A126983
Expansion of 1/(1+x*c(x)), c(x) the g.f. of Catalan numbers A000108.
Original entry on oeis.org
1, -1, 0, -1, -2, -6, -18, -57, -186, -622, -2120, -7338, -25724, -91144, -325878, -1174281, -4260282, -15548694, -57048048, -210295326, -778483932, -2892818244, -10786724388, -40347919626, -151355847012, -569274150156
Offset: 0
-
[1] cat [(-1/2)^n*(1 +(&+[(-2)^k*Binomial(2*k,k)/(k+1): k in [0..n-1]])): n in [1..30]]; // G. C. Greubel, Feb 27 2019
-
Table[(-1/2)^n*(1 + Sum[ CatalanNumber[k]*(-2)^k, {k, 0, n-1}]), {n, 0, 30}] (* G. C. Greubel, Feb 27 2019 *)
-
{a(n) = (-1/2)^n*(1+sum(k=0,n-1, (-2)^k*binomial(2*k,k)/(k+1)))};
vector(30, n, n--; a(n)) \\ G. C. Greubel, Feb 27 2019
-
from itertools import count, islice
def A126983_gen(): # generator of terms
yield from (1, -1, 0)
a, c = 0, 1
for n in count(1):
yield (a:=-a-(c:=c*((n<<2)+2)//(n+2))>>1)
A126983_list = list(islice(A126983_gen(),20)) # Chai Wah Wu, Apr 27 2023
-
[1] + [(-1/2)^n*(1 +sum((-2)^k*catalan_number(k) for k in (0..n-1))) for n in (1..30)] # G. C. Greubel, Feb 27 2019
A237770
Number of standard Young tableaux with n cells without a succession v, v+1 in a row.
Original entry on oeis.org
1, 1, 1, 2, 4, 9, 22, 59, 170, 516, 1658, 5583, 19683, 72162, 274796, 1082439, 4406706, 18484332, 79818616, 353995743, 1611041726, 7510754022, 35842380314, 174850257639, 871343536591, 4430997592209, 22978251206350, 121410382810005, 653225968918521
Offset: 0
The a(5) = 9 such tableaux of 5 are:
[1] [2] [3] [4] [5] [6] [7] [8] [9]
135 13 135 13 13 14 14 15 1
24 24 2 25 2 25 2 2 2
5 4 4 4 3 3 3 3
5 5 4 4
5
The corresponding ballot sequences are:
1: [ 0 1 0 1 0 ]
2: [ 0 1 0 1 2 ]
3: [ 0 1 0 2 0 ]
4: [ 0 1 0 2 1 ]
5: [ 0 1 0 2 3 ]
6: [ 0 1 2 0 1 ]
7: [ 0 1 2 0 3 ]
8: [ 0 1 2 3 0 ]
9: [ 0 1 2 3 4 ]
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..68 (terms 0..48 from Alois P. Heinz)
- Timothy Y. Chow, Henrik Eriksson and C. Kenneth Fan, Chess Tableaux, The Electronic Journal of Combinatorics, vol.11, no.2, (2005).
- S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
- Wikipedia, Young tableau
Cf.
A238126 (tableaux with one succession),
A238127 (two successions).
-
h:= proc(l, j) option remember; `if`(l=[], 1,
`if`(l[1]=0, h(subsop(1=[][], l), j-1), add(
`if`(i<>j and l[i]>0 and (i=1 or l[i]>l[i-1]),
h(subsop(i=l[i]-1, l), i), 0), i=1..nops(l))))
end:
g:= proc(n, i, l) `if`(n=0 or i=1, h([1$n, l[]], 0),
`if`(i<1, 0, g(n, i-1, l)+
`if`(i>n, 0, g(n-i, i, [i, l[]]))))
end:
a:= n-> g(n, n, []):
seq(a(n), n=0..30);
# second Maple program (counting ballot sequences):
b:= proc(n, v, l) option remember;
`if`(n<1, 1, add(`if`(i<>v and (i=1 or l[i-1]>l[i]),
b(n-1, i, subsop(i=l[i]+1, l)), 0), i=1..nops(l))+
b(n-1, nops(l)+1, [l[], 1]))
end:
a:= proc(n) option remember; forget(b); b(n-1, 1, [1]) end:
seq(a(n), n=0..30);
-
b[n_, v_, l_List] := b[n, v, l] = If[n<1, 1, Sum[If[i != v && (i == 1 || l[[i-1]] > l[[i]]), b[n-1, i, ReplacePart[l, i -> l[[i]]+1]], 0], {i, 1, Length[l]}] + b[n-1, Length[l]+1, Append[l, 1]]]; a[n_] := a[n] = b[n-1, 1, {1}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 06 2015, translated from 2nd Maple program *)
A001558
Number of hill-free Dyck paths of semilength n+3 and having length of first descent equal to 1 (a hill in a Dyck path is a peak at level 1).
Original entry on oeis.org
1, 3, 10, 33, 111, 379, 1312, 4596, 16266, 58082, 209010, 757259, 2760123, 10114131, 37239072, 137698584, 511140558, 1904038986, 7115422212, 26668376994, 100221202998, 377570383518, 1425706128480, 5394898197448, 20454676622476
Offset: 0
a(1)=3 because we have uu(d)ududd, uuu(d)uddd and uu(d)uuddd, where u=(1,1), d=(1,-1) (the first descents are shown between parentheses).
G.f. = 1 + 3*x + 10*x^2 + 33*x^3 + 111*x^4 + 379*x^5 + 1312*x^6 + ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
- T. Fine, Extrapolation when very little is known about the source, Information and Control 16 (1970), 331-359.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, Une méthode pour obtenir la fonction génératrice d'une série. FPSAC 1993, Florence. Formal Power Series and Algebraic Combinatorics.
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-Sqrt(1-4*x))/(x*(3-Sqrt(1-4*x)))*((1-Sqrt(1-4*x))/(2*x))^3 )); // G. C. Greubel, Feb 12 2019
-
F:=(1-sqrt(1-4*z))/z/(3-sqrt(1-4*z)): C:=(1-sqrt(1-4*z))/2/z: g:=F*C^3: gser:=series(g,z=0,32): seq(coeff(gser,z,n),n=0..27); # Emeric Deutsch, May 08 2006
-
CoefficientList[Series[(1-Sqrt[1-4*x])/(x*(3-Sqrt[1-4*x]))*((1-Sqrt[1-4*x])/(2*x))^3, {x, 0, 30}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
-
my(x='x+O('x^30)); Vec((1-sqrt(1-4*x))/(x*(3-sqrt(1-4*x)))*((1-sqrt(1-4*x))/(2*x))^3) \\ G. C. Greubel, Feb 12 2019
-
((1-sqrt(1-4*x))/(x*(3-sqrt(1-4*x)))*((1-sqrt(1-4*x))/(2*x))^3).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019
A214021
Number A(n,k) of n X k nonconsecutive tableaux; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 6, 6, 1, 1, 1, 0, 1, 22, 72, 18, 1, 1, 1, 0, 1, 92, 1289, 960, 57, 1, 1, 1, 0, 1, 422, 29889, 93964, 14257, 186, 1, 1, 1, 0, 1, 2074, 831174, 13652068, 8203915, 228738, 622, 1, 1
Offset: 0
A(2,4) = 1:
[1 3 5 7]
[2 4 6 8].
A(4,2) = 6:
[1, 5] [1, 4] [1, 3] [1, 4] [1, 3] [1, 3]
[2, 6] [2, 6] [2, 6] [2, 5] [2, 5] [2, 4]
[3, 7] [3, 7] [4, 7] [3, 7] [4, 7] [5, 7]
[4, 8] [5, 8] [5, 8] [6, 8] [6, 8] [6, 8].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 6, 22, 92, 422, ...
1, 1, 6, 72, 1289, 29889, 831174, ...
1, 1, 18, 960, 93964, 13652068, 2621897048, ...
1, 1, 57, 14257, 8203915, 8134044455, 11865331748843, ...
- Alois P. Heinz, Antidiagonals n = 0..23, flattened
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106.
- Wikipedia, Young tableau
-
b:= proc(l, t) option remember; local n, s; n, s:= nops(l),
add(i, i=l); `if`(s=0, 1, add(`if`(t<>i and l[i]>
`if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l), i), 0), i=1..n))
end:
A:= (n, k)-> `if`(n<1 or k<1, 1, b([k$n], 0)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[l_, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Sum[i, {i, l}]}; If[s == 0, 1, Sum[If[t != i && l[[i]] > If[i == n, 0, l[[i+1]]], b[ReplacePart[l, i -> l[[i]]-1], i], 0], {i, 1, n}]] ] ; a[n_, k_] := If[n < 1 || k < 1, 1, b[Array[k&, n], 0]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
A065601
Number of Dyck paths of length 2n with exactly 1 hill.
Original entry on oeis.org
0, 1, 0, 2, 4, 13, 40, 130, 432, 1466, 5056, 17672, 62460, 222853, 801592, 2903626, 10582816, 38781310, 142805056, 528134764, 1960825672, 7305767602, 27307800400, 102371942932, 384806950624, 1450038737668, 5476570993440, 20727983587220, 78606637060012
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..500
- Naiomi Cameron, J. E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, Vol. 19, 2016, #16.6.1.
- E. Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202.
- E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
- S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243 [math.CO], 2012. - From _N. J. A. Sloane_, May 09 2012
- Sergey Kitaev, Jeffrey Remmel, Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. (arXiv:1302.2274)
-
b:= proc(x, y, h, z) option remember;
`if`(x<0 or y b(n$2, true$2):
seq(a(n), n=0..30); # Alois P. Heinz, May 10 2012
# second Maple program:
series(((1-sqrt(1-4*x))/(3-sqrt(1-4*x)))^2/x, x=0, 30); # Mark van Hoeij, Apr 18 2013
-
CoefficientList[Series[((1-Sqrt[1-4*x])/(3-Sqrt[1-4*x]))^2/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
Table[Sum[(-1)^j*(j+1)*(j+2)*Binomial[2*n-1-j,n],{j,0,n-1}]/(n+1),{n,0,30}] (* Vaclav Kotesovec, May 18 2015 *)
A104629
Expansion of (1-2*x-sqrt(1-4*x))/(x^2 * (1+2*x+sqrt(1-4*x))).
Original entry on oeis.org
1, 2, 6, 18, 57, 186, 622, 2120, 7338, 25724, 91144, 325878, 1174281, 4260282, 15548694, 57048048, 210295326, 778483932, 2892818244, 10786724388, 40347919626, 151355847012, 569274150156, 2146336125648, 8110508473252
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-2*x-Sqrt(1-4*x))/(x^2*(1+2*x+Sqrt(1-4*x))))); // G. C. Greubel, Aug 12 2018
-
CoefficientList[Series[((1-2x-Sqrt[1-4x])/(1+2x+Sqrt[1-4x]))/x^2,{x,0,30}],x] (* Harvey P. Dale, Jul 23 2016 *)
Table[(1 + Sum[CatalanNumber[n]*(-2)^k, {k,0,n+2}])/(8*(-2)^n), {n,0,30}] (* G. C. Greubel, Aug 12 2018 *)
-
x='x+O('x^30); Vec((1-2*x-sqrt(1-4*x))/(x^2*(1+2*x+sqrt(1-4*x)))) \\ G. C. Greubel, Aug 12 2018
-
for(n=0,30, print1((1 + sum(k=0,n+2, (-2)^k*binomial(2*k, k)/(k+1)))/(8*(-2)^n), ", ")) \\ G. C. Greubel, Aug 12 2018
-
from itertools import count, islice
def A104629_gen(): # generator of terms
a, c = 0, 1
for n in count(1):
yield (a:=(c:=c*((n<<2)+2)//(n+2))-a>>1)
A104629_list = list(islice(A104629_gen(),20)) # Chai Wah Wu, Apr 26 2023
A158815
Triangle T(n,k) read by rows, matrix product of A046899(row-reversed) * A130595.
Original entry on oeis.org
1, 1, 1, 4, 1, 1, 13, 5, 1, 1, 46, 16, 6, 1, 1, 166, 58, 19, 7, 1, 1, 610, 211, 71, 22, 8, 1, 1, 2269, 781, 261, 85, 25, 9, 1, 1, 8518, 2920, 976, 316, 100, 28, 10, 1, 1, 32206, 11006, 3676, 1196, 376, 116, 31, 11, 1, 1
Offset: 0
The triangle starts
1;
1, 1;
4, 1, 1;
13, 5, 1, 1;
46, 16, 6, 1, 1;
166, 58, 19, 7, 1, 1;
610, 211, 71, 22, 8, 1, 1;
2269, 781, 261, 85, 25, 9, 1, 1;
8518, 2620, 976, 316, 100, 28, 10, 1, 1;
32206, 11006, 3676, 1196, 376, 116, 31, 11, 1, 1;
122464, 41746, 13938, 4544, 1442, 441, 133, 34, 12, 1, 1;
...
-
A158815 := proc (n, k)
add((-1)^(j+k)*binomial(2*n-j, n)*binomial(j, k), j = 0..n);
end proc:
seq(seq(A158815(n, k), k = 0..n), n = 0..10); # Peter Bala, Jul 13 2021
-
T[n_,k_]:= T[n,k]= Sum[(-1)^(j+k)*Binomial[j,k]*Binomial[2*n-j,n], {j,0,n}];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 22 2021 *)
-
def A158815(n,k): return sum( (-1)^(j+k)*binomial(2*n-j, n)*binomial(j, k) for j in (0..n) )
flatten([[A158815(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Dec 22 2021
A059019
Number of Dyck paths of semilength n with no peak at height 3.
Original entry on oeis.org
1, 1, 2, 4, 9, 22, 58, 163, 483, 1494, 4783, 15740, 52956, 181391, 630533, 2218761, 7888266, 28291588, 102237141, 371884771, 1360527143, 5002837936, 18479695171, 68539149518, 255137783916, 952914971191, 3569834343547, 13410481705795
Offset: 0
1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 22*x^5 + 58*x^6 + ...
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- P. Peart and W.-J. Woan, Dyck Paths With No Peaks at Height k, J. Integer Sequences, 4 (2001), #01.1.3.
-
A059019:=n->add(add(binomial(k,j)*j*binomial(2*n-2*k-j-1,n-k-j)/(n-k),j=0..min(k,n-k)), k=1..n-1)+1: seq(A059019(n),n=0..30); # Wesley Ivan Hurt, Oct 01 2014
-
CoefficientList[Series[2/(2-3*x+x*Sqrt[1-4*x]), {x, 0, 20}], x]
-
a(n):=sum(sum(binomial(k,j)*j*binomial(2*n-2*k-j-1,n-k-j),j,0,min(k,n-k))/(n-k),k,1,n-1)+1; \\ Vladimir Kruchinin, Oct 02 2013
-
x='x+O('x^66); Vec( 2/(2-3*x+x*(1-4*x)^(1/2)) ) \\ Joerg Arndt, Oct 02 2013
A065602
Triangle T(n,k) giving number of hill-free Dyck paths of length 2n and having height of first peak equal to k.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 8, 6, 3, 1, 24, 18, 10, 4, 1, 75, 57, 33, 15, 5, 1, 243, 186, 111, 54, 21, 6, 1, 808, 622, 379, 193, 82, 28, 7, 1, 2742, 2120, 1312, 690, 311, 118, 36, 8, 1, 9458, 7338, 4596, 2476, 1164, 474, 163, 45, 9, 1, 33062, 25724, 16266, 8928, 4332, 1856, 692, 218, 55, 10, 1
Offset: 2
T(3,2)=1 reflecting the unique Dyck path (UUDUDD) of length 6, with no hills and height of first peak equal to 2.
Triangle begins:
1;
1, 1;
3, 2, 1;
8, 6, 3, 1;
24, 18, 10, 4, 1;
75, 57, 33, 15, 5, 1;
243, 186, 111, 54, 21, 6, 1;
808, 622, 379, 193, 82, 28, 7, 1;
2742, 2120, 1312, 690, 311, 118, 36, 8, 1;
Row sums give
A000957 (the Fine sequence).
-
a065602 n k = sum
[(k-1+2*j) * a007318' (2*n-k-1-2*j) (n-1) `div` (2*n-k-1-2*j) |
j <- [0 .. div (n-k) 2]]
a065602_row n = map (a065602 n) [2..n]
a065602_tabl = map a065602_row [2..]
-- Reinhard Zumkeller, May 15 2014
-
a := proc(n,k) if n=0 and k=0 then 1 elif k<2 or k>n then 0 else sum((k-1+2*j)*binomial(2*n-k-1-2*j,n-1)/(2*n-k-1-2*j),j=0..floor((n-k)/2)) fi end: seq(seq(a(n,k),k=2..n),n=1..14);
-
nmax = 12; t[n_, k_] := Sum[(k-1+2j)*Binomial[2n-k-1-2j, n-1] / (2n-k-1-2j), {j, 0, (n-k)/2}]; Flatten[ Table[t[n, k], {n, 2, nmax}, {k, 2, n}]] (* Jean-François Alcover, Nov 08 2011, after Maple *)
-
def T(n,k): return sum( (k+2*j-1)*binomial(2*n-2*j-k-1, n-1)/(2*n-2*j-k-1) for j in (0..(n-k)//2) )
flatten([[T(n,k) for k in (2..n)] for n in (2..12)]) # G. C. Greubel, May 26 2022
A114587
Number of peaks at odd levels in all hill-free Dyck paths of semilength n+3 (a hill in a Dyck path is a peak at level 1).
Original entry on oeis.org
1, 4, 17, 68, 269, 1056, 4132, 16144, 63046, 246228, 962019, 3760700, 14710589, 57581696, 225546488, 884059808, 3467476430, 13608852968, 53443415522, 210000136136, 825630208466, 3247733377664, 12781815016232, 50328168273408
Offset: 0
a(1)=4 because in the 6 (=A000957(5)) hill-free Dyck paths of semilength 4, namely UUUUDDDD, UU(UD)(UD)DD, UUDU(UD)DD, UUDUDUDD, UU(UD)DUDD and UUDDUUDD (U=(1,1), D=(1,-1)) we have altogether 4 peaks at odd level (shown between parentheses).
-
G:=(1-2*z-3*z^2-2*z^3-(1-z^2)*sqrt(1-4*z))/2/sqrt(1-4*z)/z^4/(2+z)^2: Gser:=series(G,z=0,32): 1,seq(coeff(Gser,z^n),n=1..26);
-
CoefficientList[Series[(1-2*x-3*x^2-2*x^3-(1-x^2)*Sqrt[1-4*x])/(2*x^4*(2+x)^2*Sqrt[1-4*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *)
Comments