cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 298 results. Next

A319416 Cuts-resistance of n: number of applications of Lernormand's "raboter" map needed to transform the binary expansion of n to the empty string.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 1, 2, 3, 3, 2, 2, 3, 3, 3, 4, 5, 5, 4, 3, 3, 3, 2, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 2, 3, 4, 3, 3, 3, 4, 4, 4, 5, 6, 6, 5, 4, 4, 4, 3, 3, 3, 4, 3, 2, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 1, 2
Offset: 0

Views

Author

N. J. A. Sloane, Sep 21 2018

Keywords

Comments

Here we are using Lenormand's "raboter" map in a stricter sense than in A318921 and A319419. If S is a binary string with successive runs of lengths b,c,d,e,..., the "raboter" map sends S to the binary string with successive runs of lengths b-1,c-1,d-1,e-1,... Runs of length 0 are omitted (they are indicated by dots in the examples below).
To get a(n), start with S equal to the binary expansion of n beginning with the most significant bit, and keep applying the map until we reach the empty string.
After the first step, the string may start with a string of 0's: this is acceptable because we are working with strings, not binary expansions of numbers.
For example, 34 = 100010 -> .00.. = 00 -> 0. = 0 -> . (the empty string), taking 3 steps, so a(34) = 3.
Note: this is not the same as the number of applications of the map k -> A318921(k) needed to reduce the binary expansion of n to zero (because A318921 does not distinguish between 0 and the empty string).
This is also not the same as the number of applications of the map k -> A319419(k) needed to reduce the binary expansion of n to -1 (because A319419 does not distinguish between a string of 0's and a single 0).
The value k appears for the first time when n = 2^k - 1.

Examples

			n: repeatedly applying the map / number of steps = a(n)
0: 0 -> . / 1
1: 1 -> . / 1
2: 10 -> . / 1
3: 11 -> 1 -> . / 2
4: 100 -> 0 -> . / 2
5: 101 -> . / 1
6: 110 -> 1 -> . / 2
7: 111 -> 11 -> 1 -> . / 3
8: 1000 -> 00 -> 0 -> . / 3
9: 1001 -> 0 -> . / 2
10: 1010 -> . / 1
11: 1011 -> 1 -> . / 2
12: 1100 -> 10 -> . / 2
...
		

Crossrefs

Positions of 1's are A000975.
Positions of 2's are A329862.
The version for runs-resistance is A318928.
The version for compositions is A329861.
Binary words counted by cuts-resistance are A319421 or A329860.

Programs

  • Mathematica
    degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
    Table[degdep[IntegerDigits[n,2]],{n,0,50}] (* Gus Wiseman, Nov 25 2019 *)
  • PARI
    a(n) = my (b=binary(n), w=#b); for (k=1, oo, my (ww=0); for (i=2, w, if (b[i-1]==b[i], b[ww++]=b[i])); if (ww==0, return (k), w=ww)) \\ Rémy Sigrist, Sep 23 2018

Extensions

More terms from Rémy Sigrist, Sep 23 2018

A360555 Two times the median of the first differences of the 0-prepended prime indices of n > 1.

Original entry on oeis.org

2, 4, 1, 6, 2, 8, 0, 2, 3, 10, 2, 12, 4, 3, 0, 14, 2, 16, 2, 4, 5, 18, 1, 3, 6, 0, 2, 20, 2, 22, 0, 5, 7, 4, 1, 24, 8, 6, 1, 26, 2, 28, 2, 2, 9, 30, 0, 4, 2, 7, 2, 32, 1, 5, 1, 8, 10, 34, 2, 36, 11, 4, 0, 6, 2, 38, 2, 9, 2, 40, 0, 42, 12, 2, 2, 5, 2, 44, 0, 0
Offset: 2

Views

Author

Gus Wiseman, Feb 14 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). Since the denominator is always 1 or 2, the median can be represented as an integer by multiplying by 2.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The 0-prepended prime indices of 1617 are {0,2,4,4,5}, with sorted differences {0,1,2,2}, with median 3/2, so a(1617) = 3.
		

Crossrefs

The version for divisors is A063655.
Differences of 0-prepended prime indices are listed by A287352.
The version for prime indices is A360005.
The version for distinct prime indices is A360457.
The version for distinct prime factors is A360458.
The version for prime factors is A360459.
The version for prime multiplicities is A360460.
Positions of even terms are A360556
Positions of odd terms are A360557
Positions of 0's are A360558, counted by A360254.
For mean instead of two times median we have A360614/A360615.
A112798 lists prime indices, length A001222, sum A056239.
A325347 counts partitions with integer median, complement A307683.
A326567/A326568 gives mean of prime indices.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[2*Median[Differences[Prepend[prix[n],0]]],{n,2,100}]

A360556 Numbers > 1 whose first differences of 0-prepended prime indices have integer median.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 26, 27, 28, 29, 30, 31, 32, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 89
Offset: 1

Views

Author

Gus Wiseman, Feb 16 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The 0-prepended prime indices of 1617 are {0,2,4,4,5}, with sorted differences {0,1,2,2}, with median 3/2, so 1617 is not in the sequence.
		

Crossrefs

For mean instead of median we have A340610.
Positions of even terms in A360555.
The complement is A360557 (without 1).
These partitions are counted by A360688.
- For divisors (A063655) we have A139711, complement A139710.
- For prime indices (A360005) we have A359908, complement A359912.
- For distinct prime indices (A360457) we have A360550, complement A360551.
- For distinct prime factors (A360458) we have A360552, complement A100367.
- For prime factors (A360459) we have A359913, complement A072978.
- For prime multiplicities (A360460) we have A360553, complement A360554.
- For 0-prepended differences (A360555) we have A360556, complement A360557.
A112798 lists prime indices, length A001222, sum A056239.
A325347 = partitions w/ integer median, complement A307683, strict A359907.
A359893 and A359901 count partitions by median, odd-length A359902.
A360614/A360615 = mean of first differences of 0-prepended prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],IntegerQ[Median[Differences[Prepend[prix[#],0]]]]&]

A056830 Alternate digits 1 and 0.

Original entry on oeis.org

0, 1, 10, 101, 1010, 10101, 101010, 1010101, 10101010, 101010101, 1010101010, 10101010101, 101010101010, 1010101010101, 10101010101010, 101010101010101, 1010101010101010, 10101010101010101, 101010101010101010
Offset: 0

Views

Author

Henry Bottomley, Aug 30 2000

Keywords

Comments

Fibonacci bit-representations of numbers for which there is only one possible representation and for which the maximal and minimal bit-representations (A104326 and A014417) are equal. The numbers represented are equal to the numbers in A000071 (subtract the first term of that sequence). For example, 10101 = 12 because 8+5+1. - Casey Mongoven, Mar 19 2006
Sequence A000975 written in base 2. - Jaroslav Krizek, Aug 05 2009
The absolute value of alternating sum of the first n repunits: a(n) = abs(Sum_{k=0..n} (-1)^k*A002275(n)). - Ilya Gutkovskiy, Dec 02 2015
Binary representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 131", based on the 5-celled von Neumann neighborhood. See A279053 for references and links. - Robert Price, Dec 05 2016

Examples

			n  a(n)             A000975(n)   (If a(n) is interpreted in base 2.)
------------------------------
0  0 ....................... 0
1  1 ....................... 1
2  10 ...................... 2 = 2^1
3  101 ..................... 5
4  1010 ................... 10 = 2^1 + 2^3
5  10101 .................. 21
6  101010 ................. 42 = 2^1 + 2^3 + 2^5
7  1010101 ................ 85
8  10101010 .............. 170 = 2^1 + 2^3 + 2^5 + 2^7
9  101010101 ............. 341
10 1010101010 ............ 682 = 2^1 + 2^3 + 2^5 + 2^7 + 2^9
11 10101010101 .......... 1365
12 101010101010 ......... 2730 = 2^1 + 2^3 + 2^5 + 2^7 + 2^9 + 2^11, etc.
- _Bruno Berselli_, Dec 02 2015
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> Int(10^(n+1)/99) ); # G. C. Greubel, Jul 14 2019
  • Magma
    [Round((20*10^n-11)/198) : n in [0..30]]; // Vincenzo Librandi, Jun 25 2011
    
  • Maple
    A056830 := proc(n) floor(10^(n+1)/99) ; end proc:
  • Mathematica
    CoefficientList[Series[x/((1-x^2)*(1-10*x)), {x,0,30}], x] (* G. C. Greubel, Sep 26 2017 *)
  • PARI
    Vec(x/((1-x)*(1+x)*(1-10*x))+O(x^30)) \\ Charles R Greathouse IV, Feb 13 2017
    
  • Sage
    [floor(10^(n+1)/99) for n in (0..30)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = +10*a(n-1) + a(n-2) - 10*a(n-3).
a(n) = floor(10^(n+1)/(10^2-1)) = a(n-2)+10^(n-1) = 10*a(n-1) + (1 - (-1)^n)/2.
From Paul Barry, Nov 12 2003: (Start)
a(n+1) = Sum_{k=0..floor(n/2)} 10^(n-2*k).
a(n+1) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(j+k)*10^j.
G.f.: x/((1-x)*(1+x)*(1-10*x)).
a(n) = 9*a(n-1) + 10*a(n-2) + 1.
a(n) = 10^(n+1)/99 - (-1)^n/22 - 1/18. (End)
a(n) = A007088(A107909(A104161(n))) = A007088(A000975(n)). - Reinhard Zumkeller, May 28 2005
a(n) = round((20*10^n-11)/198) = floor((10*10^n-1)/99) = ceiling((10*10^n-10)/99) = round((10*10^n-10)/99). - Mircea Merca, Dec 27 2010
From Daniel Forgues, Sep 20 2018: (Start)
If a(n) is interpreted in base 2:
a(2n) = Sum_{k=1..n} 2^(2n-1), n >= 0; a(2n-1) = a(2n)/2, n >= 1.
a(2n) = A020988(n), n >= 0.
a(0) = 0; a(2n) = 4*a(2n-2) + 2, n >= 1. (End)

Extensions

More terms from Casey Mongoven, Mar 19 2006

A081254 Numbers k such that A081252(m)/m^2 has a local maximum for m = k.

Original entry on oeis.org

1, 3, 6, 13, 26, 53, 106, 213, 426, 853, 1706, 3413, 6826, 13653, 27306, 54613, 109226, 218453, 436906, 873813, 1747626, 3495253, 6990506, 13981013, 27962026, 55924053, 111848106, 223696213, 447392426, 894784853, 1789569706, 3579139413
Offset: 1

Views

Author

Klaus Brockhaus, Mar 17 2003

Keywords

Comments

The limit of the local maxima, lim_{m->inf} A081252(m)/m^2 = 1/10. For local minima cf. A081253.
Row sums of the triangle A181971. - Reinhard Zumkeller, Jul 09 2012

Examples

			13 is a term since A081252(12)/12^2 = 15/144 = 0.104..., A081252(13)/13^2 = 18/169 = 0.106..., A081252(14)/14^2 = 20/196 = 0.102....
		

Crossrefs

Programs

  • Magma
    [Floor(2^(n-1)*5/3): n in [1..40]]; // Vincenzo Librandi, Apr 04 2012
    
  • Maple
    seq(floor(2^(n-1)*5/3),n=1..35); # Muniru A Asiru, Sep 20 2018
  • Mathematica
    Rest@CoefficientList[Series[-(x^2 - x - 1)*x/((x - 1)*(x + 1)*(2*x - 1)), {x, 0, 32}], x] (* Vincenzo Librandi, Apr 04 2012 *)
    a[n_]:=Floor[2^(n-1)*5/3]; Array[a,33,1] (* Stefano Spezia, Sep 01 2018 *)
  • PARI
    a(n) = 2^(n-1)*5\3; \\ Altug Alkan, Sep 21 2018

Formula

a(n) = floor(2^(n-1)*5/3). [corrected by Michel Marcus, Sep 21 2018]
a(n) = a(n-2) + 5*2^(n-3) for n > 2;
a(n+2) - a(n) = A020714(n-1);
a(n) + a(n-1) = A052549(n-1) for n > 1;
a(2*n+1) = A020989(n); a(2n) = A072197(n-1);
a(n+1) - a(n) = A048573(n-1).
G.f.: -(x^2 - x - 1)*x/((x - 1)*(x + 1)*(2*x - 1)).
a(n) = 5*2^(n-1)/3 + (-1)^n/6-1/2. a(n) = 2*a(n-1) + (1+(-1)^n)/2, a(1)=1. - Paul Barry, Mar 24 2003
a(2n) = 2*a(2*n-1) + 1, a(2*n+1) = 2*a(2*n), a(1)=1. a(n) = A000975(n-1) + 2^(n-1). - Philippe Deléham, Oct 15 2006
a(n) = A005578(n) + A000225(n-1). - Yuchun Ji, Sep 21 2018
a(n) - a(n-2) = 2 * (a(n-1) - a(n-3)), with a(0..2)=[1,3,6]. - Yuchun Ji, Mar 18 2020

A237363 Number of partitions of n for which 2*(number of distinct parts) <= (number of parts).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 6, 6, 10, 13, 20, 26, 39, 50, 71, 87, 121, 156, 208, 265, 348, 440, 566, 712, 906, 1131, 1424, 1766, 2224, 2738, 3390, 4168, 5130, 6266, 7664, 9312, 11332, 13723, 16603, 20004, 24112, 28942, 34708, 41522, 49612, 59031, 70308, 83479, 98992
Offset: 0

Views

Author

Clark Kimberling, Feb 06 2014

Keywords

Comments

a(n) + A237365(n) = A000041(n).
Also the number of integer partitions of n whose median difference is 0. For example, the partition (2,2,2,1,1) is counted because its multiset of differences {0,0,0,1} has median 0. - Gus Wiseman, Mar 18 2023

Examples

			Among the 22 partitions of 8, these qualify:  [5,1,1,1], [4,4], [4,1,1,1,1], [3,3,1,1], [3,1,1,1,1,1], [2,2,2,2], [2,2,2,1,1], [2,2,1,1,1,1], [2,1,1,1,1,1,1], [1,1,1,1,1,1,1,1], and the remaining 12 do not, so that a(8) = 10.
		

Crossrefs

These partitions have ranks A361204.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts, reverse A058398.
A116608 counts partitions by number of distinct parts.
A359893 and A359901 count partitions by median, odd-length A359902.
Comparing twice the number of distinct parts to the number of parts:
less: A360254, ranks A360558
equal: A239959, ranks A067801
greater: A237365, ranks A361393
less or equal: A237363, ranks A361204
greater or equal: A361394, ranks A361395

Programs

  • Mathematica
    z = 50; t = Map[Length[Select[IntegerPartitions[#], 2*Length[DeleteDuplicates[#]] <= Length[#] &]] &, Range[z]] (*A237363*)
    Table[PartitionsP[n] - t[[n]], {n, 1, z}] (*A237365*) (* Peter J. C. Moses, Feb 06 2014 *)
    Table[Length[Select[IntegerPartitions[n],Median[Differences[#]]==0&]],{n,0,30}] (* Gus Wiseman, Mar 18 2023 *)

A361856 Positive integers whose prime indices satisfy (maximum) = 2*(median).

Original entry on oeis.org

12, 24, 42, 48, 60, 63, 72, 96, 126, 130, 140, 144, 189, 192, 195, 252, 266, 288, 308, 325, 330, 360, 378, 384, 399, 420, 432, 495, 546, 567, 572, 576, 588, 600, 630, 638, 650, 665, 756, 768, 819, 864, 882, 884, 931, 945, 957, 962, 975, 1122, 1134, 1152, 1190
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
These are Heinz numbers of partitions satisfying (maximum) = 2*(median).

Examples

			The terms together with their prime indices begin:
    12: {1,1,2}
    24: {1,1,1,2}
    42: {1,2,4}
    48: {1,1,1,1,2}
    60: {1,1,2,3}
    63: {2,2,4}
    72: {1,1,1,2,2}
    96: {1,1,1,1,1,2}
   126: {1,2,2,4}
   130: {1,3,6}
   140: {1,1,3,4}
   144: {1,1,1,1,2,2}
The prime indices of 126 are {1,2,2,4}, with maximum 4 and median 2, so 126 is in the sequence.
The prime indices of 308 are {1,1,4,5}, with maximum 5 and median 5/2, so 308 is in the sequence.
		

Crossrefs

The LHS (greatest prime index) is A061395.
The RHS (twice median) is A360005, distinct A360457.
These partitions are counted by A361849.
For mean instead of median we have A361855, counted by A361853.
For minimum instead of median we have A361908, counted by A118096.
For length instead of median we have A361909, counted by A237753.
A000975 counts subsets with integer median.
A001222 (bigomega) counts prime factors, distinct A001221 (omega).
A112798 lists prime indices, sum A056239.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Max@@prix[#]==2*Median[prix[#]]&]

Formula

A061395(a(n)) = 2*A360005(a(n)).

A107907 Numbers having consecutive zeros or consecutive ones in binary representation.

Original entry on oeis.org

3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Reinhard Zumkeller, May 28 2005

Keywords

Comments

Also positive integers whose binary expansion has cuts-resistance > 1. For the operation of shortening all runs by 1, cuts-resistance is the number of applications required to reach an empty word. - Gus Wiseman, Nov 27 2019

Examples

			From _Gus Wiseman_, Nov 27 2019: (Start)
The sequence of terms together with their binary expansions begins:
    3:      11
    4:     100
    6:     110
    7:     111
    8:    1000
    9:    1001
   11:    1011
   12:    1100
   13:    1101
   14:    1110
   15:    1111
   16:   10000
   17:   10001
   18:   10010
(End)
		

Crossrefs

Union of A003754 and A003714.
Complement of A000975.

Programs

  • Mathematica
    Select[Range[100],MatchQ[IntegerDigits[#,2],{_,x_,x_,_}]&] (* Gus Wiseman, Nov 27 2019 *)
    Select[Range[80],SequenceCount[IntegerDigits[#,2],{x_,x_}]>0&] (* or *) Complement[Range[85],Table[FromDigits[PadRight[{},n,{1,0}],2],{n,7}]] (* Harvey P. Dale, Jul 31 2021 *)
  • Python
    def A107907(n): return (m:=n-2+(k:=(3*n+3).bit_length()))+(m>=(1<Chai Wah Wu, Apr 21 2025

Formula

a(A000247(n)) = A000225(n+2).
a(A000295(n+2)) = A000079(n+2).
a(A000325(n+2)) = A000051(n+2) for n>0.
a(n) = m+1 if m >= floor(2^k/3) otherwise a(n) = m where k = floor(log_2(3*(n+1))) and m = n-2+k. - Chai Wah Wu, Apr 21 2025

Extensions

Offset changed to 1 by Chai Wah Wu, Apr 21 2025

A127824 Triangle in which row n is a sorted list of all numbers having total stopping time n in the Collatz (or 3x+1) iteration.

Original entry on oeis.org

1, 2, 4, 8, 16, 5, 32, 10, 64, 3, 20, 21, 128, 6, 40, 42, 256, 12, 13, 80, 84, 85, 512, 24, 26, 160, 168, 170, 1024, 48, 52, 53, 320, 336, 340, 341, 2048, 17, 96, 104, 106, 113, 640, 672, 680, 682, 4096, 34, 35, 192, 208, 212, 213, 226, 227, 1280, 1344, 1360, 1364
Offset: 0

Views

Author

T. D. Noe, Jan 31 2007

Keywords

Comments

The length of each row is A005186(n). The largest number in row n is 2^n. The second-largest number in row n is A000975(n-2) for n>4. The smallest number in row n is A033491(n). The Collatz conjecture asserts that every positive integer occurs in some row of this triangle.
n is an element of row number A006577(n). - Reinhard Zumkeller, Oct 03 2012
Conjecture: The numbers T(n, 1),...,T(n, k_n) of row n are arranged in non-overlapping clusters of numbers which have the same order of magnitude and whose Collatz trajectories to 1 have the same numbers of ups and downs. The highest cluster of row n is just the number 2^n, the trajectory to 1 of which has n-1 downs and no ups. The second highest cluster of row n consists of the numbers T(n, k_n - r) = 4^(r - 1) * t(n - 2*r + 2) for 1 <= r <= (n - 3) / 2, where t(k) = (2^k - (-1)^k - 3) / 6. These have n-2 downs and one up. The largest and second largest number of this latter cluster are given by A000975 and A153772. - Markus Sigg, Sep 25 2020

Examples

			The triangle starts:
   0:   1
   1:   2
   2:   4
   3:   8
   4:  16
   5:   5   32
   6:  10   64
   7:   3   20   21  128
   8:   6   40   42  256
   9:  12   13   80   84   85  512
  10:  24   26  160  168  170 1024
  11:  48   52   53  320  336  340  341 2048
  12:  17   96  104  106  113  640  672  680  682 4096
- _Reinhard Zumkeller_, Oct 03 2012
		

References

Crossrefs

Cf. A006577 (total stopping time of n), A088975 (traversal of the Collatz tree).
Column k=1 gives A033491.
Last elements of rows give A000079.
Row lengths give A005186.
Row sums give A337673(n+1).

Programs

  • Haskell
    import Data.List (union, sort)
    a127824 n k = a127824_tabf !! n !! k
    a127824_row n = a127824_tabf !! n
    a127824_tabf = iterate f [1] where
       f row = sort $ map (* 2) row `union`
                      [x' | x <- row, let x' = (x - 1) `div` 3,
                            x' * 3 == x - 1, odd x', x' > 1]
    -- Reinhard Zumkeller, Oct 03 2012
  • Mathematica
    s={1}; t=Flatten[Join[s, Table[s=Union[2s, (Select[s,Mod[ #,3]==1 && OddQ[(#-1)/3] && (#-1)/3>1&]-1)/3]; s, {n,13}]]]

Formula

Suppose S is the list of numbers in row n. Then the list of numbers in row n+1 is the union of each number in S multiplied by 2 and the numbers (x-1)/3, where x is in S, with x=1 (mod 3) and where (x-1)/3 is an odd number greater than 1.

A360244 Number of integer partitions of n where the parts do not have the same median as the distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 3, 9, 11, 17, 23, 37, 42, 68, 87, 110, 153, 209, 261, 352, 444, 573, 750, 949, 1187, 1508, 1909, 2367, 2938, 3662, 4507, 5576, 6826, 8359, 10203, 12372, 15011, 18230, 21996, 26518, 31779, 38219, 45682, 54660, 65112, 77500, 92089, 109285
Offset: 0

Views

Author

Gus Wiseman, Feb 05 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(4) = 1 through a(9) = 17 partitions:
  (211)  (221)   (411)    (322)     (332)      (441)
         (311)   (3111)   (331)     (422)      (522)
         (2111)  (21111)  (511)     (611)      (711)
                          (2221)    (4211)     (3222)
                          (3211)    (5111)     (3321)
                          (4111)    (22211)    (4311)
                          (22111)   (32111)    (5211)
                          (31111)   (41111)    (6111)
                          (211111)  (221111)   (22221)
                                    (311111)   (33111)
                                    (2111111)  (42111)
                                               (51111)
                                               (321111)
                                               (411111)
                                               (2211111)
                                               (3111111)
                                               (21111111)
For example, the partition y = (33111) has median 1, and the distinct parts {1,3} have median 2, so y is counted under a(9).
		

Crossrefs

For mean instead of median: A360242, ranks A360246, complement A360243.
These partitions are ranked by A360248.
The complement is A360245, ranked by A360249.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by number of parts.
A116608 counts partitions by number of distinct parts.
A240219 counts partitions with mean equal to median, ranks A359889.
A325347 counts partitions w/ integer median, strict A359907, ranks A359908.
A359893 and A359901 count partitions by median.
A359894 counts partitions with mean different from median, ranks A359890.
A360071 counts partitions by number of parts and number of distinct parts.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Median[#]!=Median[Union[#]]&]],{n,0,30}]
Previous Showing 31-40 of 298 results. Next