A355721
Square table, read by antidiagonals: the g.f. for row n is given recursively by (2*n-1)*x*R(n,x) = 1 + (2*n-3)*x - 1/R(n-1,x) for n >= 1 with the initial value R(0,x) = Sum_{k >= 0} A112934(k+1)*x^k.
Original entry on oeis.org
1, 1, 2, 1, 2, 6, 1, 2, 10, 26, 1, 2, 14, 74, 158, 1, 2, 18, 138, 706, 1282, 1, 2, 22, 218, 1686, 8162, 13158, 1, 2, 26, 314, 3194, 24162, 110410, 163354, 1, 2, 30, 426, 5326, 53890, 394254, 1708394, 2374078, 1, 2, 34, 554, 8178, 102722, 1019250, 7191018, 29752066, 39456386
Offset: 0
Square array begins
1, 2, 6, 26, 158, 1282, 13158, 163354, 2374078, 39456386, ...
1, 2, 10, 74, 706, 8162, 110410, 1708394, 29752066, 576037442, ...
1, 2, 14, 138, 1686, 24162, 394254, 7191018, 144786006, 3188449602, ...
1, 2, 18, 218, 3194, 53890, 1019250, 21256090, 483426010, 11895873410, ...
1, 2, 22, 314, 5326, 102722, 2197558, 51355514, 1297759918, 35208930050, ...
1, 2, 26, 426, 8178, 176802, 4206618, 108577674, 3011332338, 89141101506, ...
1, 2, 30, 554, 11846, 283042, 7396830, 208569034, 6288011206, 201404591042, ...
...
-
T := (n,k) -> coeff(series(hypergeom([n+1/2, 1], [], 2*x)/ hypergeom([n-1/2, 1], [], 2*x), x, 21), x, k):
# display as a sequence
seq(seq(T(n-k,k), k = 0..n), n = 0..10);
# display as a square array
seq(print(seq(T(n,k), k = 0..10)), n = 0..10);
A107716
Inverse INVERT transform of triple factorial numbers (3*n-2)!!! (A007559).
Original entry on oeis.org
1, 3, 21, 219, 2973, 49323, 964173, 21680571, 551173053, 15633866379, 489583062381, 16780438408539, 624935780160285, 25131869565110571, 1085528359404039117, 50124679063548821499, 2464153823558024331645, 128500643820213560377803, 7085182933810282490250285
Offset: 0
The triple factorials begin: {1,4,28,280,3640,58240,...}; thus the inverse INVERT transform of the triple factorials can be calculated by the g.f.s:
1/(1 + x + 4*x^2 + 28*x^3 + 280*x^4 + 3640*x^5 + 58240*x^6 +...) = (1 - x - 3*x^2 - 21*x^3 - 219*x^4 - 2973*x^5 - 49323*x^6 -...).
-
b:= proc(n) b(n):= `if`(n=0, 1, b(n-1)*(3*n+1)) end:
a:= proc(n) a(n):= -`if`(n<0, 1, add(a(n-i-1)*b(i), i=0..n)) end:
seq(a(n), n=0..20); # Alois P. Heinz, May 23 2017
-
m = 20; f3[n_] := Product[3k+1, {k, 0, n-1}]; A[x_] = 1-1/(1+Sum[f3[n] x^n, {n, 1, m}]); CoefficientList[A[x] + O[x]^m, x] // Rest (* Jean-François Alcover, May 01 2019 *)
-
a(n)=polcoeff(1-(1+sum(k=1,n+1,prod(j=0,k-1,3*j+1)*x^k)+x^2*O(x^n))^-1,n+1)
A115974
Number of Feynman diagrams (vanishing and non-vanishing) of order 2n for the proper self-energy function of quantum electrodynamics (QED).
Original entry on oeis.org
1, 2, 6, 42, 414, 5058, 72486, 1182762, 21573054, 434358018, 9565348806, 228740050602, 5904853053534, 163728751178178, 4855046674314726, 153367360732387242, 5143219420761900414, 182530741698302811138, 6835913695777897799046, 269455018264860747728682, 11152465473005099074500894, 483617145128737549802831298
Offset: 0
There are A000698(3)=10 self-energy diagrams of order 4, (n=2). Four of them are chained diagrams of order 2, (n=1) (of two kinds) which are simply connected, which leaves 10-4=6=a(2) proper diagrams.
- A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, 1971.
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- P. Cvitanovic, B. Lautrup and R. B. Pearson, The number and weights of Feynman diagrams, Phys. Rev. D 18 (1978), 1939-1949.
- R. J. Mathar, Table of Third and Fourth Order Feynman Diagrams of the Interacting Fermion Green's Function, Int. J. Quantum. Chem. 107 (10) (2007) 1975-1984.
- Adrian Ocneanu, On the inner structure of a permutation: bicolored partitions and Eulerians, trees and primitives; arXiv preprint arXiv:1304.1263 [math.CO], 2013.
- Wikipedia, Feynman diagram
-
A000698 := proc(n::integer) local resul,fac,pows,c,c1,p,i ; if n = 0 then RETURN(1) ; else pows := combinat[partition](n) ; resul := 0 ; for p from 1 to nops(pows) do c := combinat[permute](op(p,pows)) ; c1 := op(1,c) ; fac := nops(c) ; for i from 1 to nops(c1) do fac := fac*doublefactorial(2*op(i,c1)-1) ; od ; resul := resul-(-1)^nops(c1)*fac ; od : fi ; RETURN(resul) ; end:
A115974 := proc(n::integer) local resul,m ; resul := A000698(n+1) ; for m from 1 to n-1 do resul := resul-A115974(m)*A000698(n+1-m) ; od: RETURN(resul) ; end:
for n from 1 to 20 do printf("%a,",A115974(n)) ; od ; # R. J. Mathar, Apr 24 2006
-
(* b = A000698 *) b[n_] := b[n] = (2n-1)!! - Sum[b[n-k]*(2k-1)!!, {k, n-1}]; a[0] = 1; a[n_] := a[n] = b[n+1] - Sum[a[m]*b[n+1-m], {m, n-1}]; Array[a, 22, 0] (* Jean-François Alcover, Jul 10 2017 *)
A258219
A(n,k) is the sum over all Dyck paths of semilength n of products over all peaks p of (x_p+k*y_p)/y_p, where x_p and y_p are the coordinates of peak p; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 1, 3, 10, 25, 1, 4, 18, 74, 208, 1, 5, 28, 153, 706, 2146, 1, 6, 40, 268, 1638, 8162, 26368, 1, 7, 54, 425, 3172, 20898, 110410, 375733, 1, 8, 70, 630, 5500, 44164, 307908, 1708394, 6092032, 1, 9, 88, 889, 8838, 82850, 702844, 5134293, 29752066, 110769550
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
4, 10, 18, 28, 40, 54, ...
25, 74, 153, 268, 425, 630, ...
208, 706, 1638, 3172, 5500, 8838, ...
2146, 8162, 20898, 44164, 82850, 143046, ...
...
-
b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1)
+ b(x-1, y+1, true, k) ))
end:
A:= (n,k)-> b(2*n, 0, false, k):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[x_, y_, t_, k_] := b[x, y, t, k] = If[y>x || y<0, 0, If[x==0, 1, b[x-1, y -1, False, k]*If[t, (x+k*y)/y, 1] + b[x-1, y+1, True, k]]]; A[n_, k_] := b[2*n, 0, False, k]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 09 2016, after Alois P. Heinz *)
A005413
Number of non-vanishing Feynman diagrams of order 2n+1 for the electron-electron-photon proper vertex function in quantum electrodynamics (QED).
Original entry on oeis.org
1, 1, 7, 72, 891, 12672, 202770, 3602880, 70425747, 1503484416, 34845294582, 872193147840, 23469399408510, 676090493459712, 20771911997290116, 678287622406488192, 23466105907996232835, 857623856612704266240
Offset: 0
G.f. = 1 + x + 7*x^2 + 72*x^3 + 891*x^4 + 12672*x^5 + 202770*x^6 + 3602880*x^7 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980, pages 466-467.
- Robert Coquereaux, Table of n, a(n) for n = 0..250
- P. Cvitanovic, B. Lautrup and R. B. Pearson, The number and weights of Feynman diagrams, Phys. Rev. D18, pp. 1939-1949 (1978).
- Kevin Hartnett, Physicists uncover strange numbers in particle collisions, Quanta Magazine, November 15 2016.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 310.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
- Wikipedia, Feynman diagram
-
a005413 n = a005413_list !! (n-1)
a005413_list = 1 : zipWith (*) [1 ..]
(zipWith (+) (tail a005412_list)
(zipWith (*) [4, 6 ..] a005413_list))
-- Reinhard Zumkeller, Jan 24 2014
-
a[n_]:= SeriesCoefficient[(4*x*(-2*x + (1 - BesselK[1, -(1/(4*x))]/BesselK[0, -(1/(4*x))])))/ (1 - BesselK[1, -(1/(4*x))]/BesselK[0, -(1/(4*x))])^3, {x,0,n}] (* Robert Coquereaux, Sep 12 2014 *)
-
{a(n) = my(A); if( n<2, n>=0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2 * k - 2) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); (n-1) * (A[n] + 2 * n * A[n-1]))}; /* Michael Somos, Jul 24 2011 */
A005416
Vertex diagrams of order 2n.
Original entry on oeis.org
1, 1, 6, 50, 518, 6354, 89782, 1435330, 25625910, 505785122, 10944711398, 257834384850, 6572585595622, 180334118225650, 5300553714899094, 166206234856979810, 5538980473666776854, 195527829569946627138, 7288988096561232432070
Offset: 0
G.f. = 1 + x + 6*x^2 + 50*x^3 + 518*x^4 + 6354*x^5 + 89782*x^6 + 1435330*x^7 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- D. J. Broadhurst, Four-loop Dyson-Schwinger-Johnson anatomy, arXiv:hep-ph/9909336, 1999.
- P. Cvitanovic, Asymptotic estimates and gauge invariance, Nuclear Phys. B 127 (1977), 176-188.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 292.
-
m = 19; s[x_] = Sum[(2*n)!/(2^n*n!)*x^n, {n, 0, m}]; gf[x_] = (s[x] - 1)/(s[x]^2*x); Most[CoefficientList[Series[gf[x], {x, 0, m}], x]] (* Jean-François Alcover, Aug 31 2011, after g.f. *)
-
{a(n) = my(A); if( n<0, 0, A = sum( k=0, n+1, (2*k)! / k! /2^k * x^k, x^2 * O(x^n)); polcoeff( (A - 1) / (x * A^2), n))}; /* Michael Somos, Oct 11 2006 */
-
{a(n) = my(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2 * k - 3) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); (2*n - 1) * A[n])}; /* Michael Somos, Jul 24 2011 */
A140456
a(n) is the number of indecomposable involutions of length n.
Original entry on oeis.org
1, 1, 1, 3, 7, 23, 71, 255, 911, 3535, 13903, 57663, 243871, 1072031, 4812575, 22278399, 105300287, 510764095, 2527547455, 12794891007, 66012404863, 347599231103, 1863520447103, 10178746224639, 56548686860543, 319628408814847, 1835814213846271
Offset: 1
The unique indecomposable involution of length 3 is 321. The indecomposable involutions of length 4 are 3412, 4231 and 4321.
G.f. = x + x^2 + 3*x^3 + 7*x^4 + 23*x^5 + 71*x^6 + 255*x^7 + 911*x^8 + ...
- Alois P. Heinz, Table of n, a(n) for n = 1..800 (terms n = 1..50 from Joel B. Lewis)
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Claudia Malvenuto and Christophe Reutenauer, Primitive Elements of the Hopf Algebras of Tableaux, arXiv:2010.06731 [math.CO], 2020.
Cf.
A000085 (involutions),
A000698 (indecomposable fixed-point free involutions), and
A003319 (indecomposable permutations).
-
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
`if`(x=0, 1, b(x-1, y-1, false)*`if`(t, (x+y)/y, 1)
+ b(x-1, y, false) + b(x-1, y+1, true)))
end:
a:= n-> `if`(n=1, 1, b(n-2, 0, false)):
seq(a(n), n=1..35); # Alois P. Heinz, May 24 2015
-
CoefficientList[Series[1 - 1/Total[CoefficientList[Series[E^(x + x^2/2), {x, 0, 50}], x] * Range[0, 50]! * x^Range[0, 50]], {x, 0, 50}], x]
A004208
a(n) = n * (2*n - 1)!! - Sum_{k=0..n-1} a(k) * (2*n - 2*k - 1)!!.
Original entry on oeis.org
1, 5, 37, 353, 4081, 55205, 854197, 14876033, 288018721, 6138913925, 142882295557, 3606682364513, 98158402127761, 2865624738913445, 89338394736560917, 2962542872271918593, 104128401379446177601, 3867079042971339087365, 151312533647578564021477
Offset: 1
- E. W. Bowen, Letter to N. J. A. Sloane, Aug 27 1976.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
df := proc(n) product(2*k-1,k=1..n) end: a[1] := 1: for n from 2 to 30 do a[n] := n*df(n)-sum(a[k]*df(n-k),k=1..n-1) od;
-
CoefficientList[Series[D[Log[Sum[(2n-1)!!x^n,{n,0,19}]],x],{x,0,18}],x] (* Wouter Meeussen, Mar 21 2009 *)
a[ n_] := If[ n < 1, 0, n Coefficient[ Normal[ Series[ Log @ Erfc @ Sqrt @ x, {x, Infinity, n}] + x + Log[ Sqrt [Pi x]]] /. x -> -1 / 2 / x, x, n]] (* Michael Somos, May 28 2012 *)
-
{a(n) = if( n<1, 0, n++; polcoeff( 1 - 1 / (2 * sum( k=0, n, x^k * (2*k)! / (2^k * k!), x * O(x^n))), n))} /* Michael Somos, May 28 2012 */
Description corrected by Jeremy Magland (magland(AT)math.byu.edu), Jan 07 2000
A105620
Matrix inverse square-root of triangle A105615.
Original entry on oeis.org
1, -1, 1, -2, -2, 1, -10, -4, -3, 1, -74, -20, -7, -4, 1, -706, -148, -39, -11, -5, 1, -8162, -1412, -315, -70, -16, -6, 1, -110410, -16324, -3243, -635, -116, -22, -7, 1, -1708394, -220820, -40167, -7264, -1183, -180, -29, -8, 1, -29752066, -3416788, -579159, -99191, -15065, -2049, -265, -37, -9, 1
Offset: 0
Triangle begins:
1;
-1,1;
-2,-2,1;
-10,-4,-3,1;
-74,-20,-7,-4,1;
-706,-148,-39,-11,-5,1;
-8162,-1412,-315,-70,-16,-6,1;
-110410,-16324,-3243,-635,-116,-22,-7,1;
-1708394,-220820,-40167,-7264,-1183,-180,-29,-8,1;
-29752066,-3416788,-579159,-99191,-15065,-2049,-265,-37,-9,1; ...
-
T(n,k)=local(R,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))); R=(M+M^0)/2;for(i=1,floor(2*log(n+2)),R=(R+M*R^(-1))/2); return(if(n
Original entry on oeis.org
3, 12, 108, 1332, 19908, 342252, 6583788, 139380372, 3211960068, 79950396492, 2137119431148, 61065403377012, 1858069709657028, 60006976422450732, 2050924514408985708, 73988085260209757652, 2810535115787602525188
Offset: 0
-
A127058[n_, k_]:= A127058[n, k] = If[k==n, n+1, Sum[A127058[j+k, k]* A127058[n-j, k+1], {j,0,n - k - 1}]]; Table[A127058[n+2, 2], {n, 0, 30}] (* G. C. Greubel, Jun 09 2019 *)
-
c(n)=(2*n)!/(2^n*n!);
a(n)=if(n==0, 3, (c(n+3) - 3*c(n+2) - sum(k=0, n-1, a(k)*(c(n+2-k)-c(n+1-k)) ))/2 );
vector(20, n, n--; a(n)) \\ G. C. Greubel, Jun 09 2019
-
@CachedFunction
def A127058(n, k):
if (k==n): return n+1
else: return sum(A127058(j+k, k)*A127058(n-j, k+1) for j in (0..n-k-1))
[A127058(n+2,2) for n in (0..30)] # G. C. Greubel, Jun 09 2019
Comments