1, 3, 2, 2, 3, 1], [2, 1, 1, 2, 3, 3], [2, 1, 2, 1, 3, 3], [2, 2, 1, 1, 3, 3],
  [3, 1, 2, 2, 1, 3], [3, 1, 2, 2, 3, 1], [3, 3, 2, 2, 1, 1].
		

Crossrefs

Cf. A000680 (all permutations of this multiset), A375223 (at least one stable pair), A374980.

Programs

  • PARI
    a375222(n) = {my(p=vector(2*n,i,1+(i-1)\2), m1=0); forperm (p, q, my(m=0); for (k=1, n, if (q[2*k-1]==k && q[2*k]==k, m++)); m1+=(m==1)); m1}

Formula

a(n) = n * A374980(n-1). - Alois P. Heinz, Aug 05 2024

Extensions

a(8) onwards from Alois P. Heinz, Aug 05 2024

A062154 Number T(n,m) of n X m matrices over {0,1,2} with all row and column sums equal to 1 or 2, m=0,..,2*n.

Original entry on oeis.org

1, 0, 2, 1, 0, 1, 13, 18, 6, 0, 0, 18, 189, 450, 360, 90, 0, 0, 6, 450, 4842, 16380, 22140, 12600, 2520, 0, 0, 0, 360, 16380, 190080, 832950, 1631700, 1537200, 680400, 113400, 0, 0, 0, 90, 22140, 832950, 10520010, 56609280, 147533400, 200377800
Offset: 0

Views

Author

Vladeta Jovovic, Jun 06 2001

Keywords

Examples

			Triangle begins:
[0]  1;
[1]  0, 2, 1;
[2]  0, 1, 13, 18, 6;
[3]  0, 0, 18, 189, 450, 360, 90;
[4]  0, 0, 6, 450, 4842, 16380, 22140, 12600, 2520;
[5]  0, 0, 0, 360, 16380, 190080, 832950, 1631700, 1537200, 680400, 113400;
[6]  0, 0, 0, 90, 22140, 832950, 10520010, 56609280, 147533400, 200377800, 144585000, 52390800, 7484400;
T(2, 2)=13, i.e. there are 13 2 X 2 matrices over {0, 1, 2} with all row and column sums equal to 1 or 2: [0 1 / 0 1], [0 1 / 0 2], [0 2 / 1 0], [1 0 / 1 0], [1 1 / 1 1], [1 1 / 2 0], [2 0 / 1 0], [1 1 / 2 0], [1 0 / 2 0], [0 1 / 0 2], [1 1 / 0 1], [1 0 / 1 1], [0 1 / 0 2].
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(Problem 3.4.15).

Crossrefs

Row sums are A062155.
Main diagonal is A062156.
Final terms of each row are A000680.

Programs

  • PARI
    Row(n)={Vecrev(serlaplace(n!*polcoef((1/sqrt(1-x*y + O(x*x^n))*exp(x*y/2+1/(1-x*y)*(x*y+x^2*y/2+x*y^2/2) + O(x*x^n))), n)))}
    { for(n=0, 6, print(Row(n))) } \\ Andrew Howroyd, Feb 03 2021

Formula

Sum_{n >= 0, m >= 0} T(n, m)*x^n/n!*y^m/m! = 1/sqrt(1-x*y)*exp(x*y/2+1/(1-x*y)*(x*y+x^2*y/2+x*y^2/2)).
Sum_{n >= 0, m >= 0} T(n, m)*x^n/n!*y^m/m! = 1+(1/2*y^2+2*y)*x+(1/8*y^4+3/2*y^3+13/4*y^2+1/2*y)*x^2+(1/48*y^6+1/2*y^5+25/8*y^4+21/4*y^3+3/2*y^2)*x^3+...

A071798 Number of paths on the surface of the n-dimensional lattice [0..2]^n; i.e., the lattice paths that do not pass through the point (1,1,...,1).

Original entry on oeis.org

0, 2, 54, 1944, 99000, 6966000, 655678800, 80103945600, 12372954249600, 2362712677920000, 547235129437920000, 151247218046601600000, 49191138900262719360000, 18601307697723249058560000, 8093164859945489259936000000, 4014620173473616480790016000000
Offset: 1

Views

Author

T. D. Noe, Jun 06 2002

Keywords

Comments

a(2) + 1 = 3 is prime. a(3) - 1 = 53 is prime. a(5) - 1 = 98999 is prime. a(7) + 1 = 655678801 is prime. a(8) - 1 = 80103945599 is prime, and part of a twin prime, as a(8) + 1 = 80103945601 is prime. a(13) - 1 = 49191138900262719359999 is prime. - Jonathan Vos Post, Sep 01 2009

Crossrefs

Cf. A000680.
Row n=2 of A225094. - Alois P. Heinz, Apr 27 2013

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, (n-1)*n,
           n*((3*n^2-7*n+3)*a(n-1)-(2*n-3)*(n-1)^3*a(n-2))/(n-2))
        end:
    seq(a(n), n=1..20);  # Alois P. Heinz, Apr 26 2013
  • Mathematica
    Table[(2n)!/2^n-(n!)^2, {n, 10}]

Formula

a(n) = (2n)!/2^n - (n!)^2.

Extensions

More terms from Harvey P. Dale, May 26 2011

A177282 Number of permutations of 2 copies of 1..n with all adjacent differences <= 1 in absolute value.

Original entry on oeis.org

1, 1, 6, 12, 26, 48, 86, 148, 250, 416, 686, 1124, 1834, 2984, 4846, 7860, 12738, 20632, 33406, 54076, 87522, 141640, 229206, 370892, 600146, 971088, 1571286, 2542428, 4113770, 6656256, 10770086, 17426404, 28196554, 45623024, 73819646, 119442740, 193262458
Offset: 0

Views

Author

R. H. Hardin, May 06 2010

Keywords

Crossrefs

Column k=2 of A331562.
Cf. A000680.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1$2, 6, 12][n+1],
         ((8*n-31)*a(n-1) -(4*n-19)*a(n-2) -(3*n-10)*a(n-3)
          +(2*n-10)*a(n-4)) / (3*n-11))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 14 2016

Formula

a(n) = (2n)!/2^n = A000680(n) for n<=2.

A210279 (6n)!/6^n.

Original entry on oeis.org

1, 120, 13305600, 29640619008000, 478741050720092160000, 34111736086958726676480000000, 7973107998754741458076119859200000000, 5019026197962676820927435579005599744000000000
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 12 2012

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(6*n)/6^n: n in [0..10]]; // Vincenzo Librandi, Feb 15 2013
  • Mathematica
    Table[(6 n)!/6^n, {n, 0, 11}] (* Vincenzo Librandi, Feb 15 2013 *)
    With[{nn=50},Take[CoefficientList[Series[1/(1-x^6/6),{x,0,nn}],x] Range[0,nn-2]!,{1,-1,6}]] (* Harvey P. Dale, Sep 25 2023 *)

Formula

E.g.f.: 1/(1-x^6/6).
Previous Showing 41-50 of 84 results. Next