A276588
Square array A(row,col) = Sum_{k=0..row} binomial(row,k)*(1+col+k)!, read by descending antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...
Original entry on oeis.org
1, 2, 3, 6, 8, 11, 24, 30, 38, 49, 120, 144, 174, 212, 261, 720, 840, 984, 1158, 1370, 1631, 5040, 5760, 6600, 7584, 8742, 10112, 11743, 40320, 45360, 51120, 57720, 65304, 74046, 84158, 95901, 362880, 403200, 448560, 499680, 557400, 622704, 696750, 780908, 876809, 3628800, 3991680, 4394880, 4843440, 5343120, 5900520, 6523224, 7219974, 8000882, 8877691
Offset: 0
The top left corner of the array:
1, 2, 6, 24, 120, 720, 5040, 40320
3, 8, 30, 144, 840, 5760, 45360, 403200
11, 38, 174, 984, 6600, 51120, 448560, 4394880
49, 212, 1158, 7584, 57720, 499680, 4843440, 51932160
261, 1370, 8742, 65304, 557400, 5343120, 56775600, 661933440
1631, 10112, 74046, 622704, 5900520, 62118720, 718709040, 9059339520
Topmost row (row 0):
A000142, Row 1:
A001048 (without its initial 2), Row 2:
A001344 (from a(1) = 11 onward), Row 3:
A001345 (from a(1) = 49 onward), Row 4:
A001346 (from a(1) = 261 onward), Row 5:
A001347 (from a(1) = 1631 onward).
-
T[r_, c_]:=Sum[Binomial[r, k](1 + c + k)!, {k, 0, r}]; Table[T[c, r - c], {r, 0, 10}, {c, 0, r}] // Flatten (* Indranil Ghosh, Apr 11 2017 *)
-
T(r, c) = sum(k=0, r, binomial(r, k)*(1 + c + k)!);
for(r=0, 10, for(c=0, r, print1(T(c, r - c),", ");); print();) \\ Indranil Ghosh, Apr 11 2017
-
from sympy import binomial, factorial
def T(r, c): return sum([binomial(r, k) * factorial(1 + c + k) for k in range(r + 1)])
for r in range(11): print([T(c, r - c) for c in range(r + 1)]) # Indranil Ghosh, Apr 11 2017
-
(define (A276588 n) (A276588bi (A002262 n) (A025581 n)))
(define (A276588bi row col) (A276075 (A066117bi (+ 1 row) (+ 1 col)))) ;; Code for A066117bi given in A066117, and for A276075 under the respective entry.
A130478
Triangle T(n,k) = n! / A130477(n,k).
Original entry on oeis.org
1, 2, 2, 6, 3, 2, 24, 8, 3, 2, 120, 30, 8, 3, 2, 720, 144, 30, 8, 3, 2, 5040, 840, 144, 30, 8, 3, 2, 40320, 5760, 840, 144, 30, 8, 3, 2, 362880, 45360, 5760, 840, 144, 30, 8, 3, 2, 3628800, 403200, 45360, 5760, 840, 144, 30, 8, 3, 2
Offset: 1
First few rows of the triangle:
1;
2, 2;
6, 3, 2;
24, 8, 3, 2;
120, 30, 8, 3, 2;
720, 144, 30, 8, 3, 2;
5040, 840, 144, 30, 8, 3, 2;
...
Row 4 = (24, 8, 3, 2), terms such that (24, 8, 3, 2) dot (1, 3, 8, 12) = (24, 24, 24, 24), where (1, 3, 8, 12) = row 4 of A130477 and (24, 24, 24, 24) = row 4 of A130493.
Row 5 = (120, 30, 8, 3, 2) = 5! + (4!+3!) + (3!+2!) + (2!+1!) + (1!+1).
Row 5 = 120 followed by the first reversed 4 terms of A001048; i.e., 120 followed by 30, 8, 3, 2.
A052649
Expansion of e.g.f. (2+x-x^2)/(1-x)^2.
Original entry on oeis.org
2, 5, 14, 54, 264, 1560, 10800, 85680, 766080, 7620480, 83462400, 997920000, 12933043200, 180583603200, 2702527027200, 43153254144000, 732297646080000, 13160434839552000, 249692574523392000, 4987449116762112000, 104614786351595520000, 2299092397726924800000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Row 4 of
A276955 (from a(1)=5 onward).
-
spec := [S,{S=Prod(Sequence(Z),Union(Z,Sequence(Z),Sequence(Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
f[n_] := (3 + 2 n) n!; f[0] = 2; Array[f, 19, 0]
a[n_] := a[n] = a[n - 1]*n (2 n + 3)/(2 n + 1); a[0] = 2; a[1] = 5; Array[ a, 19, 0] (* Robert G. Wilson v *)
With[{nn=20},CoefficientList[Series[(2+x-x^2)/(1-x)^2,{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Nov 09 2017 *)
-
a(n)=if(n<=1,[2,5][n+1], a(n-1)*(n*(2*n+3))/(2*n+1) );
for(n=0,11,print1(a(n),", "))
-
(define (A052649 n) (if (zero? n) 2 (+ (A000142 n) (* 2 (A000142 (+ 1 n)))))) ;; Antti Karttunen, Sep 24 2016
A052881
Expansion of e.g.f. log(1/(1-x))*x/(1-x).
Original entry on oeis.org
0, 0, 2, 9, 44, 250, 1644, 12348, 104544, 986256, 10265760, 116915040, 1446526080, 19323757440, 277238626560, 4251984710400, 69426608025600, 1202482800691200, 22021300630425600, 425162773111910400
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Sequence(Z,1 <= card),C=Cycle(Z),S=Prod(B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
a:=n->abs(Stirling1(n,2))*n: seq(a(n), n=0..19); # Zerinvary Lajos, Oct 05 2007
A052881 := n -> `if`(n<2,0,2*(n-1)*(n-1)!*hypergeom([1,1,2-n],[2,n+1],-1)):
seq(simplify(A052881(n)),n=0..19); # Peter Luschny, Jun 11 2016
-
Table[n!*SeriesCoefficient[-Log[-1/(-1+x)]*x/(-1+x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 09 2012 *)
With[{nn=20},CoefficientList[Series[Log[1/(1-x)] x/(1-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 19 2022 *)
-
x='x+O('x^66); concat([0,0],Vec(serlaplace(-log(-1/(-1+x))*x/(-1+x)))) \\ Joerg Arndt, May 06 2013
-
[stirling_number1(i,2)*i for i in range(0,32)] # Zerinvary Lajos, Jun 27 2008
A054115
Triangular array generated by its row sums: T(n,0)=1 for n >= 1, T(n,1)=r(n-1), T(n,k)=T(n,k-1)+r(n-k) for k=2,3,...,n, n >= 2, r(h)=sum of the numbers in row h of T.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 6, 8, 9, 1, 24, 30, 32, 33, 1, 120, 144, 150, 152, 153, 1, 720, 840, 864, 870, 872, 873, 1, 5040, 5760, 5880, 5904, 5910, 5912, 5913, 1, 40320, 45360, 46080, 46200, 46224, 46230, 46232, 46233, 1, 362880, 403200
Offset: 0
Rows:
1;
1,1;
1,2,3;
1,6,8,9;
1,24,30,32,33;
1,120,144,150,152,153;
n-th row sum is
A000142(n+1) = (n+1)!.
A076571
Binomial triangle based on factorials.
Original entry on oeis.org
1, 1, 2, 2, 3, 5, 6, 8, 11, 16, 24, 30, 38, 49, 65, 120, 144, 174, 212, 261, 326, 720, 840, 984, 1158, 1370, 1631, 1957, 5040, 5760, 6600, 7584, 8742, 10112, 11743, 13700, 40320, 45360, 51120, 57720, 65304, 74046, 84158, 95901, 109601
Offset: 0
Rows start:
1;
1, 2;
2, 3, 5;
6, 8, 11, 16;
24, 30, 38, 49, 65;
120, 144, 174, 212, 261, 326;
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- E. Biondi, L. Divieti, and G. Guardabassi, Counting paths, circuits, chains and cycles in graphs: A unified approach, Canad. J. Math. 22 1970 22-35. See Table I.
- D. Dumont, Matrices d'Euler-Seidel, Sem. Loth. Comb. B05c (1981) 59-78.
-
A076571:= func< n,k| (&+[Binomial(k,j)*Factorial(n-j): j in [0..k]]) >;
[A076571(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 05 2023
-
A076571[n_, k_]:= n!*Hypergeometric1F1[-k,-n,1];
Table[A076571[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 05 2023 *)
-
def A076571(n,k): return sum(binomial(k,j)*factorial(n-j) for j in range(k+1))
flatten([[A076571(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 05 2023
A130744
a(n) = n*(n+2)*n!.
Original entry on oeis.org
0, 3, 16, 90, 576, 4200, 34560, 317520, 3225600, 35925120, 435456000, 5708102400, 80472268800, 1214269056000, 19527937228800, 333456963840000, 6025763487744000, 114887039275008000, 2304854534062080000
Offset: 0
G.f. = 3*x + 16*x^2 + 90*x^3 + 576*x^4 + 4200*x^5 + 34560*x^6 + ...
Column 3 of
A257503 (apart from initial zero. Equally, row 3 of
A257505).
A054119
a(n) = n! + (n-1)! + (n-2)!.
Original entry on oeis.org
1, 2, 4, 9, 32, 150, 864, 5880, 46080, 408240, 4032000, 43908480, 522547200, 6745939200, 93884313600, 1401079680000, 22317642547200, 377917892352000, 6778983923712000, 128403161542656000, 2560949482291200000, 53645489280294912000, 1177524571957493760000, 27027108408834293760000
Offset: 0
Equals T(n, 3), array T as in
A054115.
Row 6 of
A276955 (from a(3)=9 onward).
-
[1,2] cat [Factorial(n)+Factorial(n-1)+Factorial(n-2): n in [2..20]]; // Vincenzo Librandi, Oct 05 2011
-
f:= n-> `if`(n<0, 0, n!):
seq(f(n)+f(n-1)+f(n-2), n=0..23);
-
Join[{1,2},Table[n!+(n+1)!+(n+2)!,{n,0,30}]] (* Vladimir Joseph Stephan Orlovsky, May 19 2011 *)
Join[{1,2,4},Plus@@@Partition[Range[30]!,3,1]] (* Harvey P. Dale, Aug 29 2024 *)
-
f(n) = if (n<0, 0, n!);
a(n) = f(n) + f(n-1) + f(n-2); \\ Michel Marcus, Sep 20 2022
-
(define (A054119 n) (if (<= n 1) (+ 1 n) (+ (A000142 n) (A000142 (- n 1)) (A000142 (- n 2))))) ;; Antti Karttunen, Sep 24 2016
A166356
Expansion of e.g.f. 1 + x*arctanh(x), even powers only.
Original entry on oeis.org
1, 2, 8, 144, 5760, 403200, 43545600, 6706022400, 1394852659200, 376610217984000, 128047474114560000, 53523844179886080000, 26976017466662584320000, 16131658445064225423360000, 11292160911544957796352000000, 9146650338351415815045120000000
Offset: 0
-
a[0] = 1; a[n_] := (2*n - 1)! + (2*n - 2)!; Array[a, 14, 0] (* Amiram Eldar, Jan 02 2022 *)
With[{nn=40},Take[CoefficientList[Series[1+x ArcTanh[x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, Apr 15 2024 *)
A261766
a(n) is the number of partial derangements of an n-set with at least one orbit of size exactly n.
Original entry on oeis.org
1, 0, 3, 8, 30, 144, 840, 5760, 45360, 403200, 3991680, 43545600, 518918400, 6706022400, 93405312000, 1394852659200, 22230464256000, 376610217984000, 6758061133824000, 128047474114560000, 2554547108585472000, 53523844179886080000, 1175091669949317120000
Offset: 0
a(3) = 8 because there are 8 partial derangements on {1,2,3} with at least one orbit of size 3 namely: (1,2) --> (2,3), (1,2) --> (3,1), (1,3) --> (2,1), (1,3) --> (3,2), (2,3) --> (3,1), (2,3) --> (1,2), (1,2,3) --> (2,3,1), (1,2,3) --> (3,1,2).
- A. Laradji and A. Umar, On the number of subpermutations with fixed orbit size, Ars Combinatoria, 109 (2013), 447-460.
Comments