cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A174713 Triangle read by rows, A173305 (A000009 shifted down twice) * A174712 (diagonalized variant of A000041).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 2, 4, 2, 2, 3, 5, 3, 4, 3, 6, 4, 4, 3, 5, 8, 5, 6, 6, 5, 10, 6, 8, 6, 5, 7, 12, 8, 10, 9, 10, 7, 15, 10, 12, 12, 10, 7, 11, 18, 12, 16, 15, 15, 14, 11, 22, 15, 20, 18, 20, 14, 11, 15
Offset: 0

Views

Author

Gary W. Adamson, Mar 27 2010

Keywords

Comments

Row sums = A000041, the partition numbers.
The current triangle is the 2nd in an infinite set, followed by A174714 (k=3), and A174715, (k=4); in which row sums of each triangle = A000041.
k-th triangle in the infinite set can be defined as having the sequence:
"Euler transform of ones: (1,1,1,...) interleaved with (k-1) zeros"; shifted down k times (except column 0) in successive columns, then multiplied * triangle A174712, the diagonalized variant of A000041, A174713 begins with A000009 shifted down twice (triangle A173305); where A000009 = the Euler transform of period 2 sequence: [1,0,1,0,...].
Similarly, triangle A174714 begins with A000716 shifted down thrice; where A000716 = the Euler transform of period 3 series: [1,1,0,1,1,0,...]. Then multiply the latter as an infinite lower triangular matrix * A174712, the diagonalized variant of A000041, obtaining triangle A174714 with row sums = A000041.
Case k=4 = triangle A174715 which begins with the Euler transform of period 4 series: [1,1,1,0,1,1,1,0,...], shifted down 4 times in successive columns then multiplied * A174712, the diagonalized variant of A000041.
All triangles in the infinite set have row sums = A000041.
The sequences: "Euler transform of ones interleaved with (k-1) zeros" have the following properties, beginning with k=2:
...
k=2, A000009: = Euler transform of [1,0,1,0,1,0,...] and satisfies
.....A000009. = p(x)/p(x^2), where p(x) = polcoeff A000041; and A000041 =
.....A000009(x) = r(x), then p(x) = r(x) * r(x^2) * r(x^4) * r(x^8) * ...
...
k=3, A000726: = Euler transform of [1,1,0,1,1,0,...] and satisfies
.....A000726(x): = p(x)/p(x^3), and given s(x) = polcoeff A000726, we get
.....A000041(x) = p(x) = s(x) * s(x^3) * s(x^9) * s(x^27) * ...
...
k=4, A001935: = Euler transform of [1,1,1,0,1,1,1,0,...] and satisfies
.....A001935(x) = p(x)/p(x^4) and given t(x) = polcoeff A001935, we get
.....A000041(x) = p(x) = t(x) * t(x^4) * t(x^16) * t(x^64) * ...
...
Also the number of integer partitions of n whose even parts sum to k, for k an even number from zero to n. The version including odd k is A113686. - Gus Wiseman, Oct 23 2023

Examples

			First few rows of the triangle =
1;
1;
1, 1;
2, 1;
2, 1, 2;
3, 2, 2;
4, 2, 2, 3;
5, 3, 4, 3;
6, 4, 4, 3, 5;
8, 5, 6, 6, 5;
10, 6, 8, 6, 5, 7;
12, 8, 10, 9, 10, 7;
15, 10, 12, 12, 10, 7, 11;
18, 12, 16, 15, 15, 14, 11;
22, 15, 20, 18, 20, 14, 11, 15;
...
From _Gus Wiseman_, Oct 23 2023: (Start)
Row n = 9 counts the following partitions:
  (9)          (72)        (54)       (63)      (81)
  (711)        (5211)      (522)      (6111)    (621)
  (531)        (3321)      (4311)     (432)     (441)
  (51111)      (321111)    (411111)   (42111)   (4221)
  (333)        (21111111)  (32211)    (3222)    (22221)
  (33111)                  (2211111)  (222111)
  (3111111)
  (111111111)
(End)
		

Crossrefs

Row sums are A000041.
The odd version is A365067.
The corresponding rank statistic is A366531, odd version A366528.
A000009 counts partitions into odd parts, ranks A066208.
A113685 counts partitions by sum of odd parts, even version A113686.
A239261 counts partitions with (sum of odd parts) = (sum of even parts).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Total[Select[#,EvenQ]]==k&]],{n,0,15},{k,0,n,2}] (* Gus Wiseman, Oct 23 2023 *)

Formula

As infinite lower triangular matrices, A173305 * A174712.
T(n,k) = A000009(n-2k) * A000041(k). - Gus Wiseman, Oct 23 2023

A000991 Number of 3-line partitions of n.

Original entry on oeis.org

1, 1, 3, 6, 12, 21, 40, 67, 117, 193, 319, 510, 818, 1274, 1983, 3032, 4610, 6915, 10324, 15235, 22371, 32554, 47119, 67689, 96763, 137404, 194211, 272939, 381872, 531576, 736923, 1016904, 1397853, 1913561, 2610023, 3546507, 4802694, 6481101, 8718309, 11689929, 15627591, 20828892
Offset: 0

Views

Author

Keywords

Comments

Planar partitions into at most three rows. - Joerg Arndt, May 01 2013
Number of partitions of n where there is one sort of part 1, two sorts of part 2, and three sorts of every other part. - Joerg Arndt, Mar 15 2014

References

  • L. Carlitz, Generating functions and partition problems, pp. 144-169 of A. L. Whiteman, ed., Theory of Numbers, Proc. Sympos. Pure Math., 8 (1965). Amer. Math. Soc., see p. 145, eq. (1.8).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A row of the array in A242641.
Sequences "number of r-line partitions": A000041 (r=1), A000990 (r=2), A000991 (r=3), A002799 (r=4), A001452 (r=5), A225196 (r=6), A225197 (r=7), A225198 (r=8), A225199 (r=9).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)^2*(1-x^2)/(&*[1-x^j: j in [1..2*m]])^3 )); // G. C. Greubel, Dec 06 2018
    
  • Maple
    b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(min(i, 3)+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..45);  # Alois P. Heinz, Mar 15 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[Min[i, 3]+j-1, j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Mar 20 2014, after Alois P. Heinz *)
    nmax = 40; CoefficientList[Series[(1-x)^2 * (1-x^2) * Product[1/(1-x^k)^3, {k,1,nmax}], {x,0,nmax}], x] (* Vaclav Kotesovec, Oct 28 2015 *)
  • PARI
    x='x+O('x^66); Vec((1-x)^2*(1-x^2)/eta(x)^3) \\ Joerg Arndt, May 01 2013
    
  • Sage
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(50)
    s = (1-x)^2 * (1-x^2) / prod(1-x^j for j in (1..60))^3
    s.coefficients()
    # G. C. Greubel, Dec 06 2018

Formula

G.f.: (1-x)^2 * (1-x^2) / Product_(k>=1, 1-x^k )^3.
For n>=4, a(n) = A000716(n) - 2*A000716(n-1) + 2*A000716(n-3) - A000716(n-4). - Vaclav Kotesovec, Oct 28 2015
a(n) ~ Pi^3 * exp(Pi*sqrt(2*n)) / (16*n^3). - Vaclav Kotesovec, Oct 28 2015

Extensions

G.f. corrected by Sean A. Irvine, Oct 19 2011
G.f. corrected by Joerg Arndt, May 01 2013
Prepended a(0)=1, added more terms, Joerg Arndt, May 01 2013

A341221 Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^3.

Original entry on oeis.org

1, 6, 21, 59, 144, 321, 669, 1323, 2511, 4604, 8202, 14253, 24241, 40449, 66363, 107234, 170910, 269004, 418566, 644436, 982536, 1484482, 2223942, 3305484, 4876620, 7144455, 10398123, 15039564, 21624678, 30919323, 43973708, 62222844, 87619212, 122810585
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 07 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
          numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
        end:
    a:= n-> b(n, 3):
    seq(a(n), n=3..36);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    nmax = 36; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^3, {x, 0, nmax}], x] // Drop[#, 3] &

Formula

a(n) ~ A000716(n). - Vaclav Kotesovec, Feb 20 2021

A355350 G.f. A(x,y) satisfies: x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n, with coefficients T(n,k) of x^n*y^k in A(x,y) given as a triangle read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 9, 6, 1, 0, 22, 27, 10, 1, 0, 51, 98, 66, 15, 1, 0, 108, 315, 340, 135, 21, 1, 0, 221, 918, 1495, 910, 246, 28, 1, 0, 429, 2492, 5838, 5070, 2086, 413, 36, 1, 0, 810, 6372, 20805, 24543, 14280, 4284, 652, 45, 1, 0, 1479, 15525, 68816, 106535, 83559, 35168, 8100, 981, 55, 1, 0, 2640, 36280, 213945, 423390, 432930, 243208, 78282, 14355, 1420, 66, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 29 2022

Keywords

Comments

The term T(n,k) is found in row n and column k of this triangle, and can be used to derive the following sequences.
A355351(n) = Sum_{k=0..n} T(n,k) for n >= 0 (row sums).
A355352(n) = Sum_{k=0..n} T(n,k) * 2^k for n >= 0.
A355353(n) = Sum_{k=0..n} T(n,k) * 3^k for n >= 0.
A355354(n) = Sum_{k=0..n} T(n,k) * 4^k for n >= 0.
A355355(n) = Sum_{k=0..n} T(n,k) * 5^k for n >= 0.
A355356(n) = Sum_{k=0..floor(n/2)} T(n-k,k) for n >= 0 (antidiagonal sums).
A355357(n) = Sum_{k=0..floor(n/2)} T(n-k,n-2*k) for n >= 0.
A354658(n) = T(2*n,n) for n >= 0 (central terms of this triangle).
Conjectures:
(C.1) Column 1 equals A000716, the number of partitions into parts of 3 kinds;
(C.2) Column 2 equals A023005, the number of partitions into parts of 6 kinds.

Examples

			G.f.: A(x,y) = 1 + x*y + x^2*(3*y + y^2) + x^3*(9*y + 6*y^2 + y^3) + x^4*(22*y + 27*y^2 + 10*y^3 + y^4) + x^5*(51*y + 98*y^2 + 66*y^3 + 15*y^4 + y^5) + x^6*(108*y + 315*y^2 + 340*y^3 + 135*y^4 + 21*y^5 + y^6) + x^7*(221*y + 918*y^2 + 1495*y^3 + 910*y^4 + 246*y^5 + 28*y^6 + y^7) + x^8*(429*y + 2492*y^2 + 5838*y^3 + 5070*y^4 + 2086*y^5 + 413*y^6 + 36*y^7 + y^8) + x^9*(810*y + 6372*y^2 + 20805*y^3 + 24543*y^4 + 14280*y^5 + 4284*y^6 + 652*y^7 + 45*y^8 + y^9) + x^10*(1479*y + 15525*y^2 + 68816*y^3 + 106535*y^4 + 83559*y^5 + 35168*y^6 + 8100*y^7 + 981*y^8 + 55*y^9 + y^10) + ...
where
x*y = ... - x^10/A(x,y)^5 + x^6/A(x,y)^4 - x^3/A(x,y)^3 + x/A(x,y)^2 - 1/A(x,y) + 1 - x*A(x,y) + x^3*A(x,y)^2 - x^6*A(x,y)^3 + x^10*A(x,y)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x,y)^n + ...
also, given P(x) is the partition function (A000041),
x*y*P(x) = (1 - x*A(x,y))*(1 - 1/A(x,y)) * (1 - x^2*A(x,y))*(1 - x/A(x,y)) * (1 - x^3*A(x,y))*(1 - x^2/A(x,y)) * (1 - x^4*A(x,y))*(1 - x^3/A(x,y)) * ... * (1 - x^n*A(x,y))*(1 - x^(n-1)/A(x,y)) * ...
TRIANGLE.
The triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for k = 0..n in row n, begins:
n=0: [1];
n=1: [0, 1];
n=2: [0, 3, 1];
n=3: [0, 9, 6, 1];
n=4: [0, 22, 27, 10, 1];
n=5: [0, 51, 98, 66, 15, 1];
n=6: [0, 108, 315, 340, 135, 21, 1];
n=7: [0, 221, 918, 1495, 910, 246, 28, 1];
n=8: [0, 429, 2492, 5838, 5070, 2086, 413, 36, 1];
n=9: [0, 810, 6372, 20805, 24543, 14280, 4284, 652, 45, 1];
n=10: [0, 1479, 15525, 68816, 106535, 83559, 35168, 8100, 981, 55, 1];
n=11: [0, 2640, 36280, 213945, 423390, 432930, 243208, 78282, 14355, 1420, 66, 1];
n=12: [0, 4599, 81816, 630890, 1563705, 2033244, 1472261, 629280, 160965, 24145, 1991, 78, 1];
...
in which column 1 appears to equal A000716, the coefficients in P(x)^3,
and column 2 appears to equal A023005, the coefficients in P(x)^6,
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + ... + A000041(n)*x^n + ...
Also, the power series expansions of P(x)^3 and P(x)^6 begin
P(x)^3 = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 108*x^5 + 221*x^6 + 429*x^7 + 810*x^8 + 1479*x^9 + 2640*x^10 + ... + A000716(n)*x^n + ...
P(x)^6 = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 918*x^5 + 2492*x^6 + 6372*x^7 + 15525*x^8 + 36280*x^9 + 81816*x^10 + ... + A023005(n)*x^n + ...
		

Crossrefs

Cf. A355351 (row sums), A355352, A355353, A355354, A355355.
Cf. A355356, A355357, A354658 (central terms).
Cf. A354645, A354650 (related table), A000041, A000716, A023005.

Programs

  • PARI
    {T(n,k) = my(A=[1,y],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*(#A)+9));
    A[#A] = -polcoeff( sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));polcoeff(A[n+1],k,y)}
    for(n=0,12, for(k=0,n, print1( T(n,k),", "));print(""))

Formula

G.f. A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k)*y^k satisfies:
(1) x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n.
(2) x*y*P(x) = Product_{n>=1} (1 - x^n*A(x,y)) * (1 - x^(n-1)/A(x,y)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.

A339318 Dirichlet g.f.: Product_{k>=2} 1 / (1 - k^(-s))^3.

Original entry on oeis.org

1, 3, 3, 9, 3, 12, 3, 22, 9, 12, 3, 39, 3, 12, 12, 51, 3, 39, 3, 39, 12, 12, 3, 105, 9, 12, 22, 39, 3, 57, 3, 108, 12, 12, 12, 135, 3, 12, 12, 105, 3, 57, 3, 39, 39, 12, 3, 258, 9, 39, 12, 39, 3, 105, 12, 105, 12, 12, 3, 201, 3, 12, 39, 221, 12, 57, 3, 39, 12, 57
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 30 2020

Keywords

Comments

Number of factorizations of n into factors (greater than 1) of 3 kinds.

Examples

			From _Antti Karttunen_, Dec 15 2021: (Start)
For n = 8, A001055(8) = 3, as it has three ordinary factorizations: (8), (4*2), (2*2*2). When allowing each of the factors appear in three different guises (here indicated with a subscript), and where neither the order of factors nor their subscripts matter, we get the following 22 different factorizations:
  (8_3), (8_2), (8_1),
  (4_3 * 2_3), (4_3 * 2_2), (4_3 * 2_1),
  (4_2 * 2_3), (4_2 * 2_2), (4_2 * 2_1),
  (4_1 * 2_3), (4_1 * 2_2), (4_1 * 2_1),
  (2_3 * 2_3 * 2_3), (2_3 * 2_3 * 2_2), (2_3 * 2_3 * 2_1),
  (2_3 * 2_2 * 2_2), (2_3 * 2_2 * 2_1), (2_3 * 2_1 * 2_1),
  (2_2 * 2_2 * 2_2), (2_2 * 2_2 * 2_1), (2_2 * 2_1 * 2_1),
  (2_1 * 2_1 * 2_1),
therefore a(8) = 22. (End)
		

Crossrefs

Programs

Formula

a(p^k) = A000716(k) for prime p.

A356500 Coefficients T(n,k) of x^n*y^k in A(x,y) for n >= 0, k = 0..3*n+1, where A(x,y) satisfies: y = Sum_{n=-oo..+oo} (-x)^(n^2) * A(x,y)^((n-1)^2), as an irregular triangle read by rows.

Original entry on oeis.org

0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 6, 0, 0, 0, 28, 0, 0, 0, 22, 0, 3, 0, 0, 0, 84, 0, 0, 0, 219, 0, 0, 0, 140, 0, 0, 0, 0, 135, 0, 0, 0, 981, 0, 0, 0, 1807, 0, 0, 0, 969, 0, 0, 0, 120, 0, 0, 0, 2568, 0, 0, 0, 10764, 0, 0, 0, 15368, 0, 0, 0, 7084, 0, 0, 54, 0, 0, 0, 4284, 0, 0, 0, 38896, 0, 0, 0, 114240, 0, 0, 0, 133266, 0, 0, 0, 53820, 0, 9, 0, 0, 0, 4662, 0, 0, 0, 94390, 0, 0, 0, 525980, 0, 0, 0, 1187433, 0, 0, 0, 1171390, 0, 0, 0, 420732
Offset: 0

Views

Author

Paul D. Hanna, Aug 09 2022

Keywords

Comments

T(n, 3*n+1) = [x^n*y^(3*n+1)] A(x,y) = binomial(4*n, n)/(3*n + 1) = A002293(n) for n >= 0, where g.f. G(x) of A002293 satisfies: G(x) = 1 + x*G(x)^4.
T(4*n, 1) = A000716(n) for n >= 0 (nonzero terms in column 1).
T(4*n+3, 2) = [x^(4*n+3)*y^2] A(x,y) = 2 * A354655(n+1) for n >= 0, where A354655 equals column 2 of triangle A354650.
T(4*n+2, 3) = [x^(4*n+2)*y^3] A(x,y) = 4 * A354656(n+1) for n >= 0, where A354656 equals column 3 of triangle A354650.
T(2*n, 2*n+1) = A356504(n), for n >= 0.
T(2*n+1, 2*n) = A356505(n) for n >= 0.
T(3*n, n+1) = A356506(n) for n >= 0.
T(3*n+1, n) = A355365(n) where A355365 is the central terms of A355360 = A355360(2*n,n).
Sum_{k=0..3*n+1} T(n, k) = A354248(n) for n >= 0 (row sums).
Sum_{k=0..3*n+1} T(n, k) * 2^k = A356502(n) for n >= 0.
Sum_{k=0..3*n+1} T(n, k) * 3^k = A356503(n) for n >= 0.
Sum_{k=0..3*n+1} T(4*n+1-k, k) = A355872(n+1) for n >= 0 (nonzero antidiagonal sums).
SPECIFIC VALUES.
(V.1) 1 = A(x,y) at x = -exp(-Pi) and y = Pi^(1/4)/gamma(3/4).
(V.2) 1 = A(x,y) at x = -exp(-2*Pi) and y = Pi^(1/4)/gamma(3/4) * (6 + 4*sqrt(2))^(1/4)/2.
(V.3) 1 = A(x,y) at x = -exp(-3*Pi) and y = Pi^(1/4)/gamma(3/4) * (27 + 18*sqrt(3))^(1/4)/3.
(V.4) 1 = A(x,y) at x = -exp(-4*Pi) and y = Pi^(1/4)/gamma(3/4) * (8^(1/4) + 2)/4.
(V.5) 1 = A(x,y) at x = -exp(-sqrt(3)*Pi) and y = gamma(4/3)^(3/2)*3^(13/8)/(Pi*2^(2/3)).

Examples

			G.f.: A(x,y) = y + x*(1 + y^4) + x^2*(4*y^3 + 4*y^7) + x^3*(6*y^2 + 28*y^6 + 22*y^10) + x^4*(3*y + 84*y^5 + 219*y^9 + 140*y^13) + x^5*(135*y^4 + 981*y^8 + 1807*y^12 + 969*y^16) + x^6*(120*y^3 + 2568*y^7 + 10764*y^11 + 15368*y^15 + 7084*y^19) + x^7*(54*y^2 + 4284*y^6 + 38896*y^10 + 114240*y^14 + 133266*y^18 + 53820*y^22) + x^8*(9*y + 4662*y^5 + 94390*y^9 + 525980*y^13 + 1187433*y^17 + 1171390*y^21 + 420732*y^25) + x^9*(3250*y^4 + 160965*y^8 + 1670942*y^12 + 6640711*y^16 + 12167001*y^20 + 10399545*y^24 + 3362260*y^28) + ...
such that A = A(x,y) satisfies
y = ... + x^16*A^25 - x^9*A^16 + x^4*A^9 - x*A^4 + A - x + x^4*A - x^9*A^4 + x^16*A^9 - x^25*A^16 +- ... + (-x)^(n^2) * A(x,y)^((n-1)^2) + ...
This irregular triangle of coefficients T(n,k) of x^n*y^k in A(x,y) for n >= 0, k = 0..3*n+1, begins:
  n = 0: [0, 1];
  n = 1: [1, 0, 0, 0, 1];
  n = 2: [0, 0, 0, 4, 0, 0, 0, 4];
  n = 3: [0, 0, 6, 0, 0, 0, 28, 0, 0, 0, 22];
  n = 4: [0, 3, 0, 0, 0, 84, 0, 0, 0, 219, 0, 0, 0, 140];
  n = 5: [0, 0, 0, 0, 135, 0, 0, 0, 981, 0, 0, 0, 1807, 0, 0, 0, 969];
  n = 6: [0, 0, 0, 120, 0, 0, 0, 2568, 0, 0, 0, 10764, 0, 0, 0, 15368, 0, 0, 0, 7084];
  n = 7: [0, 0, 54, 0, 0, 0, 4284, 0, 0, 0, 38896, 0, 0, 0, 114240, 0, 0, 0, 133266, 0, 0, 0, 53820];
  n = 8: [0, 9, 0, 0, 0, 4662, 0, 0, 0, 94390, 0, 0, 0, 525980, 0, 0, 0, 1187433, 0, 0, 0, 1171390, 0, 0, 0, 420732];
  n = 9: [0, 0, 0, 0, 3250, 0, 0, 0, 160965, 0, 0, 0, 1670942, 0, 0, 0, 6640711, 0, 0, 0, 12167001, 0, 0, 0, 10399545, 0, 0, 0, 3362260];
  ...
Reading this triangle by nonzero antidiagonals [x^(4*n+1-k)*y^k] A(x,y) for n >= 0, k = 0..3*n+1, yields triangle A356501:
  [1, 1];
  [0, 3, 6, 4, 1];
  [0, 9, 54, 120, 135, 84, 28, 4];
  [0, 22, 294, 1360, 3250, 4662, 4284, 2568, 981, 219, 22];
  [0, 51, 1260, 10120, 41405, 103020, 170324, 196172, 160965, 94390, 38896, 10764, 1807, 140];
  [0, 108, 4590, 58380, 368145, 1404102, 3587696, 6515712, 8715465, 8763645, 6684744, 3863496, 1670942, 525980, 114240, 15368, 969];
  ...
		

Crossrefs

Programs

  • PARI
    {T(n,k) = my(A=[y],M); for(i=1,n, A = concat(A,0); M = ceil(sqrt(n+1));
    A[#A] = -polcoeff( sum(m=-M,M, (-x)^(m^2)*Ser(A)^((m-1)^2)), #A-1)); polcoeff(A[n+1],k,y) }
    for(n=0,9, for(k=0,3*n+1, print1(T(n,k),", "));print(""))

Formula

G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..3*n+1} T(n,k) * x^n * y^k satisfies:
(1) y = Sum_{n=-oo..+oo} (-x)^(n^2) * A(x,y)^((n+1)^2).
(2) y = A(x,y) * Product_{n>=1} (1 - x^(2*n)*A(x,y)^(2*n)) * (1 - x^(2*n-1)*A(x,y)^(2*n+1)) * (1 - x^(2*n-1)*A(x,y)^(2*n-3)), by the Jacobi triple product identity.
(3) y = (-x) * Product_{n>=1} (1 - x^(2*n)*A(x,y)^(2*n)) * (1 - x^(2*n+1)*A(x,y)^(2*n-1)) * (1 - x^(2*n-3)*A(x,y)^(2*n-1)), by the Jacobi triple product identity.
(4) y = A(x, F(x,y)) where F(x,y) = Sum_{n=-oo..+oo} (-x)^(n^2) * y^((n-1)^2).
(5) 1 = A(x, theta_4(x)) where theta_4(x) = 1 + 2*Sum_{n>=1} (-1)^n * x^(n^2) is a Jacobi theta function.

A385001 Irregular triangle read by rows: T(n,k) is the number of partitions of n with k designated summands, n >= 0, 0 <= k <= A003056(n).

Original entry on oeis.org

1, 0, 1, 0, 3, 0, 4, 1, 0, 7, 3, 0, 6, 9, 0, 12, 15, 1, 0, 8, 30, 3, 0, 15, 45, 9, 0, 13, 67, 22, 0, 18, 99, 42, 1, 0, 12, 135, 81, 3, 0, 28, 175, 140, 9, 0, 14, 231, 231, 22, 0, 24, 306, 351, 51, 0, 24, 354, 551, 97, 1, 0, 31, 465, 783, 188, 3, 0, 18, 540, 1134, 330, 9
Offset: 0

Views

Author

Omar E. Pol, Jul 17 2025

Keywords

Comments

The divisor function sigma_1(n) = A000203(n) is also the number of partitions of n with only one designated summand, n >= 1.
When part i has multiplicity j > 0 exactly one part i is "designated".
The length of the row n is A002024(n+1) = 1 + A003056(n), hence the first positive element in column k is in the row A000217(k).
Alternating row sums give A329157.
Columns converge to A000716.
This triangle equals A060043 with reversed rows and an additional column 0.

Examples

			Triangle begins:
--------------------------------------------
   n\k:   0    1     2     3     4    5   6
--------------------------------------------
   0 |    1;
   1 |    0,   1;
   2 |    0,   3;
   3 |    0,   4,    1;
   4 |    0,   7,    3;
   5 |    0,   6,    9;
   6 |    0,  12,   15,    1;
   7 |    0,   8,   30,    3;
   8 |    0,  15,   45,    9;
   9 |    0,  13,   67,   22;
  10 |    0,  18,   99,   42,    1;
  11 |    0,  12,  135,   81,    3;
  12 |    0,  28,  175,  140,    9;
  13 |    0,  14,  231,  231,   22;
  14 |    0,  24,  306,  351,   51;
  15 |    0,  24,  354,  551,   97,   1;
  16 |    0,  31,  465,  783,  188,   3;
  17 |    0,  18,  540, 1134,  330,   9;
  18 |    0,  39,  681, 1546,  568,  22;
  19 |    0,  20,  765, 2142,  918,  51;
  20 |    0,  42,  945, 2835, 1452, 108;
  21 |    0,  32, 1040, 3758, 2233, 208,  1;
  ...
For n = 6 and k = 1 there are 12 partitions of 6 with only one designated summand as shown below:
   6'
   3'+ 3
   3 + 3'
   2'+ 2 + 2
   2 + 2'+ 2
   2 + 2 + 2'
   1'+ 1 + 1 + 1 + 1 + 1
   1 + 1'+ 1 + 1 + 1 + 1
   1 + 1 + 1'+ 1 + 1 + 1
   1 + 1 + 1 + 1'+ 1 + 1
   1 + 1 + 1 + 1 + 1'+ 1
   1 + 1 + 1 + 1 + 1 + 1'
So T(6,1) = 12, the same as A000203(6) = 12.
.
For n = 6 and k = 2 there are 15 partitions of 6 with two designated summands as shown below:
   5'+ 1'
   4'+ 2'
   4'+ 1'+ 1
   4'+ 1 + 1'
   3'+ 1'+ 1 + 1
   3'+ 1 + 1'+ 1
   3'+ 1 + 1 + 1'
   2'+ 2 + 1'+ 1
   2'+ 2 + 1 + 1'
   2 + 2'+ 1'+ 1
   2 + 2'+ 1 + 1'
   2'+ 1'+ 1 + 1 + 1
   2'+ 1 + 1'+ 1 + 1
   2'+ 1 + 1 + 1'+ 1
   2'+ 1 + 1 + 1 + 1'
So T(6,2) = 15, the same as A002127(6) = 15.
.
For n = 6 and k = 3 there is only one partition of 6 with three designated summands as shown below:
   3'+ 2'+ 1'
So T(6,3) = 1, the same as A002128(6) = 1.
There are 28 partitions of 6 with designated summands, so A077285(6) = 28.
.
		

Crossrefs

Columns: A000007 (k=0), A000203 (k=1), A002127 (k=2), A002128 (k=3), A365664 (k=4), A365665 (k=5), A384926 (k=6).
Row sums give A077285.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(expand(b(n-i*j, i-1)*j*x), j=1..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Jul 18 2025

Formula

From Alois P. Heinz, Jul 18 2025: (Start)
Sum_{k>=1} k * T(n,k) = A293421(n).
T(A000096(n),n) = A000716(n). (End)
G.f.: Product_{i>0} 1 + (y*x^i)/(1 - x^i)^2. - John Tyler Rascoe, Jul 23 2025
Conjecture: For fixed k >= 1, Sum_{j=1..n} T(j,k) ~ Pi^(2*k) * n^(2*k) / ((2*k)! * (2*k+1)!). - Vaclav Kotesovec, Aug 01 2025

A355360 G.f. A(x,y) satisfies: x*y*A(x,y) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n, with coefficients T(n,k) of x^n*y^k in A(x,y) given as a triangle read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 2, 0, 9, 12, 5, 0, 22, 54, 46, 14, 0, 51, 196, 282, 175, 42, 0, 108, 630, 1360, 1365, 666, 132, 0, 221, 1836, 5635, 8190, 6321, 2541, 429, 0, 429, 4984, 20850, 41405, 45326, 28448, 9724, 1430, 0, 810, 12744, 70737, 184527, 270060, 237209, 125532, 37323, 4862, 0, 1479, 31050, 223652, 745745, 1404102, 1625932, 1193116, 546039, 143650, 16796
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2022

Keywords

Comments

The main diagonal equals A000108, the Catalan numbers.
Conjectures.
(C.1) Column 1 equals A000716, the number of partitions into parts of 3 kinds.
(C.2) Column 2 equals twice A023005, the number of partitions into parts of 6 kinds.
The term T(n,k) is found in row n and column k of this triangle, and can be used to derive the following sequences.
A355361(n) = Sum_{k=0..n} T(n,k) for n >= 0 (row sums).
A355362(n) = Sum_{k=0..n} T(n,k) * 2^k for n >= 0.
A355363(n) = Sum_{k=0..n} T(n,k) * 3^k for n >= 0.
A355364(n) = Sum_{k=0..floor(n/2)} T(n-k,k) for n >= 0 (antidiagonal sums).
A355365(n) = T(2*n,n) for n >= 0 (central terms of this triangle).

Examples

			G.f.: A(x,y) = 1 + x*y + x^2*(3*y + 2*y^2) + x^3*(9*y + 12*y^2 + 5*y^3) + x^4*(22*y + 54*y^2 + 46*y^3 + 14*y^4) + x^5*(51*y + 196*y^2 + 282*y^3 + 175*y^4 + 42*y^5) + x^6*(108*y + 630*y^2 + 1360*y^3 + 1365*y^4 + 666*y^5 + 132*y^6) + x^7*(221*y + 1836*y^2 + 5635*y^3 + 8190*y^4 + 6321*y^5 + 2541*y^6 + 429*y^7) + x^8*(429*y + 4984*y^2 + 20850*y^3 + 41405*y^4 + 45326*y^5 + 28448*y^6 + 9724*y^7 + 1430*y^8) + x^9*(810*y + 12744*y^2 + 70737*y^3 + 184527*y^4 + 270060*y^5 + 237209*y^6 + 125532*y^7 + 37323*y^8 + 4862*y^9) + x^10*(1479*y + 31050*y^2 + 223652*y^3 + 745745*y^4 + 1404102*y^5 + 1625932*y^6 + 1193116*y^7 + 546039*y^8 + 143650*y^9 + 16796*y^10) + ...
where
x*y*A(x) = ... - x^10/A(x,y)^5 + x^6/A(x,y)^4 - x^3/A(x,y)^3 + x/A(x,y)^2 - 1/A(x,y) + 1 - x*A(x,y) + x^3*A(x,y)^2 - x^6*A(x,y)^3 + x^10*A(x,y)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x,y)^n + ...
also,
x*y*A(x)*P(x) = (1 - x*A(x,y))*(1 - 1/A(x,y)) * (1 - x^2*A(x,y))*(1 - x/A(x,y)) * (1 - x^3*A(x,y))*(1 - x^2/A(x,y)) * (1 - x^4*A(x,y))*(1 - x^3/A(x,y)) * ... * (1 - x^n*A(x,y))*(1 - x^(n-1)/A(x,y)) * ...
TRIANGLE.
The triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for k = 0..n in row n, begins:
n=0: [1];
n=1: [0, 1];
n=2: [0, 3, 2];
n=3: [0, 9, 12, 5];
n=4: [0, 22, 54, 46, 14];
n=5: [0, 51, 196, 282, 175, 42];
n=6: [0, 108, 630, 1360, 1365, 666, 132];
n=7: [0, 221, 1836, 5635, 8190, 6321, 2541, 429];
n=8: [0, 429, 4984, 20850, 41405, 45326, 28448, 9724, 1430];
n=9: [0, 810, 12744, 70737, 184527, 270060, 237209, 125532, 37323, 4862];
n=10: [0, 1479, 31050, 223652, 745745, 1404102, 1625932, 1193116, 546039, 143650, 16796];
n=11: [0, 2640, 72560, 667005, 2784110, 6565030, 9646462, 9242178, 5826171, 2349490, 554268, 58786];
n=12: [0, 4599, 163632, 1892670, 9729720, 28161819, 51126740, 61555824, 50308245, 27806065, 10023948, 2143428, 208012];
...
in which column 1 appears to equal A000716, the coefficients in P(x)^3,
and column 2 appears to equal twice A023005, the coefficients in P(x)^6,
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + ... + A000041(n)*x^n + ...
Also, the power series expansions of P(x)^3 and P(x)^6 begin
P(x)^3 = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 108*x^5 + 221*x^6 + 429*x^7 + 810*x^8 + 1479*x^9 + 2640*x^10 + ... + A000716(n)*x^n + ...
P(x)^6 = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 918*x^5 + 2492*x^6 + 6372*x^7 + 15525*x^8 + 36280*x^9 + 81816*x^10 + ... + A023005(n)*x^n + ...
The main diagonal equals the Catalan numbers (A000108), where g.f. C(x) = 1 + x*C(x)^2 begins
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + 4862*x^9 + ... + A000108(n)*x^n + ...
		

Crossrefs

Cf. A000108 (main diagonal), A000041, A000716, A023005.
Cf. A355361 (y=1), A355362 (y=2), A355363 (y=3), A355364, A355365.
Cf. A355350 (related table).

Programs

  • PARI
    {T(n,k) = my(A=[1,y],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*(#A)+9));
    A[#A] = polcoeff( x*y*Ser(A) - sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));polcoeff(A[n+1],k,y)}
    for(n=0,12, for(k=0,n, print1( T(n,k),", "));print(""))

Formula

G.f. A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} T(n,k)*y^k satisfies:
(1) x*y*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n.
(2) -x*y*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x,y)^n.
(3) x*y*A(x)*P(x) = Product_{n>=1} (1 - x^n*A(x,y)) * (1 - x^(n-1)/A(x,y)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.
(4) A(x,y) = B(x, y*A(x,y)) and A(x, y/B(x,y)) = B(x,y) where x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * B(x,y)^n, and B(x,y) is the g.f. of table A355350.

A000713 EULER transform of 3, 2, 2, 2, 2, 2, 2, 2, ...

Original entry on oeis.org

1, 3, 8, 18, 38, 74, 139, 249, 434, 734, 1215, 1967, 3132, 4902, 7567, 11523, 17345, 25815, 38045, 55535, 80377, 115379, 164389, 232539, 326774, 456286, 633373, 874213, 1200228, 1639418, 2228546, 3015360, 4062065, 5448995, 7280060, 9688718, 12846507, 16972577
Offset: 0

Views

Author

Keywords

Comments

Equals row sums of triangle A146023. - Gary W. Adamson, Oct 26 2008
Partial sums of A000712. - Geoffrey Critzer, Apr 19 2012, corrected by Omar E. Pol, Jun 19 2012
Equals the number of partitions of n with 1's of three kinds and all parts >1 of two kinds. - Gregory L. Simay, Mar 25 2018

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of triangle A093010.
Cf. A146023. - Gary W. Adamson, Oct 26 2008

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> `if`(n<2,3,2)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    nn=20; g=Product[1/(1-x^i), {i,1,nn}]; c=1/(1-x); CoefficientList[Series[g^2/(1-x), {x,0,nn}], x] (* Geoffrey Critzer, Apr 19 2012 *)
  • PARI
    x='x+O('x^66); Vec(1/((1-x)*eta(x)^2)) \\ Joerg Arndt, May 01 2013
    
  • Python
    from functools import lru_cache
    from sympy import divisor_sigma
    @lru_cache(maxsize=None)
    def A000713(n): return sum(A000713(k)*((divisor_sigma(n-k)<<1)+1) for k in range(n))//n if n else 1 # Chai Wah Wu, Sep 25 2023

Formula

G.f.: A(x)/(1-x) where A(x) is g.f. for A000712. - Geoffrey Critzer, Apr 19 2012.
From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) ~ sqrt(3*n)/Pi * A000712(n).
a(n) ~ exp(2*Pi*sqrt(n/3)) / (4*Pi*3^(1/4)*n^(3/4)).
(End)
G.f.: exp(Sum_{k>=1} (2*sigma_1(k) + 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018

Extensions

Extended with formula from Christian G. Bower, Apr 15 1998
Definition changed by N. J. A. Sloane, Aug 15 2006

A053762 Number of 3-colored generalized Frobenius partitions of n.

Original entry on oeis.org

1, 9, 27, 82, 207, 486, 1055, 2205, 4374, 8427, 15696, 28539, 50630, 88119, 150417, 252727, 418068, 682344, 1099343, 1750968, 2758185, 4301682, 6645150, 10175625, 15451744, 23281686, 34819227, 51712860, 76292784, 111850740, 162997314
Offset: 0

Views

Author

James Sellers, Apr 05 2000

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 9*x + 27*x^2 + 82*x^3 + 207*x^4 + 486*x^5 + 1055*x^6 + 2205*x^7 + ...
1/q + 9*q^7 + 27*q^15 + 82*q^23 + 207*q^31 + 486*q^39 + 1055*q^47 + 2205*q^55 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[(Product[(1 - x^k)^3, {k, 1, nmax}] + 9*x*Product[(1 - x^(9*k))^3, {k, 1, nmax}]) / Product[((1 - x^k)^3*(1 - x^(3*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 13 2016 *)
    a[n_]:= SeriesCoefficient[q^(1/8)*(eta[q]^3 + 9*eta[q^9]^3)/(eta[q]^3* eta[q^3]), {q, 0, n}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Feb 08 2018 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3) / (eta(x + A)^3 * eta(x^3 + A)), n))} /* Michael Somos, Mar 09 2011 */

Formula

Expansion of q^(1/8) * (eta(q)^3 + 9 * eta(q^9)^3) / (eta(q)^3 * eta(q^3)) in powers of q. - Michael Somos, Mar 09 2011
Expansion of a(x) / f(-x)^3 in powers of x where a() is a cubic AGM theta function and f() is a Ramanujan theta function. - Michael Somos, Aug 21 2012
Convolution of A000716 and A004016. - Michael Somos, Mar 09 2011
a(n) ~ exp(sqrt(2*n)*Pi)/(4*sqrt(3)*n). - Vaclav Kotesovec, Nov 13 2016
Previous Showing 11-20 of 35 results. Next