cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A108217 a(0) = 1, a(1) = 1, a(n) = n! + (n-2)! for n >= 2.

Original entry on oeis.org

1, 1, 3, 7, 26, 126, 744, 5160, 41040, 367920, 3669120, 40279680, 482630400, 6266937600, 87657292800, 1313901388800, 21009968179200, 356995102464000, 6423296495616000, 122000787836928000, 2439304381882368000, 51212587272118272000, 1126433629785784320000
Offset: 0

Views

Author

Miklos Kristof, following a suggestion from Peter Boros, (borospet(AT)freemail.hu), Jun 16 2005

Keywords

Comments

In factorial base representation (A007623) the terms of this sequence look as: 1, 1, 11, 101, 1010, 10100, 101000, ... From a(3)=7 onward each term begins always with "101", which is then followed by n-3 zeros. - Antti Karttunen, Sep 23 2016

Examples

			a(6) = 6!+4! = 720+24 = 744.
		

Crossrefs

Row 5 of A276955, from term a(3)=7 onward.

Programs

Formula

For n >= 2, a(n) = A002061(n) * (n-2)! - Antti Karttunen, Sep 23 2016
E.g.f.: x + (1-x)*log(1-x) + 1/(1-x). - Andrew Howroyd, May 09 2021

Extensions

Corrected by Georg Fischer, May 09 2021

A226198 a(n) = floor((n-1)!/n).

Original entry on oeis.org

1, 0, 0, 1, 4, 20, 102, 630, 4480, 36288, 329890, 3326400, 36846276, 444787200, 5811886080, 81729648000, 1230752346352, 19760412672000, 336967037143578, 6082255020441600, 115852476579840000, 2322315553259520000, 48869596859895986086
Offset: 1

Views

Author

Vincenzo Librandi, May 31 2013

Keywords

Comments

(h-1)!/h is integer if h belongs to A056653.

Crossrefs

Cf. A001048 ((n+1)!/n), A056653, A091330 (floor((p-1)!/p), where p is prime), A175787 (prime numbers together with 4).

Programs

  • Magma
    [Floor(Factorial(n-1)/n): n in [1..25]];
  • Mathematica
    Table[Quotient[(n - 1)!, n], {n, 25}]

Extensions

Edited by Bruno Berselli, May 31 2013

A304036 Number of partitions of n into at most 2 copies of 1!, 3 copies of 2!, 4 copies of 3!, ... .

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 1, 3, 2, 3, 1, 2, 1, 3, 2, 3, 1, 2, 1, 4, 3, 5, 2, 4, 2, 5, 3, 4, 1, 2, 1, 3, 2, 3, 1, 2, 1, 3, 2, 3, 1, 2, 1, 4, 3, 5, 2, 4, 2, 5, 3, 4, 1, 2, 1, 3, 2, 3, 1, 2, 1, 3, 2, 3, 1, 2, 1, 4, 3, 5, 2, 4, 2, 5, 3, 4, 1, 2, 1, 3, 2, 3, 1, 2
Offset: 0

Views

Author

Seiichi Manyama, May 05 2018

Keywords

Examples

			a(6) = 3 because we have [6], [2,2,2] and [2,2,1,1].
		

Crossrefs

Formula

G.f.: Product_{j>=1} Sum_{k=0..j+1} x^(k*j!) = Product_{j>=1} (1-x^((j+1)!+j!))/(1-x^(j!)).

A364967 Number T(n,k) of permutations of [n] for which the difference between the longest and the shortest cycle length is k; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.

Original entry on oeis.org

1, 1, 2, 3, 3, 10, 6, 8, 25, 45, 20, 30, 176, 60, 250, 90, 144, 721, 861, 770, 1344, 504, 840, 6406, 1778, 7980, 6300, 8736, 3360, 5760, 42561, 23283, 38808, 75348, 45360, 66240, 25920, 45360, 436402, 84150, 363680, 456120, 708048, 378000, 572400, 226800, 403200
Offset: 0

Views

Author

Alois P. Heinz, Aug 14 2023

Keywords

Comments

T(0,0) = 1 by convention.

Examples

			T(4,0) = 10: (1)(2)(3)(4), (12)(34), (13)(24), (14)(23), (1234), (1243), (1324), (1342), (1423), (1432).
T(4,1) = 6: (1)(2)(34), (1)(23)(4), (1)(24)(3), (12)(3)(4), (13)(2)(4), (14)(2)(3).
T(4,2) = 8: (1)(234), (1)(243), (123)(4), (132)(4), (124)(3), (142)(3), (134)(2), (143)(2).
Triangle T(n,k) begins:
      1;
      1;
      2;
      3,     3;
     10,     6,     8;
     25,    45,    20,    30;
    176,    60,   250,    90,   144;
    721,   861,   770,  1344,   504,   840;
   6406,  1778,  7980,  6300,  8736,  3360,  5760;
  42561, 23283, 38808, 75348, 45360, 66240, 25920, 45360;
  ...
		

Crossrefs

Row sums give A000142.
Column k=0 gives A005225 (for n>=1).
T(n+1,n-1) gives A001048(n) (for n>=1).

Programs

  • Maple
    b:= proc(n, l, m) option remember; `if`(n=0, x^(m-l), add(
         b(n-j, min(l, j), max(m, j))*binomial(n-1, j-1)*(j-1)!, j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, l_, m_] := b[n, l, m] = If[n == 0, x^(m - l), Sum[b[n - j, Min[l, j], Max[m, j]]*Binomial[n - 1, j - 1]*(j - 1)!, {j, 1, n}]];
    T[n_] := CoefficientList[b[n, n, 0], x];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 08 2023, after Alois P. Heinz *)

Formula

T(n,k) == 0 (mod k!).
Sum_{k=0..max(0,n-2)} T(n,k)/k! = A365229(n).

A058298 Triangle n!/(n-k), 1 <= k < n, read by rows.

Original entry on oeis.org

2, 3, 6, 8, 12, 24, 30, 40, 60, 120, 144, 180, 240, 360, 720, 840, 1008, 1260, 1680, 2520, 5040, 5760, 6720, 8064, 10080, 13440, 20160, 40320, 45360, 51840, 60480, 72576, 90720, 120960, 181440, 362880, 403200, 453600, 518400, 604800, 725760, 907200, 1209600, 1814400, 3628800
Offset: 2

Views

Author

Leroy Quet, Dec 07 2000

Keywords

Comments

Together with 1, numbers n such that n divides k! if and only if k! >= n. - Charles R Greathouse IV, Aug 16 2016

Examples

			Triangle begins:
      2;
      3,     6;
      8,    12,    24;
     30,    40,    60,   120;
    144,   180,   240,   360,   720;
    840,  1008,  1260,  1680,  2520,   5040;
   5760,  6720,  8064, 10080, 13440,  20160,  40320;
  45360, 51840, 60480, 72576, 90720, 120960, 181440, 362880;
  ...
		

Crossrefs

Columns k=1..5 are A001048(n-1), A052747, A052759, A052778, A052794.
Row sums are A052881.

Programs

  • Mathematica
    Flatten[Table[n!/(n-k),{n,2,10},{k,n-1}]] (* Harvey P. Dale, Jul 23 2014 *)
  • PARI
    T(n,k)={if(kAndrew Howroyd, Aug 08 2020

Formula

Sum_{n>=2} Sum_{k=1..n-1} 1/T(n, k) = e/2 (A019739). - Amiram Eldar, Jun 29 2025

A092824 Farey-factorial numerators.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 16, 18, 24, 30, 40, 48, 60, 72, 80, 90, 96, 120, 144, 180, 240, 288, 360, 432, 480, 540, 576, 600, 720, 840, 1008, 1260, 1440, 1680, 2016, 2160, 2520, 2880, 3024, 3360, 3600, 3780, 4032, 4200, 4320, 5040, 5760, 6720, 8064, 10080
Offset: 1

Views

Author

Clark Kimberling, Mar 06 2004

Keywords

Comments

The last number in the n-th segment is n!. Let f(n) be the first number in segment n; except for initial terms, f is A001048 and A059171. Let g(n) be the second number in segment n; except for initial terms, g is A052747. Except for the initial terms, the number of numbers in segment n is given by A015614.

Examples

			The sequence begins with these segments:
  1
  2
  3 4 6
  8 12 16 18 24
For the next segment, start with these Farey fractions of order 5:
  1/4 1/3 2/5 1/2 3/5 2/3 3/4 4/5 5/5.
Multiply these by 5! to get
  30 40 48 60 72 80 90 96 120.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := n! * Table[a/b, {b, 1, n}, {a, 1, b}] // Flatten // Union // Rest; Flatten[Table[f[n], {n, 1, 8}] /. {} -> {1}][[1 ;; 51]] (* Jean-François Alcover, May 18 2011 *)

Formula

Let S(n) be the set of integers an!/b, where a/b ranges through the positive Farey fractions of order n. A092824 is the increasing sequence of integers in the union of the sets S(n), for n>=1.

A174549 a(n) = (2*n-1)! + (2*n)!.

Original entry on oeis.org

3, 30, 840, 45360, 3991680, 518918400, 93405312000, 22230464256000, 6758061133824000, 2554547108585472000, 1175091669949317120000, 646300418472124416000000, 418802671169936621568000000, 315777214062132212662272000000, 274094621805930760590852096000000
Offset: 1

Views

Author

Paul Curtz, Mar 22 2010

Keywords

Comments

x*cos(x) - sin(x) = Sum_{n>=1} (-1)^n/a(n) * x^(2*n+1). - James R. Buddenhagen, Nov 21 2013
Also the number of adjacency matrices for the n-helm graph. - Eric W. Weisstein, May 25 2017

Crossrefs

Programs

Formula

a(n) = A001048(2n) = (1+2n)*(2n-1)! = 3*A165457(n-1).
Sum_{n>=1} 1/a(n) = A068985 = 1/e = lim_{n->infinity} A000255(n-1)/A001048(n).
zeta(2*n+1) = Integral_{u=0..Pi/2} (sin(u)*log(sin(u))^(2*n+1)/(cos(u)^3))*(-2)^(2*n+1)/(n*a(n)) du. Verified for n=1 to 4 on Wolfram Alpha. - Jean-Claude Babois, Oct 28 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = sin(1)-cos(1) = (-1)*A143624. - Amiram Eldar, Apr 12 2021

A162971 Triangle read by rows: T(n,k) is number of non-derangement permutations of {1,2,...,n} having k cycles (1 <= k <= n).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 8, 6, 1, 0, 30, 35, 10, 1, 0, 144, 210, 85, 15, 1, 0, 840, 1414, 735, 175, 21, 1, 0, 5760, 10752, 6664, 1960, 322, 28, 1, 0, 45360, 91692, 64764, 22449, 4536, 546, 36, 1, 0, 403200, 869040, 679580, 268380, 63273, 9450, 870, 45, 1, 0, 3991680, 9074736, 7704180, 3382280, 902055, 157773, 18150, 1320, 55, 1
Offset: 1

Views

Author

Emeric Deutsch, Jul 22 2009

Keywords

Comments

Sum of entries in row n = A002467(n) (the number of non-derangement permutations of {1,2,...,n}).
T(n,2) = n*(n-2)! = A001048(n-1) for n>=3.
Sum_{k=1..n} k*T(n,k) = A162972(n).

Examples

			T(4,2) = 8 because we have (1)(234), (1)(243), (134)(2), (143)(2), (124)(3), (142)(3), (123)(4), and (132)(4).
Triangle starts:
  1;
  0,   1;
  0,   3,   1;
  0,   8,   6,   1;
  0,  30,  35,  10,   1;
  0, 144, 210,  85,  15,   1;
  ...
		

Crossrefs

Programs

  • Maple
    G := (1-exp(-t*z))/(1-z)^t: Gser := simplify(series(G, z = 0, 15)): for n to 11 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n to 11 do seq(coeff(P[n], t, j), j = 1 .. n) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, t) option remember; `if`(n=0, t, add(expand((j-1)!*
          b(n-j, `if`(j=1, 1, t))*x)*binomial(n-1, j-1), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 0)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Aug 15 2023
  • Mathematica
    b[n_, t_] := b[n, t] = If[n == 0, t, Sum[Expand[(j - 1)!*b[n - j, If[j == 1, 1, t]]*x]*Binomial[n - 1, j - 1], {j, 1, n}]];
    T[n_] := CoefficientList[b[n, 0]/x, x];
    Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 04 2024, after Alois P. Heinz *)

Formula

E.g.f.: G(t,z) = (1-exp(-tz))/(1-z)^t.

A162991 The first right hand column of triangle A162990.

Original entry on oeis.org

4, 9, 64, 900, 20736, 705600, 33177600, 2057529600, 162570240000, 15933509222400, 1896219279360000, 269276305858560000, 44970736429301760000, 8724552309817344000000, 1945613940877311344640000
Offset: 1

Views

Author

Johannes W. Meijer, Jul 21 2009

Keywords

Crossrefs

A001048(n) equals the square root of a(n).
A162992 is the second right hand column of triangle A162990.

Programs

  • Mathematica
    Array[((#+1)!/#)^2 &, 20] (* Paolo Xausa, Mar 31 2024 *)

Formula

a(n) = ((n+1)!/n)^2 for n = 1, 2, 3, ... .

A171005 a(n) = (n+1)*(n-1)!/2.

Original entry on oeis.org

4, 15, 72, 420, 2880, 22680, 201600, 1995840, 21772800, 259459200, 3353011200, 46702656000, 697426329600, 11115232128000, 188305108992000, 3379030566912000, 64023737057280000, 1277273554292736000, 26761922089943040000, 587545834974658560000, 13488008733331292160000
Offset: 3

Views

Author

N. J. A. Sloane, Sep 02 2010

Keywords

Comments

A wheel graph is a graph with n+1 vertices (n>=3) formed by connecting a single vertex to all vertices of an n-cycle. a(n) is the number of labeled wheel graphs. - Geoffrey Critzer, Feb 02 2014

Examples

			For n >= 1, the sequence is 1, 3/2, 4, 15, 72, 420, 2880, 22680, 201600, 1995840, ...
		

Crossrefs

Equals A001048/2.

Programs

Formula

a(n) = Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*(j+1)^(n+1)/(n+1). - Vladimir Kruchinin, Jun 01 2013
D-finite with recurrence -n*a(n) +(n-1)*(n+1)*a(n-1) = 0. - R. J. Mathar, Feb 01 2022
Previous Showing 21-30 of 44 results. Next