cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 156 results. Next

A367863 Number of n-vertex labeled simple graphs with n edges and no isolated vertices.

Original entry on oeis.org

1, 0, 0, 1, 15, 222, 3760, 73755, 1657845, 42143500, 1197163134, 37613828070, 1295741321875, 48577055308320, 1969293264235635, 85852853154670693, 4005625283891276535, 199166987259400191480, 10513996906985414443720, 587316057411626070658200, 34612299496604684775762261
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2023

Keywords

Examples

			Non-isomorphic representatives of the a(4) = 15 graphs:
  {{1,2},{1,3},{1,4},{2,3}}
  {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

The connected case is A057500, unlabeled A001429.
The unlabeled version is A006649.
The non-covering version is A116508.
For set-systems we have A367916, ranks A367917.
A001187 counts connected graphs, A001349 unlabeled.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A058891 counts set-systems, unlabeled A000612, without singletons A016031.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.
A133686 = graphs satisfy strict AoC, connected A129271, covering A367869.
A143543 counts simple labeled graphs by number of connected components.
A323818 counts connected set-systems, unlabeled A323819, ranks A326749.
A367867 = graphs contradict strict AoC, connected A140638, covering A367868.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Length[#]==n&]],{n,0,5}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(binomial(k,2), n)) \\ Andrew Howroyd, Dec 29 2023

Formula

Binomial transform is A367862.
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(binomial(k,2), n). - Andrew Howroyd, Dec 29 2023

Extensions

Terms a(8) and beyond from Andrew Howroyd, Dec 29 2023

A062740 Number of connected labeled graphs with loops.

Original entry on oeis.org

1, 2, 4, 32, 608, 23296, 1709056, 238880768, 64396439552, 33943701028864, 35324404321091584, 72994114660256448512, 300460426062916084563968, 2468021884106048216693211136, 40495494119922790159005962469376, 1328011048967552376327692463141552128
Offset: 0

Views

Author

Vladeta Jovovic, Jul 12 2001

Keywords

Crossrefs

Programs

  • Maple
    logtr:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else p(n)- add(k *binomial(n, k) *p(n-k) *b(k), k=1..n-1)/n fi end end:
    a:= logtr(n-> 2^binomial(n+1, 2)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Feb 01 2014
  • Mathematica
    nn=14;g=Sum[2^Binomial[n,2](2x)^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[Log[g]+1,{x,0,nn}],x] (* Geoffrey Critzer, Feb 01 2014 *)

Formula

E.g.f.: 1+log( Sum_{n >= 0} 2^binomial(n+1, 2)*x^n/n! ).
E.g.f.: A(2*x) where A(x) is the e.g.f. for A001187. - Geoffrey Critzer, Feb 01 2014

A007297 Number of connected graphs on n labeled nodes on a circle with straight-line edges that don't cross.

Original entry on oeis.org

1, 1, 4, 23, 156, 1162, 9192, 75819, 644908, 5616182, 49826712, 448771622, 4092553752, 37714212564, 350658882768, 3285490743987, 30989950019532, 294031964658430, 2804331954047160, 26870823304476690, 258548658860327880
Offset: 1

Views

Author

Keywords

Comments

Apart from the initial 1, reversion of g.f. for A162395 (squares with signs): see A263843.

Examples

			G.f. = x*(1 + x + 4*x^2 + 23*x^3 + 156*x^4 + 1162*x^5 + 9192*x^6 + 75819*x^7 + ...).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A162395, A000290. 4th row of A107111. Row sums of A089434.
See A263843 for a variant.
Cf. A000108 (non-crossing set partitions), A001006, A001187, A054726 (non-crossing graphs), A054921, A099947, A194560, A293510, A323818, A324167, A324169, A324173.

Programs

  • Maple
    A007297:=proc(n) if n = 1 then 1 else add(binomial(3*n - 3, n + j)*binomial(j - 1, j - n + 1), j = n - 1 .. 2*n - 3)/(n - 1); fi; end;
  • Mathematica
    CoefficientList[ InverseSeries[ Series[(x-x^2)/(1+x)^3, {x, 0, 20}], x], x] // Rest (* From Jean-François Alcover, May 19 2011, after PARI prog. *)
    Table[Binomial[3n, 2n+1] Hypergeometric2F1[1-n, n, 2n+2, -1]/n, {n, 1, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse((x-x^2)/(1+x)^3+O(x^(n+2))),n+1)) /* Ralf Stephan */

Formula

Apart from initial term, g.f. is the series reversion of (x-x^2)/(1+x)^3 (A162395). See A263843. - Vladimir Kruchinin, Feb 08 2013
G.f.: (g-z)/z, where g=-1/3+(2/3)*sqrt(1+9z)*sin((1/3)*arcsin((2+27z+54z^2)/2/(1+9*z)^(3/2))). - Emeric Deutsch, Dec 02 2002
a(n) = (1/n)*Sum_{k=0..n} binomial(3n, n-k-1)*binomial(n+k-1, k). - Paul Barry, May 11 2005
a(n) = 4^(n-1)*(Gamma(3*n/2-1)/Gamma(n/2+1)/Gamma(n) -Gamma((3*n-1)/2)/ Gamma( (n+1)/2)/Gamma(n+1)). - Mark van Hoeij, Aug 27 2005, adapted to offset Feb 21 2020 by R. J. Mathar
a(n) = 4^n * binomial(3*n/2, n/2) / (9*n-6) - 4^(n-1) * binomial(3*(n-1)/2, (n-1)/2 ) / n. - Mark van Hoeij, Aug 27 2005, adapted to offset Feb 21 2020 by R. J. Mathar
D-finite with recurrence: n*(n-1)*(3*n-4)*a(n) +36*(n-1)*a(n-1) -12*(3*n-8)*(3*n-1)*(3*n-7)*a(n-2)=0. - Mark van Hoeij, Aug 27 2005, adapted to offset Feb 21 2020 by R. J. Mathar
a(n) = (1/n)*Sum_{k=0..n} C(3n, k)*C(2n-k-2, n-1). - Paul Barry, Sep 27 2005
a(n) ~ (2-sqrt(3)) * 6^n * 3^(n/2) / (sqrt(2*Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 17 2014
a(n) = binomial(3*n,2*n+1)*hypergeom([1-n,n], [2*n+2], -1)/n. - Vladimir Reshetnikov, Oct 25 2015
a(n) = 2*A078531(n) - A085614(n+1). - Vladimir Reshetnikov, Apr 24 2016

Extensions

Better description from Philippe Flajolet, Apr 20 2000
More terms from James Sellers, Aug 21 2000
Definition revised and initial a(1)=1 added by N. J. A. Sloane, Nov 05 2015 at the suggestion of Axel Boldt. Some of the formulas may now need to be adjusted slightly.

A326749 BII-numbers of connected set-systems.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 8, 16, 17, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all connected set-systems together with their BII-numbers begins:
   0: {}
   1: {{1}}
   2: {{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
  16: {{1,3}}
  17: {{1},{1,3}}
  20: {{1,2},{1,3}}
  21: {{1},{1,2},{1,3}}
  22: {{2},{1,2},{1,3}}
  23: {{1},{2},{1,2},{1,3}}
  24: {{3},{1,3}}
  25: {{1},{3},{1,3}}
  28: {{1,2},{3},{1,3}}
  29: {{1},{1,2},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
  31: {{1},{2},{1,2},{3},{1,3}}
		

Crossrefs

Positions of 0's and 1's in A326753.
Other BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Select[Range[0,100],Length[csm[bpe/@bpe[#]]]<=1&]
  • Python
    from itertools import count, islice
    from sympy.utilities.iterables import connected_components
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen():
        yield 0
        for n in count(1):
            a, E = [bin_i(k) for k in bin_i(n)], []
            m = len(a)
            for i in range(m):
                for j in a[i]:
                    for k in range(m):
                        if j in a[k]:
                            E.append((i, k))
            for v in connected_components((list(range(m)), E)):
                if len(v) == m:
                    yield n
    A326749_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Jul 25 2024

A129271 Number of labeled n-node connected graphs with at most one cycle.

Original entry on oeis.org

1, 1, 1, 4, 31, 347, 4956, 85102, 1698712, 38562309, 980107840, 27559801736, 849285938304, 28459975589311, 1030366840792576, 40079074477640850, 1666985134587145216, 73827334760713500233, 3468746291121007607808, 172335499299097826575564, 9027150377126199463936000
Offset: 0

Views

Author

Washington Bomfim, May 10 2008

Keywords

Comments

The majority of those graphs of order 4 are trees since we have 16 trees and only 9 unicycles. See example.
Also connected graphs covering n vertices with at most n edges. The unlabeled version is A005703. - Gus Wiseman, Feb 19 2024

Examples

			a(4) = 16 + 3*3 = 31.
From _Gus Wiseman_, Feb 19 2024: (Start)
The a(0) = 1 through a(3) = 4 graph edge sets:
  {}  .  {{1,2}}  {{1,2},{1,3}}
                  {{1,2},{2,3}}
                  {{1,3},{2,3}}
                  {{1,2},{1,3},{2,3}}
(End)
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Dover, 2002, p. 2.

Crossrefs

For any number of edges we have A001187, unlabeled A001349.
The unlabeled version is A005703.
The case of equality is A057500, covering A370317, cf. A370318.
The non-connected non-covering version is A133686.
The connected complement is A140638, unlabeled A140636, covering A367868.
The non-connected covering version is A367869 or A369191.
The version with loops is A369197, non-connected A369194.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A062734 counts connected graphs by number of edges.

Programs

  • Maple
    a := n -> `if`(n=0,1,((n-1)*exp(n)*GAMMA(n-1,n)+n^(n-2)*(3-n))/2):
    seq(simplify(a(n)),n=0..16); # Peter Luschny, Jan 18 2016
  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[ Log[1/(1-t)]/2+t/2-3t^2/4+1,{x,0,nn}],x]  (* Geoffrey Critzer, Mar 23 2013 *)
  • PARI
    seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(log(1/(1-t))/2 + t/2 - 3*t^2/4 + 1))} \\ Andrew Howroyd, Nov 07 2019

Formula

a(0) = 1, for n >=1, a(n) = A000272(n) + A057500(n) = n^{n-2} + (n-1)(n-2)/2Sum_{r=1..n-2}( (n-3)!/(n-2-r)! )n^(n-2-r)
E.g.f.: log(1/(1-T(x)))/2 + T(x)/2 - 3*T(x)^2/4 + 1, where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Mar 23 2013
a(n) = ((n-1)*e^n*GAMMA(n-1,n)+n^(n-2)*(3-n))/2 for n>=1. - Peter Luschny, Jan 18 2016

Extensions

Terms a(17) and beyond from Andrew Howroyd, Nov 07 2019

A367869 Number of labeled simple graphs covering n vertices and satisfying a strict version of the axiom of choice.

Original entry on oeis.org

1, 0, 1, 4, 34, 387, 5596, 97149, 1959938, 44956945, 1154208544, 32772977715, 1019467710328, 34473686833527, 1259038828370402, 49388615245426933, 2070991708598960524, 92445181295983865757, 4376733266230674345874, 219058079619119072854095, 11556990682657196214302036
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
Number of labeled n-node graphs with at most one cycle in each component and no isolated vertices. - Andrew Howroyd, Dec 30 2023

Examples

			The a(3) = 4 graphs:
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1,2},{1,3},{2,3}}
		

Crossrefs

The connected case is A129271.
The non-covering case is A133686, complement A367867.
The complement is A367868, connected A140638 (unlabeled A140636).
A001187 counts connected graphs, A001349 unlabeled.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A058891 counts set-systems, unlabeled A000612, without singletons A016031.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.
A143543 counts simple labeled graphs by number of connected components.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Select[Tuples[#], UnsameQ@@#&]!={}&]],{n,0,5}]
  • PARI
    seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(sqrt(1/(1-t))*exp(t/2 - 3*t^2/4 - x)))} \\ Andrew Howroyd, Dec 30 2023

Formula

E.g.f.: exp(B(x) - x - 1) where B(x) is the e.g.f. of A129271. - Andrew Howroyd, Dec 30 2023

Extensions

Terms a(7) and beyond from Andrew Howroyd, Dec 30 2023

A367868 Number of labeled simple graphs covering n vertices and contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 0, 0, 7, 381, 21853, 1790135, 250562543, 66331467215, 34507857686001, 35645472109753873, 73356936892660012513, 301275024409580265134121, 2471655539736293803311467943, 40527712706903494712385171632959, 1328579255614092966328511889576785109
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(4) = 7 graphs:
  {{1,2},{1,3},{1,4},{2,3},{2,4}}
  {{1,2},{1,3},{1,4},{2,3},{3,4}}
  {{1,2},{1,3},{1,4},{2,4},{3,4}}
  {{1,2},{1,3},{2,3},{2,4},{3,4}}
  {{1,2},{1,4},{2,3},{2,4},{3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

The connected case is A140638, unlabeled A140636.
The non-covering case is A367867.
The complement is A367869, connected A129271, non-covering A133686.
The version for set-systems is A367903, ranks A367907.
A001187 counts connected graphs, A001349 unlabeled.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A058891 counts set-systems (without singletons A016031), unlabeled A000612.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.
A143543 counts simple labeled graphs by number of connected components.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Select[Tuples[#], UnsameQ@@#&]=={}&]],{n,0,5}]

Formula

a(n) = A006129(n) - A367869(n). - Andrew Howroyd, Dec 30 2023

Extensions

Terms a(7) and beyond from Andrew Howroyd, Dec 30 2023

A014068 a(n) = binomial(n*(n+1)/2, n).

Original entry on oeis.org

1, 1, 3, 20, 210, 3003, 54264, 1184040, 30260340, 886163135, 29248649430, 1074082795968, 43430966148115, 1917283000904460, 91748617512913200, 4730523156632595024, 261429178502421685800, 15415916972482007401455, 966121413245991846673830, 64123483527473864490450300
Offset: 0

Views

Author

Keywords

Comments

Product of next n numbers divided by product of first n numbers. E.g., a(4) = (7*8*9*10)/(1*2*3*4)= 210. - Amarnath Murthy, Mar 22 2004
Also the number of labeled loop-graphs with n vertices and n edges. The covering case is A368597. - Gus Wiseman, Jan 25 2024

Examples

			From _Gus Wiseman_, Jan 25 2024: (Start)
The a(0) = 1 through a(3) = 20 loop-graph edge-sets (loops shown as singletons):
  {}  {{1}}  {{1},{2}}    {{1},{2},{3}}
             {{1},{1,2}}  {{1},{2},{1,2}}
             {{2},{1,2}}  {{1},{2},{1,3}}
                          {{1},{2},{2,3}}
                          {{1},{3},{1,2}}
                          {{1},{3},{1,3}}
                          {{1},{3},{2,3}}
                          {{2},{3},{1,2}}
                          {{2},{3},{1,3}}
                          {{2},{3},{2,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1},{1,3},{2,3}}
                          {{2},{1,2},{1,3}}
                          {{2},{1,2},{2,3}}
                          {{2},{1,3},{2,3}}
                          {{3},{1,2},{1,3}}
                          {{3},{1,2},{2,3}}
                          {{3},{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
(End)
		

Crossrefs

Diagonal of A084546.
Without loops we have A116508, covering A367863, unlabeled A006649.
Allowing edges of any positive size gives A136556, covering A054780.
The covering case is A368597.
The unlabeled version is A368598, covering A368599.
The connected case is A368951.
A000666 counts unlabeled loop-graphs, covering A322700.
A006125 (shifted left) counts loop-graphs, covering A322661.
A006129 counts covering simple graphs, connected A001187.
A058891 counts set-systems, unlabeled A000612.

Programs

  • Magma
    [Binomial(Binomial(n+1,2), n): n in [0..40]]; // G. C. Greubel, Feb 19 2022
    
  • Mathematica
    Binomial[First[#],Last[#]]&/@With[{nn=20},Thread[{Accumulate[ Range[ 0,nn]], Range[ 0,nn]}]] (* Harvey P. Dale, May 27 2014 *)
  • Python
    from math import comb
    def A014068(n): return comb(comb(n+1,2),n) # Chai Wah Wu, Jul 14 2024
  • Sage
    [(binomial(binomial(n+1, n-1), n)) for n in range(20)] # Zerinvary Lajos, Nov 30 2009
    

Formula

For n >= 1, Product_{k=1..n} a(k) = A022915(n). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001
For n > 0, a(n) = A022915(n)/A022915(n-1). - Gerald McGarvey, Jul 26 2004
a(n) = binomial(T(n+1), T(n)) where T(n) = the n-th triangular number. - Amarnath Murthy, Jul 14 2005
a(n) = binomial(binomial(n+2, n), n+1) for n >= -1. - Zerinvary Lajos, Nov 30 2009
From Peter Bala, Feb 27 2020: (Start)
a(p) == (p + 1)/2 ( mod p^3 ) for prime p >= 5 (apply Mestrovic, equation 37).
Conjectural: a(2*p) == p*(2*p + 1) ( mod p^4 ) for prime p >= 5. (End)
a(n) = A084546(n,n). - Gus Wiseman, Jan 25 2024
a(n) = [x^n] (1+x)^(n*(n+1)/2). - Vaclav Kotesovec, Aug 06 2025

A095983 Number of 2-edge-connected labeled graphs on n nodes.

Original entry on oeis.org

0, 0, 0, 1, 10, 253, 11968, 1047613, 169181040, 51017714393, 29180467201536, 32121680070545657, 68867078000231169536, 290155435185687263172693, 2417761175748567327193407488, 40013922635723692336670167608181, 1318910073755307133701940625759574016
Offset: 0

Views

Author

Yifei Chen (yifei(AT)mit.edu), Jul 17 2004

Keywords

Comments

From Falk Hüffner, Jun 28 2018: (Start)
Essentially the same sequence arises as the number of connected bridgeless labeled graphs (graphs that are k-edge connected for k >= 2, starting elements of this sequence are 1, 1, 0, 1, 10, 253, 11968, ...).
Labeled version of A007146. (End)
The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a graph that is disconnected or covers fewer vertices. This sequence counts graphs with spanning edge-connectivity >= 2, which, for n > 1, are connected graphs with no bridges. - Gus Wiseman, Sep 20 2019

Crossrefs

The unlabeled version is A007146.
Row sums of A327069 if the first two columns are removed.
BII-numbers of set-systems with spanning edge-connectivity >= 2 are A327109.
Graphs with spanning edge-connectivity 2 are A327146.
Graphs with non-spanning edge-connectivity >= 2 are A327200.
2-vertex-connected graphs are A013922.
Graphs without endpoints are A059167.
Graphs with spanning edge-connectivity 1 are A327071.

Programs

  • Mathematica
    seq[n_] := Module[{v, p, q, c}, v[_] = 0; p = x*D[#, x]& @ Log[ Sum[ 2^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^(n+1)]; q = x*E^p; p -= q; For[k = 3, k <= n, k++, c = Coefficient[p, x, k]; v[k] = c*(k-1)!; p -= c*q^k]; Join[{0}, Array[v, n]]];
    seq[16] (* Jean-François Alcover, Aug 13 2019, after Andrew Howroyd *)
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]>=2&]],{n,0,5}] (* Gus Wiseman, Sep 20 2019 *)
  • PARI
    \\ here p is initially A053549, q is A198046 as e.g.f.s.
    seq(n)={my(v=vector(n));
    my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))));
    my(q=x*exp(p)); p-=q;
    for(k=3, n, my(c=polcoeff(p,k)); v[k]=c*(k-1)!; p-=c*q^k);
    concat([0],v)} \\ Andrew Howroyd, Jun 18 2018
    
  • PARI
    seq(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n)))); Vec(serlaplace(log(x/serreverse(x*exp(p)))/x-1), -(n+1))} \\ Andrew Howroyd, Dec 28 2020

Formula

a(n) = A001187(n) - A327071(n). - Gus Wiseman, Sep 20 2019

Extensions

Name corrected and more terms from Pavel Irzhavski, Nov 01 2014
Offset corrected by Falk Hüffner, Jun 17 2018
a(12)-a(16) from Andrew Howroyd, Jun 18 2018

A099947 Number of topologically connected set partitions of {1,...,n}.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 21, 85, 385, 1907, 10205, 58455, 355884, 2290536, 15518391, 110283179, 819675482, 6355429550, 51293023347, 430062712439, 3739408304962, 33665192703946, 313354708842791, 3011545611755271, 29847401178719637, 304713973031878687, 3201007359886598431
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2004

Keywords

Comments

A set partition of {1,...,n} is topologically connected if the graph whose vertices are the blocks and whose edges are crossing pairs of blocks is connected, where two blocks cross each other if they are of the form {{...x...y...}, {...z...t...}} for some x < z < y < t or z < x < t < y. - Gus Wiseman, Feb 19 2019

Examples

			O.g.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 6*x^5 + 21*x^6 + 85*x^7 +...
From _Paul D. Hanna_, Apr 16 2013: (Start)
The o.g.f. satisfies
(1) A(x) = 1 + x/A(x) + 2*x^2/A(x)^2 + 5*x^3/A(x)^3 + 15*x^4/A(x)^4 + 52*x^5/A(x)^5 + 203*x^6/A(x)^6 + ... + A000110(n)*x^n/A(x)^n + ...
(2) A(x) = 1 + x/(A(x)-x) + x^2/((A(x)-x)*(A(x)-2*x)) + x^3/((A(x)-x)*(A(x)-2*x)*(A(x)-3*x)) + x^4/((A(x)-x)*(A(x)-2*x)*(A(x)-3*x)*(A(x)-4*x)) + ... (End)
From _Gus Wiseman_, Feb 19 2019: (Start)
The a(1) = 1 through a(6) = 21 topologically connected set partitions:
  {{1}}  {{12}}  {{123}}  {{1234}}    {{12345}}    {{123456}}
                          {{13}{24}}  {{124}{35}}  {{1235}{46}}
                                      {{13}{245}}  {{124}{356}}
                                      {{134}{25}}  {{1245}{36}}
                                      {{135}{24}}  {{1246}{35}}
                                      {{14}{235}}  {{125}{346}}
                                                   {{13}{2456}}
                                                   {{134}{256}}
                                                   {{1345}{26}}
                                                   {{1346}{25}}
                                                   {{135}{246}}
                                                   {{1356}{24}}
                                                   {{136}{245}}
                                                   {{14}{2356}}
                                                   {{145}{236}}
                                                   {{146}{235}}
                                                   {{15}{2346}}
                                                   {{13}{25}{46}}
                                                   {{14}{25}{36}}
                                                   {{14}{26}{35}}
                                                   {{15}{24}{36}}
(End)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Module[{A = 1 + x}, For[i = 1, i <= n, i++, A = Sum[x^m/Product[A - k*x + x*O[x]^n, {k, 1, m}], {m, 0, n}]]; Coefficient[A, x^n]]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Sep 13 2013, after Paul D. Hanna *)
    nn=8;
    nonXQ[stn_]:=!MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Solve[Table[BellB[n]==Sum[Product[a[Length[s]],{s,stn}],{stn,Select[sps[Range[n]],nonXQ]}],{n,nn}],Array[a,nn]] (* Gus Wiseman, Feb 19 2019 *)
  • PARI
    {a(n)=if(n<0, 0, polcoeff( x/serreverse(x*serlaplace(exp(exp(x+x*O(x^n))-1))), n))} /* Michael Somos, Sep 22 2005 */
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m/prod(k=1, m, A - k*x +x*O(x^n)) )); polcoeff(A, n)} \\ Paul D. Hanna, Apr 16 2013

Formula

From Paul D. Hanna, Apr 16 2013: (Start)
O.g.f. A(x) satisfies
(1) A(x) = Sum_{n>=0} A000110(n)*x^n/A(x)^n, where A000110 are the Bell numbers.
(2) A(x) = Sum_{n>=0} x^n / Product_{k=1..n} (A(x) - k*x).
(3) A(x) = 1/(1 - x/(A(x) - 1*x/(1 - x/(A(x) - 2*x/(1 - x/(A(x) - 3*x/(1 - x/(A(x) - 4*x/(1 - x/(A(x) - ... )))))))))), a continued fraction. (End)
B(n) = Sum_p Product_{s in p} a(|s|) where p is a non-crossing set partition of {1,...,n} and B = A000110. In words, every set partition of {1,...,n} can be uniquely decomposed as a non-crossing set partition together with a topologically connected set partition of each block. - Gus Wiseman, Feb 19 2019

Extensions

Name edited by Gus Wiseman, Feb 19 2019
Previous Showing 11-20 of 156 results. Next