cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 116 results. Next

A242323 Number of binary words of length n that contain all 32 5-bit words as (possibly overlapping) contiguous subwords.

Original entry on oeis.org

65536, 352256, 1442816, 5313536, 18323520, 60481632, 192562808, 593792608, 1782459992, 5221699004, 14967607810, 42060446246, 116067269324
Offset: 36

Views

Author

Alois P. Heinz, May 10 2014

Keywords

Examples

			a(36) = 65536: 000001000110010100111010110111110000, ... .
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t, s) option remember; `if`(s={}, 2^n,
          `if`(nops(s)>n, 0, b(n-1, irem(2*t, 16), s minus {2*t})
            +b(n-1, irem(2*t+1, 16), s minus {2*t+1})))
        end:
    a:= n-> add(b(n-4, j, {$0..31}), j=0..15):
    seq(a(n), n=36..37);
  • Mathematica
    b[n_, t_, s_] := b[n, t, s] = If[s == {}, 2^n,
       If[Length[s] > n, 0, b[n-1, Mod[2*t, 16], s~Complement~{2*t}] +
       b[n-1, Mod[2*t+1, 16], s~Complement~{2*t+1}]]];
    a[n_] := Sum[b[n-4, j, Range[0, 31]], {j, 0, 15}];
    Table[a[n], {n, 36, 39}] (* Jean-François Alcover, Sep 06 2022, after Alois P. Heinz *)

Extensions

a(44)-a(48) from Alois P. Heinz, Feb 27 2015

A318130 Number of sets of subsets of {1,...,n} with intersection {}.

Original entry on oeis.org

2, 3, 11, 219, 64595, 4294642035, 18446744047940725979, 340282366920938463334247399005993378251, 115792089237316195423570985008687907850547725730273056332267095982282337798563
Offset: 0

Views

Author

Gus Wiseman, Aug 18 2018

Keywords

Examples

			The a(2) = 11 sets of sets:
  {}
  {{}}
  {{},{1}}
  {{},{2}}
  {{1},{2}}
  {{},{1,2}}
  {{},{1},{2}}
  {{},{1},{1,2}}
  {{},{2},{1,2}}
  {{1},{2},{1,2}}
  {{},{1},{2},{1,2}}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]],Or[#=={},Intersection@@#=={}]&]],{n,0,4}]

Formula

Binomial transform of A131288.
Inverse binomial transform of A119563(n) = 2^(2^n) + 2^n - 1.

A336066 Numbers k such that the exponent of the highest power of 2 dividing k (A007814) is a divisor of k.

Original entry on oeis.org

2, 4, 6, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 34, 36, 38, 42, 44, 46, 48, 50, 52, 54, 58, 60, 62, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 90, 92, 94, 98, 100, 102, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 130, 132, 134, 138, 140, 142, 144
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2020

Keywords

Comments

All the terms are even by definition.
If m is a term then m*(2*k+1) is a term for all k>=1.
Šalát (1994) proved that the asymptotic density of this sequence is 0.435611... (A336067).

Examples

			2 is a term since A007814(2) = 1 is a divisor of 2.
		

Crossrefs

A001146 and A039956 are subsequences.

Programs

  • Mathematica
    Select[Range[2, 150, 2], Divisible[#, IntegerExponent[#, 2]] &]
  • PARI
    isok(m) = if (!(m%2), (m % valuation(m,2)) == 0); \\ Michel Marcus, Jul 08 2020
    
  • Python
    from itertools import count, islice
    def A336066_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:n%(~n&n-1).bit_length()==0,count(max(startvalue+startvalue&1,2),2))
    A336066_list = list(islice(A336066_gen(startvalue=3),30)) # Chai Wah Wu, Jul 10 2022

A001042 a(n) = a(n-1)^2 - a(n-2)^2.

Original entry on oeis.org

1, 2, 3, 5, 16, 231, 53105, 2820087664, 7952894429824835871, 63248529811938901240357985099443351745, 4000376523371723941902615329287219027543200136435757892789536976747706216384
Offset: 0

Views

Author

Keywords

Comments

The next term has 152 digits. - Franklin T. Adams-Watters, Jun 11 2009

References

  • Archimedeans Problems Drive, Eureka, 27 (1964), 6.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A064236 (numbers of digits).

Programs

  • Haskell
    a001042 n = a001042_list !! n
    a001042_list = 1 : 2 : zipWith (-) (tail xs) xs
                   where xs = map (^ 2) a001042_list
    -- Reinhard Zumkeller, Dec 16 2013
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==a[n-1]^2-a[n-2]^2},a,{n,0,12}] (* Harvey P. Dale, Jan 11 2013 *)

Formula

a(n) ~ c^(2^n), where c = 1.1853051643868354640833201434870139866230288004895868726506278977814490371... . - Vaclav Kotesovec, Dec 17 2014

Extensions

More terms from James Sellers, Sep 19 2000.

A057755 Number of digits in n-th Fermat number (A000215).

Original entry on oeis.org

1, 1, 2, 3, 5, 10, 20, 39, 78, 155, 309, 617, 1234, 2467, 4933, 9865, 19729, 39457, 78914, 157827, 315653, 631306, 1262612, 2525223, 5050446, 10100891, 20201782, 40403563, 80807125, 161614249, 323228497, 646456994, 1292913987, 2585827973
Offset: 0

Views

Author

Robert G. Wilson v, Oct 30 2000

Keywords

Comments

Also number of digits of A001146(n) and A051179(n). - Michel Marcus, Dec 21 2018

Examples

			a(6) = 20 because 2^(2^6) + 1 = 18446744073709551617 which is a twenty-digit number.
		

References

  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1995, page 139.

Crossrefs

Programs

  • GAP
    List([0..18],n->Size(ListOfDigits(2^(2^n)+1))); # Muniru A Asiru, Dec 20 2018
  • Magma
    [Floor(2^n*Log(10,2)/Log(10,10))+1: n in [0..40]]; // Vincenzo Librandi, Nov 08 2018
    
  • Maple
    seq(length(2^(2^n)),n=0..20); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[ Floor[ 2^n * N[ Log[ 10, 2 ], 24 ] + 1 ], {n, 0, 43} ]
  • PARI
    for(n=0, 50, print(n, " ", floor(2^n*log(2)/log(10))+1); ) \\ Jinyuan Wang, Nov 07 2018
    

Formula

a(n) = floor(log_10(F_n)+1) (F_n is the n-th Fermat number). - Ivan Panchenko, Sep 06 2009

A073113 a(n) = 2^(2^n + n).

Original entry on oeis.org

2, 8, 64, 2048, 1048576, 137438953472, 1180591620717411303424, 43556142965880123323311949751266331066368
Offset: 0

Views

Author

Joe Mathes (oldschoolchaz(AT)hotmail.com), Aug 19 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(2^n + n); Array[a, 8, 0] (* Amiram Eldar, Aug 14 2022 *)

Formula

a(n) = 2^A006127(n) = A000079(n)*A001146(n). - Amiram Eldar, Aug 14 2022

A181794 Numbers n such that the number of even divisors of n is an even divisor of n.

Original entry on oeis.org

4, 6, 10, 12, 14, 16, 20, 22, 24, 26, 28, 34, 36, 38, 44, 46, 48, 52, 58, 62, 68, 74, 76, 80, 82, 86, 90, 92, 94, 106, 112, 116, 118, 120, 122, 124, 126, 134, 142, 144, 146, 148, 150, 158, 160, 164, 166, 168, 172, 176, 178, 180, 188, 192, 194, 198, 202, 206, 208, 212, 214, 216, 218, 226, 234, 236, 240, 244, 252, 254, 256, 262, 264, 268, 272, 274, 278
Offset: 1

Views

Author

Matthew Vandermast, Nov 14 2010

Keywords

Comments

All terms are even, since odd numbers, even if they have an even count of divisors, don't have any even divisors.
Includes all numbers of the form A000040(m)*A001146(n).

Examples

			a(4)=12 has four even divisors (2, 4, 6, and 12), and 4 is one of those even divisors.
The number 21 is not in this sequence: it has four divisors (1, 3, 7, and 21), and 4 is not one of those divisors.
		

Crossrefs

A100484 and A001749 are subsequences. A001146 and A100042 are also subsequences except for their initial terms.
See also A033950, A049439, A181795.

Programs

  • Mathematica
    Select[Range[2, 1000, 2], EvenQ[DivisorSigma[0, #/2]] && MemberQ[Divisors[#], DivisorSigma[0, #/2]] &]
    Select[Range[2, 278, 2], EvenQ[(d = DivisorSigma[0, #/2])] && Divisible[#, d] &] (* Amiram Eldar, Aug 29 2019 *)

Extensions

Verified and edited by Alonso del Arte, Nov 17 2010

A183169 Tree generated by the squares.

Original entry on oeis.org

1, 2, 4, 3, 16, 6, 9, 5, 256, 20, 36, 8, 81, 12, 25, 7, 65536, 272, 400, 24, 1296, 42, 64, 11, 6561, 90, 144, 15, 625, 30, 49, 10, 4294967296, 65792, 73984, 288, 160000, 420, 576, 29, 1679616, 1332, 1764, 48, 4096, 72, 121, 14
Offset: 1

Views

Author

Clark Kimberling, Dec 28 2010

Keywords

Comments

A permutation of the positive integers. See the comment at A183079 (tree generated by the triangular numbers). The leftmost numbers (1,2,4,16,...) are, after the initial 1, given by A001146. The rightmost numbers (1,2,3,5,7,10,...) are, after the initial 1, the iterates of the nonsquare function; see a comment at A033638.

Examples

			First levels of the tree:
......................1
......................2
...........4.....................3
.......16.......6...........9..........5
...256...20...36..8......81...12....25...7
		

Crossrefs

Formula

Let L(n) be the n-th square (A000290).
Let U(n) be the n-th nonsquare (A000037).
The tree-array T(n,k) is then given by rows:
T(0,0)=1; T(1,0)=2;
T(n,2j)=L(T(n-1),j);
T(n,2j+1)=U(T(n-1),j);
for j=0,1,...,2^(n-1)-1, n>=2.

A211667 Number of iterations sqrt(sqrt(sqrt(...(n)...))) such that the result is < 2.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

Different from A001069, but equal for n < 256.

Examples

			a(n) = 1, 2, 3, 4, 5, ... for n = 2^1, 2^2, 2^4, 2^8, 2^16, ..., i.e., n = 2, 4, 16, 256, 65536, ... = A001146.
		

Crossrefs

Cf. A087046 (run lengths).

Programs

  • Mathematica
    a[n_] := Length[NestWhileList[Sqrt, n, # >= 2 &]] - 1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *)
  • PARI
    apply( A211667(n, c=0)={while(n>=2, n=sqrtint(n); c++); c}, [1..50]) \\ This defines the function A211667. The apply(...) provides a check and illustration. - M. F. Hasler, Dec 07 2018
    
  • PARI
    a(n) = if(n<=1,0, logint(logint(n,2),2) + 1); \\ Kevin Ryde, Jan 18 2024
    
  • Python
    A211667=lambda n: n and (n.bit_length()-1).bit_length() # Natalia L. Skirrow, May 16 2023

Formula

a(2^(2^n)) = a(2^(2^(n-1))) + 1, for n >= 1.
G.f.: g(x) = 1/(1-x)*Sum_{k>=0} x^(2^(2^k))
= (x^2 + x^4 + x^16 + x^256 + x^65536 + ...)/(1 - x).
a(n) = 1 + floor(log_2(log_2(n))) for n>=2. - Kevin Ryde, Jan 18 2024

A227960 Big equivalence classes (A227723) related to subgroups of nimber addition (A190939).

Original entry on oeis.org

1, 3, 6, 15, 24, 60, 105, 255, 384, 960, 1632, 1680, 4080, 15555, 27030, 65535, 98304, 245760, 417792, 430080, 1044480, 1582080, 3947520, 3982080, 6908160, 6919680, 16776960, 106991625, 267448335, 1019462460, 1771476585, 4294967295
Offset: 0

Views

Author

Tilman Piesk, Aug 01 2013

Keywords

Comments

A subsequence of A227723, showing all the big equivalence classes that contain Boolean functions related to subgroups of nimber addition (A190939).
Forms a triangle with row lengths A034343 = 1, 1, 2, 4, 8, 16, 36, 80...:
1,
3,
6, 15,
24, 60, 105, 255,
384, 960, 1632, 1680, 4080, 15555, 27030, 65535...
The left column a( 1,2,4,8,16,32,68,148... ) = a( A076766 ) = 3 ,6, 24, 384, 98304... is probably A001146 * 3/2, which is also A006017( A000079 ).
The first A076766(n) entries correspond to the first A006116(n) entries of A190939. (The first 148 here, for n = 7, correspond to the first 29212 there.) The entries of A190939 can be generated from this sequence.
Among the first A076766(n) entries are A076831(n;0...n) with weight 2^0...2^n. (Among the first 148 are 1, 7, 23, 43, 43, 23, 7, 1 with weights 1, 2, 4, 8, 16, 32, 64, 128.)
a(n) appears to be divisible by 3 for n>0, and the odd part of a(n) is almost always squarefree. - Ralf Stephan, Aug 02 2013

Crossrefs

Subsequence of A227723 (all becs). All entries are also in A227963 (all sona-secs). Neither shares the property of divisibility by 3.
The prime factors contain many prime factors of Fermat numbers (A023394).

Formula

a( A076766 - 1 ) = A001146 - 1 = A051179.
a( A076766 ) = A001146 * 3/2 (probably).
Previous Showing 51-60 of 116 results. Next