cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 67 results. Next

A355721 Square table, read by antidiagonals: the g.f. for row n is given recursively by (2*n-1)*x*R(n,x) = 1 + (2*n-3)*x - 1/R(n-1,x) for n >= 1 with the initial value R(0,x) = Sum_{k >= 0} A112934(k+1)*x^k.

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 10, 26, 1, 2, 14, 74, 158, 1, 2, 18, 138, 706, 1282, 1, 2, 22, 218, 1686, 8162, 13158, 1, 2, 26, 314, 3194, 24162, 110410, 163354, 1, 2, 30, 426, 5326, 53890, 394254, 1708394, 2374078, 1, 2, 34, 554, 8178, 102722, 1019250, 7191018, 29752066, 39456386
Offset: 0

Views

Author

Peter Bala, Jul 15 2022

Keywords

Comments

Compare with A111528, which has a similar definition.

Examples

			Square array begins
1, 2,  6,  26,   158,    1282,   13158,    163354,    2374078,     39456386, ...
1, 2, 10,  74,   706,    8162,  110410,   1708394,   29752066,    576037442, ...
1, 2, 14, 138,  1686,   24162,  394254,   7191018,  144786006,   3188449602, ...
1, 2, 18, 218,  3194,   53890, 1019250,  21256090,  483426010,  11895873410, ...
1, 2, 22, 314,  5326,  102722, 2197558,  51355514, 1297759918,  35208930050, ...
1, 2, 26, 426,  8178,  176802, 4206618, 108577674, 3011332338,  89141101506, ...
1, 2, 30, 554, 11846,  283042, 7396830, 208569034, 6288011206, 201404591042, ...
...
		

Crossrefs

Cf. A112934 (row 0), A000698 (row 1), A355722 (row 2), A355723 (row 3), A355724 (row 4), A355725 (row 5). Cf. A001147, A111528.

Programs

  • Maple
    T := (n,k) -> coeff(series(hypergeom([n+1/2, 1], [], 2*x)/ hypergeom([n-1/2, 1], [], 2*x), x, 21), x, k):
    # display as a sequence
    seq(seq(T(n-k,k), k = 0..n), n = 0..10);
    # display as a square array
    seq(print(seq(T(n,k), k = 0..10)), n = 0..10);

Formula

Let d(n) = Product_{k = 1..n} 2*k-1 = A001147(n) denote the double factorial of odd numbers.
O.g.f. for row n: R(n,x) = ( Sum_{k >= 0} d(n+k)/d(n)*x^k )/( Sum_{k >= 0} d(n-1+k)/d(n-1)*x^k ).
R(n,x)/(1 - (2*n-1)*x*R(n,x)) = Sum_{k >= 0} d(n+k)/d(n)*x^k.
R(n,x) = 1/(1 + (2*n-1)*x - (2*n+1)*x/(1 + (2*n+1)*x - (2*n+3)*x/(1 + (2*n+3)*x - (2*n+5)*x/(1 + (2*n+5)*x - ... )))).
R(n,x) satisfies the Riccati differential equation 2*x^2*d/dx(R(n,x)) + (2*n-1)*x*R(n,x)^2 - (1 + (2*n-3)*x)*R(n,x) + 1 = 0 with R(n,0) = 1.
Applying Stokes 1982 gives A(x) = 1/(1 - 2*x/(1 - (2*n+1)*x/(1 - 4*x/(1 - (2*n+3)*x/(1 - 6*x/(1 - (2*n+5)*x/(1 - ... - 2*m*x/(1 - (2*n+2*m-1)*x/(1 - ... ))))))))), a continued fraction of Stieltjes type.
Row 0: A112934(n+1); Row 1; A000698(n+1).

A107716 Inverse INVERT transform of triple factorial numbers (3*n-2)!!! (A007559).

Original entry on oeis.org

1, 3, 21, 219, 2973, 49323, 964173, 21680571, 551173053, 15633866379, 489583062381, 16780438408539, 624935780160285, 25131869565110571, 1085528359404039117, 50124679063548821499, 2464153823558024331645, 128500643820213560377803, 7085182933810282490250285
Offset: 0

Views

Author

Paul D. Hanna, May 23 2005

Keywords

Comments

Column 0 of triangle A107717.

Examples

			The triple factorials begin: {1,4,28,280,3640,58240,...}; thus the inverse INVERT transform of the triple factorials can be calculated by the g.f.s:
1/(1 + x + 4*x^2 + 28*x^3 + 280*x^4 + 3640*x^5 + 58240*x^6 +...) = (1 - x - 3*x^2 - 21*x^3 - 219*x^4 - 2973*x^5 - 49323*x^6 -...).
		

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):=  `if`(n=0, 1, b(n-1)*(3*n+1)) end:
    a:= proc(n) a(n):= -`if`(n<0, 1, add(a(n-i-1)*b(i), i=0..n)) end:
    seq(a(n), n=0..20);  # Alois P. Heinz, May 23 2017
  • Mathematica
    m = 20; f3[n_] := Product[3k+1, {k, 0, n-1}]; A[x_] = 1-1/(1+Sum[f3[n] x^n, {n, 1, m}]); CoefficientList[A[x] + O[x]^m, x] // Rest (* Jean-François Alcover, May 01 2019 *)
  • PARI
    a(n)=polcoeff(1-(1+sum(k=1,n+1,prod(j=0,k-1,3*j+1)*x^k)+x^2*O(x^n))^-1,n+1)

Formula

G.f.: A(x) = 1 - 1/[1 + Sum_{n>=1} (3*n-2)!!! * x^n ] where (3*n-2)!!! = Product_{k=0..n-1} (3*k+1).
a(n) = Sum_{k, 0<=k<=n} A089949(n, k)*3^k . - Philippe Deléham, Aug 15 2005
G.f.: (1 - Q(0))/x where Q(k) = 1 - x*(3*k+1)/(1 - x*(3*k+3)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 20 2013
G.f.: 1/x - 2 - 2/x/G(0), where G(k)= 1 + 1/(1 - x*(3*k+3)/(x*(3*k+4) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
From Peter Bala, May 23 2017: (Start)
G.f. A(x) = 1/(1 + x - 4*x/(1 + 4*x - 7*x/(1 + 7*x - 10*x/(1 + 10*x - ...)))).
A(x) = 1/(1 + x - 4*x/(1 - 3*x/(1 - 7*x/(1 - 6*x/(1 - 10*x/(1 - 9*x - ...)))))). (End)

A115974 Number of Feynman diagrams (vanishing and non-vanishing) of order 2n for the proper self-energy function of quantum electrodynamics (QED).

Original entry on oeis.org

1, 2, 6, 42, 414, 5058, 72486, 1182762, 21573054, 434358018, 9565348806, 228740050602, 5904853053534, 163728751178178, 4855046674314726, 153367360732387242, 5143219420761900414, 182530741698302811138, 6835913695777897799046, 269455018264860747728682, 11152465473005099074500894, 483617145128737549802831298
Offset: 0

Views

Author

R. J. Mathar, Mar 15 2006

Keywords

Comments

The number of diagrams of A000698 left if the connected improper diagrams are removed: a(n)<=A000698(n+1). G.f. is essentially the inversion of the G.f. of A000698.
From Groux Roland, Mar 22 2011: (Start)
a(n) is the INVERTi transform of A001147(n+2), starting at n=2.
Let rho(x)=sqrt(x)*exp(-x/2)/sqrt(2*Pi); s(x)=integral(rho'(t)*log(abs(1-t/x)),t=0..infinity), and mu(x)=rho(x)/((s(x))^2+Pi^2*(rho(x))^2), then a(n+1) is the moment of order n for the measure of density mu(x) over the interval 0..infinity.
(End)
Vanishing diagrams: QED diagrams containing electron loops with an odd number of vertices are set to 0 (Furry theorem). See comments in A000698. This sequence (which is twice A167872(n-1) for n>=1) counts all the diagrams (vanishing and non-vanishing) for the self-energy function of QED. The sequence A005412 gives the number of non-vanishing diagrams for the self-energy. - Robert Coquereaux, Sep 12 2014

Examples

			There are A000698(3)=10 self-energy diagrams of order 4, (n=2). Four of them are chained diagrams of order 2, (n=1) (of two kinds) which are simply connected, which leaves 10-4=6=a(2) proper diagrams.
		

References

  • A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, 1971.

Crossrefs

Programs

  • Maple
    A000698 := proc(n::integer) local resul,fac,pows,c,c1,p,i ; if n = 0 then RETURN(1) ; else pows := combinat[partition](n) ; resul := 0 ; for p from 1 to nops(pows) do c := combinat[permute](op(p,pows)) ; c1 := op(1,c) ; fac := nops(c) ; for i from 1 to nops(c1) do fac := fac*doublefactorial(2*op(i,c1)-1) ; od ; resul := resul-(-1)^nops(c1)*fac ; od : fi ; RETURN(resul) ; end:
    A115974 := proc(n::integer) local resul,m ; resul := A000698(n+1) ; for m from 1 to n-1 do resul := resul-A115974(m)*A000698(n+1-m) ; od: RETURN(resul) ; end:
    for n from 1 to 20 do printf("%a,",A115974(n)) ; od ; # R. J. Mathar, Apr 24 2006
  • Mathematica
    (* b = A000698 *) b[n_] := b[n] = (2n-1)!! - Sum[b[n-k]*(2k-1)!!, {k, n-1}]; a[0] = 1; a[n_] := a[n] = b[n+1] - Sum[a[m]*b[n+1-m], {m, n-1}]; Array[a, 22, 0] (* Jean-François Alcover, Jul 10 2017 *)

Formula

a(n) = A000698(n+1) - Sum_{m=1..n-1} a(m)*A000698(n+1-m).
1-Sum_{n>=1} a(n)*x^n = 1/(1+Sum_{n>=1} A000698(n+1)*x^n) (G.f.)
G.f. 2 - Q(0) where Q(k) = 1 - (k+2)*x/Q(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Aug 20 2012
G.f. 2 - x - x/(Q(0)-1) where Q(k) = 1 + (4*k+1)*x/(1 - (4*k+3)*x/((4*k+3)*x + 1/Q(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Sep 12 2012
G.f.: 2 + x/(G(0)-1) where G(k) = 1 - x*(k+1)/G(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 10 2012
G.f.: 2 - G(0) where G(k) = 1 + (2*k+1)*x - x*(2*k+3)/G(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 26 2012
G.f.: 2 - x - Q(0), where Q(k) = 1 - x*(2*k+3)/(1 - x*(2*k+2)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
Call Sf the G.f. for the sequence 1, 2, 10, 74, ..., i.e., A000698 with first term (equal to 1) dropped. Call Sigmaf the G.f. for the sequence 0, 2, 6, 42, ..., i.e., this sequence A115974 with a first term of order 0 (equal to 0) added. Then Sf = 1/(1-Sigmaf). - Robert Coquereaux, Sep 14 2014
a(n) ~ 2^(n + 3/2) * n^(n+1) / exp(n). - Vaclav Kotesovec, Jan 02 2019

Extensions

More terms from R. J. Mathar, Apr 24 2006, Nov 07 2006
Name and definition clarified by Robert Coquereaux, Sep 14 2014
a(0)=1 prepended by Alois P. Heinz, Jun 22 2015

A258219 A(n,k) is the sum over all Dyck paths of semilength n of products over all peaks p of (x_p+k*y_p)/y_p, where x_p and y_p are the coordinates of peak p; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 1, 3, 10, 25, 1, 4, 18, 74, 208, 1, 5, 28, 153, 706, 2146, 1, 6, 40, 268, 1638, 8162, 26368, 1, 7, 54, 425, 3172, 20898, 110410, 375733, 1, 8, 70, 630, 5500, 44164, 307908, 1708394, 6092032, 1, 9, 88, 889, 8838, 82850, 702844, 5134293, 29752066, 110769550
Offset: 0

Views

Author

Alois P. Heinz, May 23 2015

Keywords

Comments

A Dyck path of semilength n is a (x,y)-lattice path from (0,0) to (2n,0) that does not go below the x-axis and consists of steps U=(1,1) and D=(1,-1). A peak of a Dyck path is any lattice point visited between two consecutive steps UD.
Conjecture: the g.f. G(k,x) for the k-th column satisfies the Riccati differential equation 2*x^2*d/dx(G(k,x)) + 1 + (k*x - 1)*G(k,x) + x*G^2(k,x) = 0 and hence, by Stokes 1982, has the continued fraction representation G(k,x) = 1/(1 - (k+1)*x/(1 - 3*x/(1 - (k+3)*x/(1 - 5*x/(1 - (k+5)*x/(1 - 7*x/(1 - ...))))))) of Stieltjes type. - Peter Bala, Jul 28 2022

Examples

			Square array A(n,k) begins:
     1,    1,     1,     1,     1,      1, ...
     1,    2,     3,     4,     5,      6, ...
     4,   10,    18,    28,    40,     54, ...
    25,   74,   153,   268,   425,    630, ...
   208,  706,  1638,  3172,  5500,   8838, ...
  2146, 8162, 20898, 44164, 82850, 143046, ...
  ...
		

Crossrefs

Columns k=0-2 give: A005411 (for n>0), A000698(n+1), A005412(n+1).
Rows n=0-2 give: A000012, A000027(k+1), A028552(k+1).
Main diagonal gives A292693.

Programs

  • Maple
    b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1)
                     + b(x-1, y+1, true, k)  ))
        end:
    A:= (n,k)-> b(2*n, 0, false, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[x_, y_, t_, k_] := b[x, y, t, k] = If[y>x || y<0, 0, If[x==0, 1, b[x-1, y -1, False, k]*If[t, (x+k*y)/y, 1] + b[x-1, y+1, True, k]]]; A[n_, k_] := b[2*n, 0, False, k]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 09 2016, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{i=0..min(n,k)} C(k,i) * i! * A258220(n,i).

A005413 Number of non-vanishing Feynman diagrams of order 2n+1 for the electron-electron-photon proper vertex function in quantum electrodynamics (QED).

Original entry on oeis.org

1, 1, 7, 72, 891, 12672, 202770, 3602880, 70425747, 1503484416, 34845294582, 872193147840, 23469399408510, 676090493459712, 20771911997290116, 678287622406488192, 23466105907996232835, 857623856612704266240
Offset: 0

Views

Author

Keywords

Comments

From Robert Coquereaux, Sep 12 2014: (Start)
QED diagrams are graphs with two kinds of edges (lines): a (non-oriented), f (oriented), and only one kind of (internal) vertex: aff.
They may have internal and external (i.e., pendant) lines.
QED diagrams containing loops of type f with an odd number of vertices are set to 0 (vanishing diagrams).
Proper diagrams also called one-particle-irreducible diagrams (1PI) are connected diagrams that remain connected when an arbitrary internal line is cut.
The proper vertex function of QED is described by proper (1PI) diagrams with one external line of type a (photon) and two external lines of type f (electron). Non-vanishing diagrams only exist if the number of vertices is odd.
The number of non-vanishing Feynman diagrams for the proper vertex function is obtained from g*Gamma(g) = g (1 + 1 g^2 + 7 g^4 + 72 g^6 + ...) where the exponent p of g^p gives the number of (internal) vertices, p is called the order of the diagram.
Write g*Gamma(g) = g (1 + x + 7 x2 + 72 x3 + ...) with x = g^2.
The sequence a(n) gives the coefficient of x^n.
Relation with A005411: Gamma (g) = (S(g) - 1)/(g^2 S(g)^3) where S(g) = 1 + g^2 + 4 g^4 + 25 g^6 + ... is sum A005411(n) g^(2n), hence the g.f. in terms of modified Bessel functions.
(End)

Examples

			G.f. = 1 + x + 7*x^2 + 72*x^3 + 891*x^4 + 12672*x^5 + 202770*x^6 + 3602880*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, 1980, pages 466-467.

Crossrefs

Cvitanovic et al. relate this sequence to A000698 and A005411. - Robert Munafo, Jan 24 2010

Programs

  • Haskell
    a005413 n = a005413_list !! (n-1)
    a005413_list = 1 : zipWith (*) [1 ..]
                               (zipWith (+) (tail a005412_list)
                               (zipWith (*) [4, 6 ..] a005413_list))
    -- Reinhard Zumkeller, Jan 24 2014
  • Mathematica
    a[n_]:= SeriesCoefficient[(4*x*(-2*x + (1 - BesselK[1, -(1/(4*x))]/BesselK[0, -(1/(4*x))])))/ (1 - BesselK[1, -(1/(4*x))]/BesselK[0, -(1/(4*x))])^3, {x,0,n}] (* Robert Coquereaux, Sep 12 2014 *)
  • PARI
    {a(n) = my(A); if( n<2, n>=0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2 * k - 2) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); (n-1) * (A[n] + 2 * n * A[n-1]))}; /* Michael Somos, Jul 24 2011 */
    

Formula

See recurrence in Martin-Kearney paper.
a(n) = (n-1)*(A005412(n) + 2*n*A005412(n-1)) if n > 1.
From Robert Coquereaux, Sep 12 2014: (Start)
The g.f. for this sequence is (U - 1)/(U^3 x) where U is the g.f. for A005411.
G.f.: (4*x*(-2*x + (1 - K(1, -(1/(4*x))) / K(0, -(1/(4*x))))))/
(1 - K(1, -(1/(4*x))) / K(0, -(1/(4*x))))^3
where K(p, z) denotes the modified Bessel function of the second kind (order p, argument z). This is a small improvement of a result obtained in the 1980 book "Quantum Field Theory".
(End)

Extensions

Name clarified and reference added by Robert Coquereaux, Sep 12 2014

A005416 Vertex diagrams of order 2n.

Original entry on oeis.org

1, 1, 6, 50, 518, 6354, 89782, 1435330, 25625910, 505785122, 10944711398, 257834384850, 6572585595622, 180334118225650, 5300553714899094, 166206234856979810, 5538980473666776854, 195527829569946627138, 7288988096561232432070
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x + 6*x^2 + 50*x^3 + 518*x^4 + 6354*x^5 + 89782*x^6 + 1435330*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    m = 19; s[x_] = Sum[(2*n)!/(2^n*n!)*x^n, {n, 0, m}]; gf[x_] = (s[x] - 1)/(s[x]^2*x); Most[CoefficientList[Series[gf[x], {x, 0, m}], x]] (* Jean-François Alcover, Aug 31 2011, after g.f. *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sum( k=0, n+1, (2*k)! / k! /2^k * x^k, x^2 * O(x^n)); polcoeff( (A - 1) / (x * A^2), n))}; /* Michael Somos, Oct 11 2006 */
    
  • PARI
    {a(n) = my(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2 * k - 3) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); (2*n - 1) * A[n])}; /* Michael Somos, Jul 24 2011 */

Formula

Let s_n = (2*n)!/(2^n*n!) (A001147), S(x) = Sum_{n >= 0} s_n*x^n; sequence has g.f. A(x) satisfying 1 - 1/S(x) = x*A(x)*S(x).
a(n) = (2*n - 1) * A000698(n). [Martin and Kearney]

A140456 a(n) is the number of indecomposable involutions of length n.

Original entry on oeis.org

1, 1, 1, 3, 7, 23, 71, 255, 911, 3535, 13903, 57663, 243871, 1072031, 4812575, 22278399, 105300287, 510764095, 2527547455, 12794891007, 66012404863, 347599231103, 1863520447103, 10178746224639, 56548686860543, 319628408814847, 1835814213846271
Offset: 1

Views

Author

Joel B. Lewis, Jul 22 2008

Keywords

Comments

An involution is a self-inverse permutation. A permutation of [n] = {1, 2, ..., n} is indecomposable if it does not fix [j] for any 0 < j < n.
From Paul Barry, Nov 26 2009: (Start)
G.f. of a(n+1) is 1/(1-x-2x^2/(1-x-3x^2/(1-x-4x^2/(1-x-5x^2/(1-...))))) (continued fraction).
a(n+1) is the binomial transform of the aeration of A000698(n+1). Hankel transform of a(n+1) is A000178(n+1). (End)
From Groux Roland, Mar 17 2011: (Start)
a(n) is the INVERTi transform of A000085(n+1)
a(n) is also the moment of order n for the density: sqrt(2/Pi^3)*exp((x-1)^2/2)/(1-(erf(I*(x-1)/sqrt(2)))^2).
More generally, if c(n)=int(x^n*rho(x),x=a..b) with rho(x) a probability density function of class C1, then the INVERTi transform of (c(1),..c(n),..) starting at n=2 gives the moments of mu(x) = rho(x) / ((s(x))^2+(Pi*rho(x))^2) with s(x) = int( rho'(t)*log(abs(1-t/x)), t=a..b) + rho(b)*log(x/(b-x)) + rho(a)*log((x-a)/x).
(End)
For n>1 sum over all Motzkin paths of length n-2 of products over all peaks p of (x_p+y_p)/y_p, where x_p and y_p are the coordinates of peak p. - Alois P. Heinz, May 24 2015

Examples

			The unique indecomposable involution of length 3 is 321. The indecomposable involutions of length 4 are 3412, 4231 and 4321.
G.f. = x + x^2 + 3*x^3 + 7*x^4 + 23*x^5 + 71*x^6 + 255*x^7 + 911*x^8 + ...
		

Crossrefs

Cf. A000085 (involutions), A000698 (indecomposable fixed-point free involutions), and A003319 (indecomposable permutations).

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, (x+y)/y, 1)
                     + b(x-1, y, false) + b(x-1, y+1, true)))
        end:
    a:= n-> `if`(n=1, 1, b(n-2, 0, false)):
    seq(a(n), n=1..35);  # Alois P. Heinz, May 24 2015
  • Mathematica
    CoefficientList[Series[1 - 1/Total[CoefficientList[Series[E^(x + x^2/2), {x, 0, 50}], x] * Range[0, 50]! * x^Range[0, 50]], {x, 0, 50}], x]

Formula

G.f.: 1 - 1/I(x), where I(x) is the ordinary generating function for involutions (A000085).
G.f.: Q(0) +1/x, where Q(k) = 1 - 1/x - (k+1)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Sep 16 2013

A004208 a(n) = n * (2*n - 1)!! - Sum_{k=0..n-1} a(k) * (2*n - 2*k - 1)!!.

Original entry on oeis.org

1, 5, 37, 353, 4081, 55205, 854197, 14876033, 288018721, 6138913925, 142882295557, 3606682364513, 98158402127761, 2865624738913445, 89338394736560917, 2962542872271918593, 104128401379446177601, 3867079042971339087365, 151312533647578564021477
Offset: 1

Views

Author

N. J. A. Sloane, following a suggestion from E. W. Bowen, Aug 27 1976

Keywords

Comments

a(n+1) is the moment of order n for the probability density function rho(x) = Pi^(-3/2)*sqrt(x/2)*exp(x/2)/(1-erf^2(i*sqrt(x/2))) on the interval 0..infinity, where erf is the error function and i=sqrt(-1). - Groux Roland, Nov 10 2009

References

  • E. W. Bowen, Letter to N. J. A. Sloane, Aug 27 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000698.

Programs

  • Maple
    df := proc(n) product(2*k-1,k=1..n) end: a[1] := 1: for n from 2 to 30 do a[n] := n*df(n)-sum(a[k]*df(n-k),k=1..n-1) od;
  • Mathematica
    CoefficientList[Series[D[Log[Sum[(2n-1)!!x^n,{n,0,19}]],x],{x,0,18}],x] (* Wouter Meeussen, Mar 21 2009 *)
    a[ n_] := If[ n < 1, 0, n Coefficient[ Normal[ Series[ Log @ Erfc @ Sqrt @ x, {x, Infinity, n}] + x + Log[ Sqrt [Pi x]]] /. x -> -1 / 2 / x, x, n]] (* Michael Somos, May 28 2012 *)
  • PARI
    {a(n) = if( n<1, 0, n++; polcoeff( 1 - 1 / (2 * sum( k=0, n, x^k * (2*k)! / (2^k * k!), x * O(x^n))), n))} /* Michael Somos, May 28 2012 */

Formula

a(n) = (1/2) * A000698(n+1), n > 0.
x + (5/2)*x^2 + (37/3)*x^3 + (353/4)*x^4 + (4081/5)*x^5 + (55205/6)*x^6 + ... = log(1 + x + 3*x^2 + 15*x^3 + 105*x^4 + 945*x^5 + 10395*x^6 + ...) where [1, 1, 3, 15, 105, 945, 10395, ...] = A001147(double factorials). - Philippe Deléham, Jun 20 2006
G.f.: ( 1/Q(0) - 1)/x where Q(k) = 1 - x*(2*k+1)/(1 - x*(2*k+4)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013
G.f.: (2/x)/G(0) - 1/x, where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) - 1 + 2*x*(2*k+4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
G.f.: 1/(2*x^2) - 1/(2*x) - G(0)/(2*x^2), where G(k) = 1 - x*(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Aug 15 2013
L.g.f.: log(1/(1 - x/(1 - 2*x/(1 - 3*x/(1 - 4*x/(1 - 5*x/(1 - ...))))))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 10 2017

Extensions

Description corrected by Jeremy Magland (magland(AT)math.byu.edu), Jan 07 2000
More terms from Emeric Deutsch, Dec 21 2003

A105620 Matrix inverse square-root of triangle A105615.

Original entry on oeis.org

1, -1, 1, -2, -2, 1, -10, -4, -3, 1, -74, -20, -7, -4, 1, -706, -148, -39, -11, -5, 1, -8162, -1412, -315, -70, -16, -6, 1, -110410, -16324, -3243, -635, -116, -22, -7, 1, -1708394, -220820, -40167, -7264, -1183, -180, -29, -8, 1, -29752066, -3416788, -579159, -99191, -15065, -2049, -265, -37, -9, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 16 2005

Keywords

Comments

Column 0 is negative A000698 (related to double factorials). Column 1 equals twice column 0 after the initial term.

Examples

			Triangle begins:
1;
-1,1;
-2,-2,1;
-10,-4,-3,1;
-74,-20,-7,-4,1;
-706,-148,-39,-11,-5,1;
-8162,-1412,-315,-70,-16,-6,1;
-110410,-16324,-3243,-635,-116,-22,-7,1;
-1708394,-220820,-40167,-7264,-1183,-180,-29,-8,1;
-29752066,-3416788,-579159,-99191,-15065,-2049,-265,-37,-9,1; ...
		

Crossrefs

Cf. A105615, A105619 (matrix square), A105623 (matrix inverse), A000698 (column 0), A105621 (column 2), A105622 (row sums).

Programs

  • PARI
    T(n,k)=local(R,M=matrix(n+1,n+1,m,j,if(m>=j,if(m==j,1,if(m==j+1,-2*j, polcoeff(1/sum(i=0,m-j,(2*i)!/i!/2^i*x^i)+O(x^m),m-j)))))); R=(M+M^0)/2;for(i=1,floor(2*log(n+2)),R=(R+M*R^(-1))/2); return(if(n
    				

A127059 Column 2 of triangle A127058.

Original entry on oeis.org

3, 12, 108, 1332, 19908, 342252, 6583788, 139380372, 3211960068, 79950396492, 2137119431148, 61065403377012, 1858069709657028, 60006976422450732, 2050924514408985708, 73988085260209757652, 2810535115787602525188
Offset: 0

Views

Author

Paul D. Hanna, Jan 04 2007

Keywords

Comments

Column 0 of triangle A127058 is A000698, the number of shellings of an n-cube, divided by 2^n n!. Column 1 of triangle A127058 is A115974, the number of Feynman diagrams of the proper self-energy at perturbative order n.

Crossrefs

Cf. A127058; other columns: A000698, A115974; A127060.

Programs

  • Mathematica
    A127058[n_, k_]:= A127058[n, k] = If[k==n, n+1, Sum[A127058[j+k, k]* A127058[n-j, k+1], {j,0,n - k - 1}]]; Table[A127058[n+2, 2], {n, 0, 30}] (* G. C. Greubel, Jun 09 2019 *)
  • PARI
    c(n)=(2*n)!/(2^n*n!);
    a(n)=if(n==0, 3, (c(n+3) - 3*c(n+2) - sum(k=0, n-1, a(k)*(c(n+2-k)-c(n+1-k)) ))/2  );
    vector(20, n, n--; a(n)) \\ G. C. Greubel, Jun 09 2019
    
  • Sage
    @CachedFunction
    def A127058(n, k):
        if (k==n): return n+1
        else: return sum(A127058(j+k, k)*A127058(n-j, k+1) for j in (0..n-k-1))
    [A127058(n+2,2) for n in (0..30)] # G. C. Greubel, Jun 09 2019

Formula

a(0) = 3 and for n>0 a(n) = (1/2)*(c(n+3)-3*c(n+2)-Sum_{k=0..n-1} a(k)*(c(n+2-k)-c(n+1-k))) with c(n) = (2*n)!/(2^n*n!). - Groux Roland, Nov 14 2009
G.f.: A(x) = (1 - T(0))/x, T(k) = 1 - x*(k+3)/T(k+1) (continued fraction). - Sergei N. Gladkovskii, Dec 13 2011
G.f.: 1/x - Q(0)/x, where Q(k)= 1 - x*(2*k+3)/(1 - x*(2*k+4)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
a(n) ~ 2^(n + 5/2) * n^(n+3) / exp(n). - Vaclav Kotesovec, Jan 02 2019
Previous Showing 31-40 of 67 results. Next