cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 87 results. Next

A024108 a(n) = 9^n-n^7.

Original entry on oeis.org

1, 8, -47, -1458, -9823, -19076, 251505, 3959426, 40949569, 382637520, 3476784401, 31361572438, 282393704673, 2541803079812, 22876687041457, 205890961235274, 1853019920416385, 16677181289327896, 150094634684779089, 1350851716779120350
Offset: 0

Views

Author

Keywords

Programs

  • Magma
    [9^n-n^7: n in [0..25]]; // Vincenzo Librandi, Jul 06 2011
    
  • Mathematica
    Table[9^n - n^7, {n, 0, 19}] (* Michael De Vlieger, Mar 20 2015 *)
    LinearRecurrence[{17,-100,308,-574,686,-532,260,-73,9},{1,8,-47,-1458,-9823,-19076,251505,3959426,40949569},20] (* Harvey P. Dale, Mar 23 2018 *)
  • PARI
    Vec(-(10*x^8+1071*x^7+10627*x^6+20497*x^5+8373*x^4-167*x^3-83*x^2-9*x+1)/((x-1)^8*(9*x-1)) + O(x^100)) \\ Colin Barker, Mar 20 2015

Formula

G.f.: -(10*x^8+1071*x^7+10627*x^6+20497*x^5+8373*x^4-167*x^3-83*x^2-9*x+1) / ((x-1)^8*(9*x-1)). - Colin Barker, Mar 20 2015
a(n) = A001019(n) - A001015(n). - Michel Marcus, Mar 20 2015

A024121 a(n) = 10^n - n^7.

Original entry on oeis.org

1, 9, -28, -1187, -6384, 21875, 720064, 9176457, 97902848, 995217031, 9990000000, 99980512829, 999964168192, 9999937251483, 99999894586496, 999999829140625, 9999999731564544, 99999999589661327, 999999999387779968
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A011557 (10^n), A001015 (n^7).

Programs

Formula

From Stefano Spezia, Oct 04 2018: (Start)
a(n) = 18*a(n - 1) - 108*a(n - 2) + 336*a(n - 3) - 630*a(n - 4) + 756*a(n - 5) - 588*a(n - 6) + 288*a(n - 7) - 81*a(n - 8) + 10*a(n - 9) for n > 8.
G.f.: -((1 - 9*x - 82*x^2 - 47*x^3 + 9564*x^4 + 22913*x^5 + 11818*x^6 + 1191*x^7 + 11*x^8)/((-1 + x)^8*(-1 + 10*x))).
E.g.f.: exp(x)*(exp(9*x) - x - 63*x^2 - 301*x^3 - 350*x^4 - 140*x^5 - 21*x^6 - x^7).
(End)

A084641 Binomial transform of n^7.

Original entry on oeis.org

0, 1, 130, 2574, 25904, 183200, 1040112, 5076400, 22171648, 88915968, 333209600, 1181548544, 4001402880, 13033885696, 41061830656, 125666611200, 374947708928, 1093874155520, 3128047828992, 8785866391552, 24280799641600, 66124498599936, 177683966197760
Offset: 0

Views

Author

Paul Barry, Jun 08 2003

Keywords

Comments

The binomial transforms of n, n^2, n^3, n^4, n^5, n^6 are A001787, A001788, A058645, A058649, A059338, A056468 respectively.

Crossrefs

Programs

  • Magma
    [n^2*(n^5+21*n^4+105*n^3+35*n^2-210*n+112)*2^(n-7): n in [0..40]]; // G. C. Greubel, Mar 20 2023
    
  • Mathematica
    LinearRecurrence[{16,-112,448,-1120,1792,-1792,1024,-256}, {0,1,130, 2574,25904,183200,1040112,5076400}, 41] (* Amiram Eldar, Nov 26 2021 *)
  • SageMath
    [n^2*(n^5+21*n^4+105*n^3+35*n^2-210*n+112)*2^(n-7) for n in range(41)] # G. C. Greubel, Mar 20 2023

Formula

a(n) = n^2*(n^5 + 21*n^4 + 105*n^3 + 35*n^2 - 210*n + 112)*2^(n-7).
a(n) = Sum_{k=0..n} C(n, k)*k^7.
G.f.: x*(1+114*x+606*x^2-1168*x^3-96*x^4+816*x^5-272*x^6)/(1-2*x)^8. - Colin Barker, Sep 20 2012

A085479 Product of three solutions of the Diophantine equation x^3 - y^3 = z^2.

Original entry on oeis.org

728, 93184, 1592136, 11927552, 56875000, 203793408, 599539304, 1526726656, 3482001432, 7280000000, 14186660488, 26085556224, 45680920376, 76741030912, 124385625000, 195421011968, 298726553944, 445696183296, 650738625992
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Aug 15 2003

Keywords

Comments

Parametric representation of the solution is (x,y,z) = (8n^2, 7n^2, 13n^3), thus getting a(n) = 728*n^7.

Crossrefs

Cf. A001015 (n^7), A085377.

Programs

  • Mathematica
    728*Range[20]^7 (* Harvey P. Dale, May 27 2012 *)
  • PARI
    Vec(728*x*(1 + 120*x + 1191*x^2 + 2416*x^3 + 1191*x^4 + 120*x^5 + x^6) / (1 - x)^8 + O(x^25)) \\ Colin Barker, Oct 25 2019

Formula

a(n) = 728*n^7.
From Colin Barker, Oct 25 2019: (Start)
G.f.: 728*x*(1 + 120*x + 1191*x^2 + 2416*x^3 + 1191*x^4 + 120*x^5 + x^6) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)

Extensions

More terms from Matthew Conroy, Jan 16 2006

A134010 a(n) = n^(initial digit of n).

Original entry on oeis.org

1, 1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 27000, 29791, 32768, 35937, 39304, 42875, 46656, 50653, 54872, 59319, 2560000, 2825761, 3111696
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 02 2007

Keywords

Comments

a(n) = n^A000030(n).

Crossrefs

Programs

  • Mathematica
    a[n_]:= n^First[IntegerDigits[n]];Join[{1},Array[a,42]] (* James C. McMahon, Mar 30 2025 *)

A168194 a(n) = n^4*(n^3 + 1)/2.

Original entry on oeis.org

0, 1, 72, 1134, 8320, 39375, 140616, 412972, 1050624, 2394765, 5005000, 9750906, 17926272, 31388539, 52725960, 85455000, 134250496, 205211097, 306162504, 447001030, 640080000, 900641511, 1247296072, 1702552644, 2293401600
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Comments

Number of unoriented rows of length 7 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=72, there are 2^7=128 oriented arrangements of two colors. Of these, 2^4=16 are achiral. That leaves (128-16)/2=56 chiral pairs. Adding achiral and chiral, we get 72. - Robert A. Russell, Nov 13 2018

Crossrefs

Row 7 of A277504.
Cf. A001015 (oriented), A000583 (achiral).

Programs

  • Magma
    [n^4*(n^3+1)/2: n in [0..50]]; // Vincenzo Librandi, Apr 25 2011
    
  • Mathematica
    Table[(n^4 (n^3+1))/2,{n,0,40}] (* Harvey P. Dale, Apr 29 2011 *)
  • PARI
    vector(50, n, n--; n^4*(n^3+1)/2) \\ G. C. Greubel, Nov 14 2018
    
  • Sage
    [n^4*(n^3+1)/2 for n in (0..50)] # G. C. Greubel, Nov 14 2018

Formula

G.f.: x*(1 + 64*x + 586*x^2 + 1208*x^3 + 605*x^4 + 56*x^5)/(1-x)^8. - Colin Barker, Apr 26 2012
From Robert A. Russell, Nov 13 2018: (Start)
a(n) = (A001015(n) + A000583(n)) / 2 = (n^7 + n^4) / 2.
G.f.: (Sum_{j=1..7} S2(7,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..4} S2(4,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..6} A145882(7,k) * x^k / (1-x)^8.
E.g.f.: (Sum_{k=1..7} S2(7,k)*x^k + Sum_{k=1..4} S2(4,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>7, a(n) = Sum_{j=1..8} -binomial(j-9,j) * a(n-j). (End)
E.g.f.: x*(2 +70*x +307*x^2 +351*x^3 +140*x^4 +21*x^5 +x^6)*exp(x)/2. - G. C. Greubel, Nov 14 2018

A269792 a(n) = 5*n^4.

Original entry on oeis.org

0, 5, 80, 405, 1280, 3125, 6480, 12005, 20480, 32805, 50000, 73205, 103680, 142805, 192080, 253125, 327680, 417605, 524880, 651605, 800000, 972405, 1171280, 1399205, 1658880, 1953125, 2284880, 2657205, 3073280, 3536405, 4050000, 4617605, 5242880, 5929605
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 31 2016

Keywords

Comments

More generally, the ordinary generating function for the sequences of the form k*n^m, is k*Sum_{j>=1}x^j*j^m (when abs(x)<1).
More generally, the ordinary generating function for the values of quartic polynomial p*n^4 + q*n^3 + k*n^2 + m*n + r, is (r + (p + q + k + m - 4*r)*x + (11*p + 3*q - k - 3*m + 6*r)*x^2 + (11*p - 3*q - k + 3*m - 4*r)*x^3 + (p - q + k - m + r)*x^4)/(1 - x)^5.

Crossrefs

Cf. similar sequences of the form k*n^m, for k = 1...5, m = 1...10: A001477(k = 1, m = 1), A005843 (k = 2, m = 1), A008585 (k = 3, m = 1), A008586 (k = 4, m = 1), A008587 (k = 5, m = 1), A000290 (k = 1, m = 2), A001105 (k = 2, m = 2), A033428 (k = 3, m = 2), A016742 (k = 4, m = 2), A033429 (k = 5, m = 2), A000578 (k = 1, m = 3), A033431 (k = 2, m = 3), A117642 (k = 3, m = 3), A033430 (k = 4, m = 3), A244725 (k = 5, m = 3), A000583 (k = 1, m = 4), A244730 (k = 2, m = 4), A219056 (k = 3, m = 4), A141046 (k = 4, m = 4), this sequence(k = 5, m = 4), A000584 (k = 1, m = 5), A001014 (k = 1, m = 6), A106318 (k = 2, m = 6), A001015 (k = 1, m = 7), A001016 (k = 1, m = 8), A001017 (k = 1, m = 9), A008454 (k = 1, m = 10).

Programs

  • Maple
    A269792:=n->5*n^4: seq(A269792(n), n=0..50); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    Table[5 n^4, {n, 0, 33}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 5, 80, 405, 1280}, 34]
  • PARI
    x='x+O('x^99); concat(0, Vec(5*x*(1+11*x+11*x^2+x^3)/(1-x)^5)) \\ Altug Alkan, Mar 31 2016

Formula

G.f.: 5*x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^5.
E.g.f.: 5*exp(x)^x*x*(1 + 7*x + 6*x^2 + x^3).
a(n) = 5*a(n-1) - 10*(9n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 5*A000583(n) = A008587(n)*A000578(n).
Sum_{n>=1} 1/a(n) = Pi^4/450 = (1/450)*A092425 = 0.216464646742...

A281678 Numbers k that have no digits in common with k^7.

Original entry on oeis.org

3, 7, 8, 33, 43, 77, 93, 272, 332, 662, 7757, 31333
Offset: 1

Views

Author

Robert Israel, Jan 26 2017

Keywords

Comments

All terms have last digit 2, 3, 7 or 8.
Sequence is likely to be finite. If it exists, a(13) > 10^7.
In this sequence, the only terms with no repeated digits are 3, 7, 8, 43, 93. - Altug Alkan, Jan 26 2017
If it exists, a(13) > 10^17. - David Radcliffe, May 26 2025

Examples

			43 is a term because 43^7 = 271818611107 has no digit 4 or 3.
		

Crossrefs

Cf. A001015. Contains A253576.
Cf. A281148.

Programs

  • Maple
    select(t -> convert(convert(t,base,10),set) intersect convert(convert(t^7,base,10),set) = {},
    {seq(seq(10*i+j,j=[2,3,7,8]),i=0..10^4});
  • Mathematica
    Select[Range[40000], Intersection[IntegerDigits[#], IntegerDigits[ #^7]] == {}&] (* Vincenzo Librandi, Jan 27 2017 *)
  • PARI
    isok(n) = #setintersect(Set(digits(n)), Set(digits(n^7))) == 0; \\ Michel Marcus, Jan 26 2017

A343526 Number of divisors of n^7.

Original entry on oeis.org

1, 8, 8, 15, 8, 64, 8, 22, 15, 64, 8, 120, 8, 64, 64, 29, 8, 120, 8, 120, 64, 64, 8, 176, 15, 64, 22, 120, 8, 512, 8, 36, 64, 64, 64, 225, 8, 64, 64, 176, 8, 512, 8, 120, 120, 64, 8, 232, 15, 120, 64, 120, 8, 176, 64, 176, 64, 64, 8, 960, 8, 64, 120, 43, 64, 512, 8, 120, 64, 512, 8
Offset: 1

Views

Author

Seiichi Manyama, May 15 2021

Keywords

Crossrefs

Column k=7 of A343656.

Programs

  • Mathematica
    Table[DivisorSigma[0, n^7], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
  • PARI
    a(n) = numdiv(n^7);
    
  • PARI
    a(n) = prod(k=1, #f=factor(n)[, 2], 7*f[k]+1);
    
  • PARI
    a(n) = sumdiv(n, d, 7^omega(d));
    
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 7^omega(k)*x^k/(1-x^k)))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 6*X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 19 2021

Formula

a(n) = A000005(A001015(n)).
Multiplicative with a(p^e) = 7*e+1.
a(n) = Sum_{d|n} 7^omega(d).
G.f.: Sum_{k>=1} 7^omega(k) * x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 6/p^s). - Vaclav Kotesovec, Aug 19 2021

A016771 a(n) = (3*n)^7.

Original entry on oeis.org

0, 2187, 279936, 4782969, 35831808, 170859375, 612220032, 1801088541, 4586471424, 10460353203, 21870000000, 42618442977, 78364164096, 137231006679, 230539333248, 373669453125, 587068342272, 897410677851
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A001015 (n^7).

Programs

Previous Showing 51-60 of 87 results. Next