cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 92 results. Next

A329332 Table of powers of squarefree numbers, powers of A019565(n) in increasing order in row n. Square array A(n,k) n >= 0, k >= 0 read by descending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 9, 6, 1, 1, 16, 27, 36, 5, 1, 1, 32, 81, 216, 25, 10, 1, 1, 64, 243, 1296, 125, 100, 15, 1, 1, 128, 729, 7776, 625, 1000, 225, 30, 1, 1, 256, 2187, 46656, 3125, 10000, 3375, 900, 7, 1, 1, 512, 6561, 279936, 15625, 100000, 50625, 27000, 49, 14
Offset: 0

Views

Author

Peter Munn, Nov 10 2019

Keywords

Comments

The A019565 row order gives the table neat relationships with A003961, A003987, A059897, A225546, A319075 and A329050. See the formula section.
Transposition of this table, that is reflection about its main diagonal, has subtle symmetries. For example, consider the unique factorization of a number into powers of distinct primes. This can be restated as factorization into numbers from rows 2^n (n >= 0) with no more than one from each row. Reflecting about the main diagonal, this factorization becomes factorization (of a related number) into numbers from columns 2^k (k >= 0) with no more than one from each column. This is also unique and is factorization into powers of squarefree numbers with distinct exponents that are powers of two. See the example section.

Examples

			Square array A(n,k) begins:
n\k |  0   1     2      3        4          5           6             7
----+------------------------------------------------------------------
   0|  1   1     1      1        1          1           1             1
   1|  1   2     4      8       16         32          64           128
   2|  1   3     9     27       81        243         729          2187
   3|  1   6    36    216     1296       7776       46656        279936
   4|  1   5    25    125      625       3125       15625         78125
   5|  1  10   100   1000    10000     100000     1000000      10000000
   6|  1  15   225   3375    50625     759375    11390625     170859375
   7|  1  30   900  27000   810000   24300000   729000000   21870000000
   8|  1   7    49    343     2401      16807      117649        823543
   9|  1  14   196   2744    38416     537824     7529536     105413504
  10|  1  21   441   9261   194481    4084101    85766121    1801088541
  11|  1  42  1764  74088  3111696  130691232  5489031744  230539333248
  12|  1  35  1225  42875  1500625   52521875  1838265625   64339296875
Reflection of factorization about the main diagonal: (Start)
The canonical (prime power) factorization of 864 is 2^5 * 3^3 = 32 * 27. Reflecting the factors about the main diagonal of the table gives us 10 * 36 = 10^1 * 6^2 = 360. This is the unique factorization of 360 into powers of squarefree numbers with distinct exponents that are powers of two.
Reflection about the main diagonal is given by the self-inverse function A225546(.). Clearly, all positive integers are in the domain of A225546, whether or not they appear in the table. It is valid to start from 360, observe that A225546(360) = 864, then use 864 to derive 360's factorization into appropriate powers of squarefree numbers as above.
(End)
		

Crossrefs

The range of values is A072774.
Rows (abbreviated list): A000079(1), A000244(2), A000400(3), A000351(4), A011557(5), A001024(6), A009974(7), A000420(8), A001023(9), A009965(10), A001020(16), A001022(32), A001026(64).
A019565 is column 1, A334110 is column 2, and columns that are sorted in increasing order (some without the 1) are: A005117(1), A062503(2), A062838(3), A113849(4), A113850(5), A113851(6), A113852(7).
Other subtables: A182944, A319075, A329050.
Re-ordered subtable of A297845, A306697, A329329.
A000290, A003961, A003987, A059897 and A225546 are used to express relationships between terms of this sequence.
Cf. A285322.

Formula

A(n,k) = A019565(n)^k.
A(k,n) = A225546(A(n,k)).
A(n,2k) = A000290(A(n,k)) = A(n,k)^2.
A(2n,k) = A003961(A(n,k)).
A(n,2k+1) = A(n,2k) * A(n,1).
A(2n+1,k) = A(2n,k) * A(1,k).
A(A003987(n,m), k) = A059897(A(n,k), A(m,k)).
A(n, A003987(m,k)) = A059897(A(n,m), A(n,k)).
A(2^n,k) = A319075(k,n+1).
A(2^n, 2^k) = A329050(n,k).
A(n,k) = A297845(A(n,1), A(1,k)) = A306697(A(n,1), A(1,k)), = A329329(A(n,1), A(1,k)).
Sum_{n>=0} 1/A(n,k) = zeta(k)/zeta(2*k), for k >= 2. - Amiram Eldar, Dec 03 2022

A034524 a(n) = 11^n + 1.

Original entry on oeis.org

2, 12, 122, 1332, 14642, 161052, 1771562, 19487172, 214358882, 2357947692, 25937424602, 285311670612, 3138428376722, 34522712143932, 379749833583242, 4177248169415652, 45949729863572162, 505447028499293772
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form m^n + 1: A000012 (m=0), A007395 (m=1), A000051 (m=2), A034472 (m=3), A052539 (m=4), A034474 (m=5), A062394 (m=6), A034491 (m=7), A062395 (m=8), A062396 (m=9), A062397 (m=10), this sequence (m=11), A178248 (m=12), A141012 (m=13), A228081 (m=64).
Cf. A001020.

Programs

Formula

From Mohammad K. Azarian, Jan 02 2009: (Start)
G.f.: 1/(1-x) + 1/(1-11*x).
E.g.f.: exp(x) + exp(11*x). (End)
From G. C. Greubel, Mar 11 2023: (Start)
a(n) = 11*a(n-1) - 10.
a(n) = A001020(n) + 1. (End)

A076512 Denominator of cototient(n)/totient(n).

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 6, 1, 2, 2, 10, 1, 12, 3, 8, 1, 16, 1, 18, 2, 4, 5, 22, 1, 4, 6, 2, 3, 28, 4, 30, 1, 20, 8, 24, 1, 36, 9, 8, 2, 40, 2, 42, 5, 8, 11, 46, 1, 6, 2, 32, 6, 52, 1, 8, 3, 12, 14, 58, 4, 60, 15, 4, 1, 48, 10, 66, 8, 44, 12, 70, 1, 72, 18, 8, 9, 60, 4, 78, 2, 2, 20, 82, 2, 64, 21
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 15 2002

Keywords

Comments

a(n)=1 iff n=A007694(k) for some k.
Numerator of phi(n)/n=Prod_{p|n} (1-1/p). - Franz Vrabec, Aug 26 2005
From Wolfdieter Lang, May 12 2011: (Start)
For n>=2, a(n)/A109395(n) = sum(((-1)^r)*sigma_r,r=0..M(n)) with the elementary symmetric functions (polynomials) sigma_r of the indeterminates {1/p_1,...,1/p_M(n)} if n = prod((p_j)^e(j),j=1..M(n)) where M(n)=A001221(n) and sigma_0=1.
This follows by expanding the above given product for phi(n)/n.
The n-th member of this rational sequence 1/2, 2/3, 1/2, 4/5, 1/3, 6/7, 1/2, 2/3, 2/5,... is also (2/n^2)*sum(k,with 1<=k=2.
Therefore, this scaled sum depends only on the distinct prime factors of n.
See also A023896. Proof via PIE (principle of inclusion and exclusion). (End)
In the sequence of rationals r(n)=eulerphi(n)/n: 1, 1/2, 2/3, 1/2, 4/5, 1/3, 6/7, 1/2, 2/3, 2/5, 10/11, 1/3, ... one can observe that new values are obtained for squarefree indices (A005117); while for a nonsquarefree number n (A013929), r(n) = r(A007947(n)), where A007947(n) is the squarefree kernel of n. - Michel Marcus, Jul 04 2015

Crossrefs

Cf. A076511 (numerator of cototient(n)/totient(n)), A051953.
Phi(m)/m = k: A000079 \ {1} (k=1/2), A033845 (k=1/3), A000244 \ {1} (k=2/3), A033846 (k=2/5), A000351 \ {1} (k=4/5), A033847 (k=3/7), A033850 (k=4/7), A000420 \ {1} (k=6/7), A033848 (k=5/11), A001020 \ {1} (k=10/11), A288162 (k=6/13), A001022 \ {1} (12/13), A143207 (k=4/15), A033849 (k=8/15), A033851 (k=24/35).

Programs

  • Magma
    [Numerator(EulerPhi(n)/n): n in [1..100]]; // Vincenzo Librandi, Jul 04 2015
  • Mathematica
    Table[Denominator[(n - EulerPhi[n])/EulerPhi[n]], {n, 80}] (* Alonso del Arte, May 12 2011 *)
  • PARI
    vector(80, n, numerator(eulerphi(n)/n)) \\ Michel Marcus, Jul 04 2015
    

Formula

a(n) = A000010(n)/A009195(n).

A364185 Leading digit of 11^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 6, 6, 7, 8, 8, 9, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 7, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 1, 1, 1, 1
Offset: 0

Views

Author

Seiichi Manyama, Jul 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := IntegerDigits[11^n][[1]]; Array[a, 100, 0] (* Amiram Eldar, Jul 15 2023 *)
  • PARI
    a(n) = digits(11^n)[1];

Formula

a(n) = A000030(A001020(n)).

A009966 Powers of 22.

Original entry on oeis.org

1, 22, 484, 10648, 234256, 5153632, 113379904, 2494357888, 54875873536, 1207269217792, 26559922791424, 584318301411328, 12855002631049216, 282810057883082752, 6221821273427820544, 136880068015412051968, 3011361496339065143296, 66249952919459433152512, 1457498964228107529355264, 32064977213018365645815808, 705429498686404044207947776
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 22), L(1, 22), P(1, 22), T(1, 22). Essentially same as Pisot sequences E(22, 484), L(22, 484), P(22, 484), T(22, 484). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 22-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Crossrefs

Programs

Formula

G.f.: 1/(1-22*x). - Philippe Deléham, Nov 23 2008
a(n) = 22^n; a(n) = 22*a(n-1) n>0 a(0)=1. - Vincenzo Librandi, Nov 21 2010
From Elmo R. Oliveira, Jul 08 2025: (Start)
E.g.f.: exp(22*x).
a(n) = A000079(n)*A001020(n) = A009988(n)/A000079(n). (End)

A066005 Sum of digits of 11^n.

Original entry on oeis.org

1, 2, 4, 8, 16, 14, 28, 38, 40, 53, 43, 41, 55, 47, 76, 71, 88, 86, 82, 83, 94, 71, 97, 95, 118, 101, 112, 125, 124, 140, 145, 137, 139, 143, 178, 140, 172, 200, 184, 188, 205, 203, 190, 164, 175, 215, 196, 248, 190, 218, 265, 251, 223, 230
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2001

Keywords

Crossrefs

Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), A066003 (k=7), A066004 (k=8), A065999 (k=9), this sequence (k=11), A066006 (k=12), A175527 (k=13).

Programs

  • Mathematica
    Total/@(IntegerDigits/@(11^Range[0,60])) (* Harvey P. Dale, Nov 02 2011 *)
  • PARI
    a(n) = sumdigits(11^n); \\ Michel Marcus, Nov 01 2013

Formula

a(n) = A007953(A001020(n)). - Michel Marcus, Nov 01 2013

A081141 11th binomial transform of (0,0,1,0,0,0,...).

Original entry on oeis.org

0, 0, 1, 33, 726, 13310, 219615, 3382071, 49603708, 701538156, 9646149645, 129687123005, 1711870023666, 22254310307658, 285596982281611, 3624884775112755, 45569980029988920, 568105751040528536
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, the three-fold convolution of A001020 (powers of 11).

Crossrefs

Cf. A001020.
Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), this sequence (q=11), A081142 (q=12), A027476 (q=15).

Programs

  • Magma
    [11^(n-2)*Binomial(n, 2): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
    
  • Maple
    seq((11)^(n-2)*binomial(n,2), n=0..30); # G. C. Greubel, May 13 2021
  • Mathematica
    LinearRecurrence[{33,-363,1331},{0,0,1},30] (* Harvey P. Dale, Dec 15 2014 *)
  • PARI
    vector(20, n, n--; 11^(n-2)*binomial(n, 2)) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    [11^(n-2)*binomial(n, 2) for n in range(20)] # G. C. Greubel, Nov 23 2018

Formula

a(n) = 33*a(n-1) - 363*a(n-2) + 1331*a(n-3), a(0) = a(1) = 0, a(2) = 1.
a(n) = 11^(n-2)*binomial(n, 2).
G.f.: x^2/(1 - 11*x)^3.
E.g.f.: (1/2)*exp(11*x)*x^2. - Franck Maminirina Ramaharo, Nov 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 22 - 220*log(11/10).
Sum_{n>=2} (-1)^n/a(n) = 264*log(12/11) - 22. (End)

A153650 Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (j+4)*prime(j)*T(n-2, k-1) with j=5, read by rows.

Original entry on oeis.org

2, 11, 11, 2, 238, 2, 2, 1329, 1329, 2, 2, 1529, 26220, 1529, 2, 2, 1729, 159320, 159320, 1729, 2, 2, 1929, 312420, 2914420, 312420, 1929, 2, 2, 2129, 485520, 18999520, 18999520, 485520, 2129, 2, 2, 2329, 678620, 50414620, 326526620, 50414620, 678620, 2329, 2
Offset: 1

Views

Author

Roger L. Bagula, Dec 30 2008

Keywords

Examples

			Triangle begins as:
   2;
  11,   11;
   2,  238,      2;
   2, 1329,   1329,        2;
   2, 1529,  26220,     1529,          2;
   2, 1729, 159320,   159320,       1729,          2;
   2, 1929, 312420,  2914420,     312420,       1929,        2;
   2, 2129, 485520, 18999520,   18999520,     485520,     2129,      2;
   2, 2329, 678620, 50414620,  326526620,   50414620,   678620,   2329,    2;
   2, 2529, 891720, 99159720, 2257893720, 2257893720, 99159720, 891720, 2529, 2;
		

Crossrefs

Sequences with variable (p,q,j): A153516 (0,1,2), A153518 (0,1,3), A153520 (0,1,4), A153521 (0,1,5), A153648 (1,0,3), A153649 (1,1,4), this sequence (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), A153656 (2,3,9), A153657 (2,7,10).
Cf. A001020 (powers of 11).

Programs

  • Magma
    f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
    function T(n,k,p,q,j)
      if n eq 2 then return NthPrime(j);
      elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
      elif (k eq 1 or k eq n) then return 2;
      else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
      end if; return T;
    end function;
    [T(n,k,1,4,5): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 04 2021
  • Mathematica
    T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
    Table[T[n,k,1,4,5], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 04 2021 *)
  • Sage
    @CachedFunction
    def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
    def T(n,k,p,q,j):
        if (n==2): return nth_prime(j)
        elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
        elif (k==1 or k==n): return 2
        else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
    flatten([[T(n,k,1,4,5) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 04 2021
    

Formula

T(n, k) = T(n-1, k) + T(n-1, k-1) + (j+4)*prime(j)*T(n-2, k-1) with j=5.
From G. C. Greubel, Mar 04 2021: (Start)
T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (1,4,5).
Sum_{k=0..n} T(n,k,p,q,j) = 2*prime(j)^(n-1) for j=5 = 2*A001020(n-1). (End)

Extensions

Edited by G. C. Greubel, Mar 04 2021

A021093 Decimal expansion of 1/89.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 9, 5, 5, 0, 5, 6, 1, 7, 9, 7, 7, 5, 2, 8, 0, 8, 9, 8, 8, 7, 6, 4, 0, 4, 4, 9, 4, 3, 8, 2, 0, 2, 2, 4, 7, 1, 9, 1, 0, 1, 1, 2, 3, 5, 9, 5, 5, 0, 5, 6, 1, 7, 9, 7, 7, 5, 2, 8, 0, 8, 9, 8, 8, 7, 6, 4, 0, 4, 4, 9, 4, 3, 8, 2, 0, 2, 2, 4, 7, 1, 9, 1, 0, 1, 1, 2, 3, 5, 9, 5, 5, 0, 5
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Note the strange resemblance to the Fibonacci numbers (A000045). In fact 1/89 = Sum_{j>=0} Fibonacci(j)/10^(j+1). (In the same way, the Lucas numbers sum up to 120/89.) - Johan Claes, Jun 11 2004
In the Red Zen reference, the decimal expansion of 1/89 and its relation to the Fibonacci sequence is discussed; also primes of the form floor((1/89)*10^n) are given for n = 3, 5 and 631. - Jason Earls, May 28 2007
The 44-digit cycle 1, 0, 1, 1, 2, 3, 5, 9, 5, 5, 0, 5, 6, 1, 7, 9, 7, 7, 5, 2, 8, 0, 8, 9, 8, 8, 7, 6, 4, 0, 4, 4, 9, 4, 3, 8, 2, 0, 2, 4, 4, 7, 1, 9 in this sequence, and the others based on eighty-ninths, give the successive digits of the smallest integer that is multiplied by nine when the final digit is moved from the right hand end to the left hand end. - Ian Duff, Jan 09 2009
Generalization (since Fibonacci(j+2) = Fibonacci(j+1) + Fibonacci(j)):
1/89 = Sum_{j>=0} Fibonacci(j) / 10^(j+1), (this sequence)
1/9899 = Sum_{j>=0} Fibonacci(j) / 100^(j+1),
1/998999 = Sum_{j>=0} Fibonacci(j) / 1000^(j+1),
1/99989999 = Sum_{j>=0} Fibonacci(j) / 10000^(j+1),
...
1 / ((10^k)^2 - (10^k)^1 - (10^k)^0) = 1 / (10^(2k) - 10^k - 1) =
Sum_{j>=0} Fibonacci(j) / (10^k)^(j+1), k >= 1.
- Daniel Forgues, Oct 28 2011, May 04 2013
Generalization (since 11^(j+1) = 11 * 11^j):
1/89 = Sum_{j>=0} 11^j / 100^(j+1), (this sequence)
1/989 = Sum_{j>=0} 11^j / 1000^(j+1),
1/9989 = Sum_{j>=0} 11^j / 10000^(j+1),
1/99989 = Sum_{j>=0} 11^j / 100000^(j+1),
...
1 / ((10^k)^1 - 11 (10^k)^0) = 1 / (10^k - 11) =
Sum_{j>=0}^ 11^j / (10^k)^(j+1), k >= 2.
- Daniel Forgues, Oct 28 2011, May 04 2013
More generally, Sum_{k>=0} F(k)/x^k = x/(x^2 - x - 1) (= g.f. of signed Fibonacci numbers -A039834, because of negative powers). This yields 10/89 for x=10. Dividing both sides by x=10 gives the constant A021093, cf. first comment. - M. F. Hasler, May 07 2014
Replacing x with a power of 10 (positive or negative exponent) in an o.g.f. gives similar constants for many sequences. For example, setting x=1/1000 in (1 - sqrt(1 - 4*x)) / (2*x) gives 1.001002005014042132... (cf. A000108). - Joerg Arndt, May 11 2014

References

  • Jason Earls, Red Zen, Lulu Press, NY, 2007, pp. 47-48. ISBN: 978-1-4303-2017-3.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 66.

Crossrefs

Programs

A215737 a(n) is the first digit to appear n times in succession in a power of 11.

Original entry on oeis.org

1, 1, 8, 7, 6, 0, 6, 0, 9, 6, 6, 2, 2, 7, 6, 9
Offset: 1

Views

Author

V. Raman, Aug 22 2012

Keywords

Crossrefs

Cf. A001020 (powers of 11), A045875, A215731, A215732.

Programs

  • Mathematica
    n = 1; x = 1; lst = {};
    For[i = 1, i <= 10000, i++,
    z = Split[IntegerDigits[x]]; a = Length /@ z; b = Max[a];
    For[j = n, j <= b, j++,
      AppendTo[lst, First[First[Part[z, First[Position[a, b]]]]]]; n++
    ]; x = 11 x ]; lst  (* Robert Price, Mar 16 2019 *)
  • Python
    def A215737(n):
        a, s = 1, tuple(str(i)*n for i in range(10))
        while True:
            a *= 11
            t = str(a)
            for i, x in enumerate(s):
                if x in t:
                    return i # Chai Wah Wu, Mar 30 2021

Extensions

a(10)-a(13) added by V. Raman, Apr 30 2012, in correspondence with A215731.
a(14) from Giovanni Resta, Apr 18 2016
a(15) from Bert Dobbelaere, Feb 15 2019
a(16) from Paul Geneau de Lamarlière, Oct 03 2024
Previous Showing 11-20 of 92 results. Next