cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 371 results. Next

A134290 Ninth column (and diagonal) of Narayana triangle A001263.

Original entry on oeis.org

1, 45, 825, 9075, 70785, 429429, 2147145, 9202050, 34763300, 118195220, 367479684, 1057896060, 2848181700, 7229999700, 17420856420, 40067969766, 88385227425, 187746398125, 385374185625, 766691800875, 1482270815025, 2791289197125, 5130235085625, 9219552907500
Offset: 0

Views

Author

Wolfdieter Lang, Nov 13 2007

Keywords

Comments

See a comment under A134288 on the coincidence of column and diagonal sequences.
Kekulé numbers K(O(1,8,n)) for certain benzenoids (see the Cyvin-Gutman reference, p. 105, eq. (i)).

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988.

Crossrefs

Cf. A002378.
Cf. A134289 (eighth column of Narayana triangle).
Cf. A134291 (tenth column of Narayana triangle).

Programs

  • GAP
    List([0..25], n-> Binomial(n+9,9)*Binomial(n+8,7)/8); # G. C. Greubel, Aug 28 2019
  • Magma
    [Binomial(n+9,9)*Binomial(n+8,7)/8: n in [0..25]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    a := n -> ((n+1)*((n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7)*(n+8))^2*(n+9))/14631321600:
    seq(a(n), n=0..23); # Peter Luschny, Sep 01 2016
  • Mathematica
    Table[Binomial[n+9,9]*Binomial[n+8,7]/8, {n,0,25}] (* G. C. Greubel, Aug 28 2019 *)
  • PARI
    Vec((1+28*x+196*x^2+490*x^3+490*x^4+196*x^5+28*x^6+x^7)/(1-x)^17 + O(x^25)) \\ Altug Alkan, Sep 01 2016
    
  • PARI
    vector(25, n, binomial(n+8,9)*binomial(n+7,7)/8) \\ G. C. Greubel, Aug 28 2019
    
  • Sage
    [binomial(n+9,9)*binomial(n+8,7)/8 for n in (0..25)] # G. C. Greubel, Aug 28 2019
    

Formula

a(n) = A001263(n+9,9) = binomial(n+9,9)*binomial(n+9,8)/(n+9).
O.g.f.: P(8,x)/(1-x)^17 with the numerator polynomial P(8,x) = Sum_{k=1..8} A001263(8,k)*x^(k-1), the eighth row polynomial of the Narayana triangle: P(8,x) = 1 + 28*x + 196*x^2 + 490*x^3 + 490*x^4 + 196*x^5 + 28*x^6 + x^7.
a(n) = Product_{i=1..8} A002378(n+i)/A002378(i). - Bruno Berselli, Sep 01 2016
From Amiram Eldar, Oct 19 2020: (Start)
Sum_{n>=0} 1/a(n) = 497925669/175 - 288288*Pi^2.
Sum_{n>=0} (-1)^n/a(n) = 580367/35 - 1680*Pi^2. (End)

A082148 a(0)=1; for n >= 1, a(n) = Sum_{k=0..n} 10^k*N(n,k), where N(n,k) = (1/n)*C(n,k)*C(n,k+1) are the Narayana numbers (A001263).

Original entry on oeis.org

1, 1, 11, 131, 1661, 22101, 305151, 4335711, 63009881, 932449961, 14004694451, 212944033051, 3271618296661, 50711564152381, 792088104593511, 12454801769554551, 196991734871121201, 3131967533789345361, 50026642742943415131, 802406215117502069811
Offset: 0

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

More generally, coefficients of (1+m*x-sqrt(m^2*x^2-(2*m+4)*x+1))/((2*m+2)*x) are given by: a(n) = Sum_{k=0..n} (m+1)^k*N(n,k)).
The Hankel transform of this sequence is 10^C(n+1,2). - Philippe Deléham, Oct 29 2007
a(n) = upper left term in M^n, M = the production matrix:
1, 1;
10, 10, 10;
1, 1, 1, 1;
10, 10, 10, 10, 10;
1, 1, 1, 1, 1, 1;
...
- Gary W. Adamson, Jul 08 2011
Shifts left when INVERT transform applied ten times. - Benedict W. J. Irwin, Feb 07 2016
For fixed m > 0, if g.f. = (1+m*x-sqrt(m^2*x^2-(2*m+4)*x+1))/((2*m+2)*x) then a(n,m) ~ (m + 2 + 2*sqrt(m+1))^(n + 1/2) / (2*sqrt(Pi) * (m+1)^(3/4) * n^(3/2)). - Vaclav Kotesovec, Mar 19 2018

Crossrefs

Programs

  • Magma
    I:=[1,11]; [1] cat [n le 2 select I[n] else (11*(2*n-1)*Self(n-1) - 81*(n-2)*Self(n-2))/(n+1): n in [1..30]]; // G. C. Greubel, Feb 10 2018
  • Maple
    A082148_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w]:=a[w-1]+10*add(a[j]*a[w-j-1],j=1..w-1) od;
    convert(a, list) end: A082148_list(17); # Peter Luschny, May 19 2011
  • Mathematica
    Table[SeriesCoefficient[(1+9*x-Sqrt[81*x^2-22*x+1])/(20*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
    a[n_] := Sum[10^k*1/n*Binomial[n, k]*Binomial[n, k + 1], {k, 0, n}];
    a[0] = 1; Array[a, 20, 0] (* Robert G. Wilson v, Feb 10 2018 *)
    a[n_] := Hypergeometric2F1[1 - n, -n, 2, 10];
    Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 19 2018 *)
  • PARI
    a(n)=if(n<1,1,sum(k=0,n,10^k/n*binomial(n,k)*binomial(n,k+1)))
    

Formula

G.f.: (1+9*x-sqrt(81*x^2-22*x+1))/(20*x).
a(n) = Sum_{k=0..n} A088617(n, k)*10^k*(-9)^(n-k). - Philippe Deléham, Jan 21 2004
a(n) = (11*(2n-1)*a(n-1) - 81*(n-2)*a(n-2)) / (n+1) for n>=2, a(0)=a(1)=1. - Philippe Deléham, Aug 19 2005
a(n) ~ sqrt(20+11*sqrt(10))*(11+2*sqrt(10))^n/(20*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
G.f.: 1/(1 - x/(1 - 10*x/(1 - x/(1 - 10*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Aug 10 2017
a(n) = hypergeom([1 - n, -n], [2], 10). - Peter Luschny, Mar 19 2018

A082173 a(0)=1; for n >= 1, a(n) = Sum_{k=0..n} 11^k*N(n,k) where N(n,k) = (1/n)*C(n,k)*C(n,k+1) are the Narayana numbers (A001263).

Original entry on oeis.org

1, 1, 12, 155, 2124, 30482, 453432, 6936799, 108507180, 1727970542, 27924685416, 456820603086, 7550600079672, 125905525750500, 2115511349837040, 35782547891727495, 608787760350045420, 10411451736723707990
Offset: 0

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

More generally coefficients of (1 + m*x - sqrt(m^2*x^2 -(2*m+4)*x + 1) )/((2*m+2)*x) are given by a(n) = Sum_{k=0..n} (m+1)^k*N(n,k).
The Hankel transform of this sequence is 11^C(n+1,2). - Philippe Deléham, Oct 29 2007
For fixed m > 0, if g.f. = (1 + m*x - sqrt(m^2*x^2 -(2*m+4)*x + 1) )/((2*m+2)*x) then a(n,m) ~ (m + 2 + 2*sqrt(m+1))^(n + 1/2) / (2*sqrt(Pi) * (m+1)^(3/4) * n^(3/2)). - Vaclav Kotesovec, Mar 19 2018

Crossrefs

Programs

  • Magma
    [1] cat [&+[11^k*Binomial(n, k)*Binomial(n, k+1)/n:k in [0..n]]:n in [1..18]]; // Marius A. Burtea, Jan 22 2020
    
  • Maple
    A082173_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := a[w-1]+11*add(a[j]*a[w-j-1],j=1..w-1)od;
    convert(a, list) end: A082173_list(17); # Peter Luschny, May 19 2011
  • Mathematica
    Table[SeriesCoefficient[(1+10*x-Sqrt[100*x^2-24*x+1])/(22*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
    a[n_] := Hypergeometric2F1[1 - n, -n, 2, 11];
    Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 19 2018 *)
  • PARI
    a(n)=if(n<1,1,sum(k=0,n,11^k/n*binomial(n,k)*binomial(n,k+1)))
    
  • SageMath
    def A082173_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+10*x-sqrt(100*x^2-24*x+1))/(22*x) ).list()
    A082173_list(30) # G. C. Greubel, Jan 21 2024

Formula

G.f.: (1+10*x-sqrt(100*x^2-24*x+1))/(22*x).
a(n) = Sum_{k=0..n} A088617(n, k)*11^k*(-10)^(n-k). - Philippe Deléham, Jan 21 2004
a(n) = (12*(2n-1)*a(n-1) - 100*(n-2)*a(n-2)) / (n+1) for n >= 2, a(0) = a(1) = 1. - Philippe Deléham, Aug 19 2005
From Gary W. Adamson, Jul 08 2011: (Start)
a(n) = upper left term in M^n, M = the production matrix:
1, 1
11, 11, 11
1, 1, 1, 1
11, 11, 11, 11, 11
1, 1, 1, 1, 1, 1
... (End)
a(n) ~ sqrt(22+12*sqrt(11))*(12+2*sqrt(11))^n/(22*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
G.f.: 1/(1 - x/(1 - 11*x/(1 - x/(1 - 11*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Aug 10 2017
a(n) = hypergeom([1 - n, -n], [2], 11). - Peter Luschny, Mar 19 2018

A082181 a(0) = 1, for n>=1, a(n) = Sum_{k=0..n} 9^k*N(n,k), where N(n,k) = (1/n)*C(n,k)*C(n,k+1) are the Narayana numbers (A001263).

Original entry on oeis.org

1, 1, 10, 109, 1270, 15562, 198100, 2596645, 34825150, 475697854, 6595646860, 92590323058, 1313427716380, 18798095833012, 271118225915560, 3936516861402901, 57494017447915150, 844109420603623030
Offset: 0

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

More generally, coefficients of (1+m*x-sqrt(m^2*x^2-(2*m+4)*x+1))/((2*m+2)*x) are given by: a(n) = Sum_{k=0..n} (m+1)^k*N(n,k).
The Hankel transform of this sequence is 9^C(n+1,2). - Philippe Deléham, Oct 29 2007
From Gary W. Adamson, Jul 08 2011: (Start)
a(n) = upper left term in M^n, M = the production matrix:
1, 1
9, 9, 9
1, 1, 1, 1
9, 9, 9, 9, 9
1, 1, 1, 1, 1, 1
... (End)
Shifts left when INVERT transform applied nine times. - Benedict W. J. Irwin, Feb 07 2016

Crossrefs

Programs

  • Magma
    [(&+[Binomial(n,k)*Binomial(n-1,k)*9^k/(k+1): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 23 2022
    
  • Maple
    A082181_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := a[w-1]+9*add(a[j]*a[w-j-1],j=1..w-1) od;
    convert(a, list) end: A082181_list(17); # Peter Luschny, May 19 2011
  • Mathematica
    Table[SeriesCoefficient[(1+8*x-Sqrt[64*x^2-20*x+1])/(18*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
    a[n_] := Hypergeometric2F1[1 - n, -n, 2, 9];
    Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 19 2018 *)
  • PARI
    a(n)=if(n<1,1,sum(k=0,n,9^k/n*binomial(n,k)*binomial(n,k+1)))
    
  • SageMath
    [sum(binomial(n,k)*binomial(n-1,k)*9^k/(k+1) for k in (0..n)) for n in (0..30)] # G. C. Greubel, May 23 2022

Formula

G.f.: (1+8*x-sqrt(64*x^2-20*x+1))/(18*x).
a(n) = Sum_{k=0..n} A088617(n, k)*9^k*(-8)^(n-k). - Philippe Deléham, Jan 21 2004
a(n) = (10*(2*n-1)*a(n-1) - 64*(n-2)*a(n-2)) / (n+1) for n>=2, a(0)=a(1)=1. - Philippe Deléham, Aug 19 2005
a(n) ~ 2^(4*n+1)/(3*sqrt(3*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
G.f.: 1/(1 - x/(1 - 9*x/(1 - x/(1 - 9*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Apr 21 2017
a(n) = hypergeom([1 - n, -n], [2], 9). - Peter Luschny, Mar 19 2018

Extensions

Corrected by T. D. Noe, Oct 25 2006

A103366 Second column of triangle A103364, which equals the matrix inverse of the Narayana triangle (A001263).

Original entry on oeis.org

1, -3, 12, -70, 585, -6741, 103068, -2023092, 49615695, -1487006785, 53477384268, -2272859942574, 112699083156751, -6447858833644515, 421601806346674320, -31242589674606301224, 2604618355967848204587, -242686626407684239621113, 25124942798118355122058980
Offset: 2

Views

Author

Paul D. Hanna, Feb 02 2005

Keywords

Crossrefs

Programs

  • PARI
    a(n)=if(n<2,0,(matrix(n,n,m,j,binomial(m-1,j-1)*binomial(m,j-1)/j)^-1)[n,2])

Formula

a(n) ~ (-1)^n * 2^(2*n-5) * n! * (n-1)! / (BesselJ(2, BesselJZero(1, 1)) * BesselJZero(1, 1)^(2*n-4)), where BesselJZero(1, 1) = A115369. - Vaclav Kotesovec, Jul 11 2025

A145904 Square array read by antidiagonals: Hilbert transform of the Narayana numbers A001263.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 16, 7, 1, 1, 15, 40, 31, 9, 1, 1, 21, 85, 105, 51, 11, 1, 1, 28, 161, 295, 219, 76, 13, 1, 1, 36, 280, 721, 771, 396, 106, 15, 1, 1, 45, 456, 1582, 2331, 1681, 650, 141, 17, 1
Offset: 0

Views

Author

Peter Bala, Oct 31 2008

Keywords

Comments

Refer to A145905 for the definition of the Hilbert transform of a lower triangular array. For the Hilbert transform of A008459, the array of type B Narayana numbers, see A108625.
This seems to be a duplicate of A273350. - Alois P. Heinz, Jun 04 2016. This could probably be proved by showing that the g.f.s are the same. - N. J. A. Sloane, Jul 02 2016

Examples

			The array begins
n\k|..0.....1.....2.....3.....4.....5
=====================================
0..|..1.....1.....1.....1.....1.....1
1..|..1.....3.....5.....7.....9....11
2..|..1.....6....16....31....51....76
3..|..1....10....40...105...219...396
4..|..1....15....85...295...771..1681
5..|..1....21...161...721..2331..6083
...
Row 2: (1 + 3x + x^2)/(1 - x)^3 = 1 + 6x + 16x^2 + 31x^3 + ... .
Row 3: (1 + 6x + 6x^2 + x^3)/(1 - x)^4 = 1 + 10x + 40x^2 + 105x^3 + ... .
		

Crossrefs

Cf. A001263, A005891 (row 2), A063490 (row 3), A108625 (Hilbert transform of h-vectors of type B associahedra).
Cf. also A273350.

Programs

  • Mathematica
    Table[1/(# + 1)*Sum[Binomial[# + 1, i - 1] Binomial[# + 1, i] Binomial[# + k - i + 1, k + 1 - i], {i, 0, k + 1}] &[m - k], {m, 0, 9}, {k, 0, m}] // Flatten (* Michael De Vlieger, Jan 15 2018 *)
  • Maxima
    taylor(((y-1)*sqrt(((x^2+2*x+1)*y-x^2+2*x-1)/(y-1))+(-x-1)*y-x+1)/(2*x^2*y),x,0,10,y,0,10);
    T(n,m,k):=1/(n+1)*sum(binomial(n+1,i-1)*binomial(n+1,i)*binomial(n+m-i+1,m+1-i),i,0,m+1); /* Vladimir Kruchinin, Jan 15 2018 */

Formula

Row n generating function: 1/(n+1) * 1/(1-x) * Jacobi_P(n,1,1,(1+x)/(1-x)) = N_n(x)/(1-x)^n where N_n(x) denotes the shifted Narayana polynomial N_n(x) = sum{k = 1..n} A001263(k)*x^(k-1) of degree n-1.
Conjectural column n generating function: N_n(x^2)/(1-x)^(2n+1).
The entries in row n are given by the values of a polynomial function p_n(x) at x = 0,1,2,... . The first few are p_1(x) = 2x + 1, p_2(x) = (5x^2 + 5x + 2)/2, p_3(x) = (2x + 1)*(7x^2 + 7x + 6)/6 and p_4(x) = (7x^4 + 14x^3 + 21x^2 + 14x + 4)/4. These polynomials appear to have their zeros on the line Re x = -1/2; that is, the polynomials p_n(-x) appear to satisfy a Riemann hypothesis. The corresponding result for A108625 is true (see A142995 for details).
Contribution from Paul Barry, Jan 06 2009: (Start)
The g.f. for the corresponding number triangle is:
1/(1-x-xy-x^2y/(1-x-x^2y/(1-x-xy-x^2y/(1-x-x^2y/(1-x-xy-x^2y.... (a continued fraction). (End)
This g.f. satisfies x^2*y*g^2 - (1-x-x*y)*g + 1 = 0. - R. J. Mathar, Jun 16 2016
G.f.: ((y-1)*sqrt(((x^2+2*x+1)*y-x^2+2*x-1)/(y-1))+(-x-1)*y-x+1)/(2*x^2*y). - Vladimir Kruchinin, Jan 15 2018
T(n,m) = 1/(n+1)*Sum_{i=0..m+1} C(n+1,i-1)*C(n+1,i)*C(n+m-i+1,m+1-i). - Vladimir Kruchinin, Jan 15 2018

A126182 Let P be Pascal's triangle A007318 and let N be Narayana's triangle A001263, both regarded as lower triangular matrices. Sequence gives triangle obtained from P*N, read by rows.

Original entry on oeis.org

1, 2, 1, 4, 5, 1, 8, 18, 9, 1, 16, 56, 50, 14, 1, 32, 160, 220, 110, 20, 1, 64, 432, 840, 645, 210, 27, 1, 128, 1120, 2912, 3150, 1575, 364, 35, 1, 256, 2816, 9408, 13552, 9534, 3388, 588, 44, 1, 512, 6912, 28800, 53088, 49644, 24822, 6636, 900, 54, 1
Offset: 0

Views

Author

Emeric Deutsch, Dec 19 2006, Mar 30 2007

Keywords

Comments

Also T(n,k) is number of hex trees with n edges and k left edges (0<=k<=n). A hex tree is a rooted tree where each vertex has 0, 1, or 2 children and, when only one child is present, it is either a left child, or a median child, or a right child (name due to an obvious bijection with certain tree-like polyhexes; see the Harary-Read reference). Accordingly, one can have left, vertical, or right edges.
Also (with a different offset) T(n,k) is the number of skew Dyck paths of semilength n and having k peaks (1<=k<=n). A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. E.g., T(3,2)=5 because we have (UD)U(UD)D, (UD)U(UD)L, U(UD)D(UD), U(UD)(UD)D and U(UD)(UD)L (the peaks are shown between parentheses).
Sum of terms in row n = A002212(n+1). T(n,1) = A001793(n); T(n,2) = A006974(n-2); Sum_{k=0..n}kT(n,k) = A026379(n+1).
A126216 = N * P. - Gary W. Adamson, Nov 30 2007

Examples

			The triangle P begins
  1,
  1, 1
  1, 2, 1
  1, 3, 3, 1, ...
and T begins
  1,
  1,  1,
  1,  3,  1,
  1,  6,  6,  1,
  1, 10, 20, 10, 1, ...
The product P*T gives
   1,
   2,  1,
   4,  5,  1,
   8, 18,  9,  1,
  16, 56, 50, 14, 1, ...
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if k=0 then 2^n elif k<=n then binomial(n+1,k)*sum(binomial(k,n-k-j)*binomial(n+1-k,j)*2^j,j=n-2*k..n-k)/(n+1) else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    t[n_, 0] := 2^n; t[n_, k_] := Binomial[n+1, k]*Sum[Binomial[k, n-k-j]*Binomial[n+1-k, j]*2^j, {j, n-2*k, n-k}]/(n+1); Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 12 2013 *)
    nmax = 10; n[x_, y_] := (1-x*(1+y) - Sqrt[(1-x*(1+y))^2 - 4*y*x^2])/(2*x); s = Series[(n[x/(1-x), y]-1)/x, {x, 0, nmax+1}, {y, 0, nmax+1}];t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]; Table[t[n, k], {n, 0, nmax}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Apr 16 2015, after Vladimir Kruchinin *)
  • PARI
    tabl(nn) = {mP = matrix(nn, nn, n, k, binomial(n-1, k-1)); mN = matrix(nn, nn, n, k, binomial(n-1, k-1) * binomial(n, k-1) / k); mprod = mP*mN; for (n=1, nn, for (k=1, n, print1(mprod[n, k], ", ");); print(););} \\ Michel Marcus, Apr 16 2015

Formula

T(n,k) = (1/(n+1))*binomial(n+1,k)*Sum_{j=n-2k..n-k}2^j*binomial(k,n-k-j)*binomial(n+1-k,j) if 0 < k <= n; T(n,0) = 2^n.
G.f. G=G(t,z) satisfies G = 1 + (t+2)*z*G + t*z^2*G^2.
E.g.f.: exp((t+2)*x)*BesselI_{1}(2*sqrt(t)*x)/(sqrt(t)*x). - Peter Luschny, Oct 29 2014
G.f.: N(x/(1-x),y)-1)/x, where N(x,y) is the g.f. of Narayana's triangle A001263. - Vladimir Kruchinin, Apr 06 2015.

Extensions

New definition in terms of P and N from Philippe Deléham, Jun 30 2007
Edited by N. J. A. Sloane, Jul 22 2007

A128088 a(n) = Sum_{k=0..n} A000108(k)*A001263(n+1,k+1), where A000108 is the Catalan numbers and A001263 is the Narayana triangle.

Original entry on oeis.org

1, 2, 6, 24, 115, 618, 3591, 22088, 141903, 943590, 6452490, 45159480, 322305165, 2339100078, 17223121350, 128428689888, 968383277791, 7374380672718, 56655414930642, 438741242896680, 3422125459579869, 26866961380274598, 212191772351034249, 1685036376746788392
Offset: 0

Views

Author

Paul D. Hanna, Feb 23 2007

Keywords

Comments

a(n) is the number of permutations of length n+1 avoiding the partially ordered pattern (POP) {1>2>3>4} of length 5. That is, the number of length n+1 permutations having no subsequences of length 5 in which the element in position 1 is larger than the element in position 2, which in turn is larger than the element in position 3, and that element is larger than the element in position 4. - Sergey Kitaev, Dec 13 2020

Examples

			Illustrate a(n) = Sum_{k=0..n} A000108(k)*A001263(n+1,k+1) by:
a(2) = 1*(1) + 1*(3) + 2*(1) = 6;
a(3) = 1*(1) + 1*(6) + 2*(6) + 5*(1) = 24;
a(4) = 1*(1) + 1*(10)+ 2*(20)+ 5*(10)+ 14*(1) = 115.
The Narayana triangle A001263(n+1,k+1) = C(n,k)*C(n+1,k)/(k+1) begins:
1;
1, 1;
1, 3, 1;
1, 6, 6, 1;
1, 10, 20, 10, 1;
1, 15, 50, 50, 15, 1; ...
		

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([1/2, -n - 1, -n], [2, 2], 4):
    seq(simplify(a(n)), n = 0..23);  # Peter Luschny, Nov 06 2023
  • Mathematica
    Table[Sum[Binomial[2*k,k]*Binomial[n,k]*Binomial[n+1,k]/(k+1)^2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 20 2012 *)
    Table[HypergeometricPFQ[{1/2, -1 - n, -n}, {2, 2}, 4], {n, 0, 20}] (* Vaclav Kotesovec, May 14 2016 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(2*k,k)*binomial(n,k)*binomial(n+1,k)/(k+1)^2)}

Formula

a(n) = (n+1)*A005802(n), where A005802(n) = number of permutations in S_n with longest increasing subsequence of length <= 3.
a(n) = Sum_{k=0..n} C(2k,k)*C(n,k)*C(n+1,k)/(k+1)^2.
Recurrence: (n+2)^2*a(n) = (n+1)*(7*n+2)*a(n-1) + 3*(n-2)*(7*n-4)*a(n-2) - 27*(n-2)*(n-1)*a(n-3) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 3^(2*n+9/2)/(16*Pi*n^3). - Vaclav Kotesovec, Oct 20 2012
a(n) = hypergeom([1/2, -n - 1, -n], [2, 2], 4). - Vaclav Kotesovec, May 14 2016

A166360 Triangle of Narayana numbers mod 2, T(n,k) = A001263(n,k) mod 2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1
Offset: 1

Views

Author

Gerald McGarvey, Oct 12 2009

Keywords

Examples

			Triangle begins:
  1
  1 1
  1 1 1
  1 0 0 1
  1 0 0 0 1
  1 1 0 0 1 1
  1 1 1 1 1 1 1
  1 0 0 0 0 0 0 1
  1 0 0 0 0 0 0 0 1
  1 1 0 0 0 0 0 0 1 1
  1 1 1 0 0 0 0 0 1 1 1
  1 0 0 1 0 0 0 0 1 0 0 1
  1 0 0 0 1 0 0 0 1 0 0 0 1
  1 1 0 0 1 1 0 0 1 1 0 0 1 1
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
  1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
  ...
		

Crossrefs

Cf. A230116 (rows seen as binary numbers).

Programs

  • Haskell
    a166360 n k = a166360_tabl !! (n-1) !! (k-1)
    a166360_row n = a166360_tabl !! (n-1)
    a166360_tabl = map (map (flip mod 2)) a001263_tabl
    -- Reinhard Zumkeller, Oct 10 2013
  • Mathematica
    T[n_, k_] := Mod[Binomial[n-1, k-1] * Binomial[n, k-1] / k, 2]; Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Amiram Eldar, May 13 2025 *)
  • PARI
    p = 2; s=14; NT = matrix(s,s,n,k, binomial(n-1, k-1)*binomial(n, k-1)/k);
    NTMP = matrix(s,s,n,k, NT[n,k]%p);
    for(n=1,s,for(k=1,n,print1(NTMP[n,k]," "));print())
    

A174128 Irregular triangle read by rows: row n (n > 0) is the expansion of Sum_{m=1..n} A001263(n,m)*x^(m - 1)*(1 - x)^(n - m).

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 3, -3, 1, 6, -4, -4, 2, 1, 10, 0, -20, 10, 1, 15, 15, -55, 15, 15, -5, 1, 21, 49, -105, -35, 105, -35, 1, 28, 112, -140, -266, 364, -56, -56, 14, 1, 36, 216, -84, -882, 756, 336, -504, 126, 1, 45, 375, 210, -2100, 672, 2520, -2100, 210, 210, -42
Offset: 1

Views

Author

Roger L. Bagula, Mar 09 2010

Keywords

Comments

Row n gives the coefficients in the expansion of (1/x)*(1 - x)^n*N(n,x/(1 - x)), where N(n,x) is the n-th row polynomial for the triangle of Narayana numbers A001263.

Examples

			Triangle begins
    1;
    1;
    1,  1,  -1;
    1,  3,  -3;
    1,  6,  -4,   -4,    2;
    1, 10,   0,  -20,   10;
    1, 15,  15,  -55,   15,  15,  -5;
    1, 21,  49, -105,  -35, 105, -35;
    1, 28, 112, -140, -266, 364, -56,  -56,  14;
    1, 36, 216,  -84, -882, 756, 336, -504, 126;
    ...
		

Crossrefs

Programs

  • Mathematica
    p[x_, n_]:= p[x, n]= Sum[(Binomial[n, j]*Binomial[n, j-1]/n)*x^j*(1-x)^(n-j), {j, 1, n}]/x;
    Table[CoefficientList[p[x, n], x], {n, 1, 12}]//Flatten
  • Sage
    def p(n,x): return (1/(n*x))*sum( binomial(n,j)*binomial(n,j-1)*x^j*(1-x)^(n-j) for j in (1..n) )
    def T(n): return ( p(n,x) ).full_simplify().coefficients(sparse=False)
    [T(n) for n in (1..12)] # G. C. Greubel, Jul 14 2021

Formula

The n-th row of the triangle is generated by the coefficients of (1 - x)^(n - 1)*F(-n, 1 - n; 2; x/(1 - x)), where F(a, b ; c; z) is the ordinary hypergeometric function.
G.f.: (1 - y - sqrt(1 - 2*y + ((1 - 2*x)*y)^2))/(2*(1 - x)*x*y). - Franck Maminirina Ramaharo, Oct 23 2018

Extensions

Edited and new name by Joerg Arndt, Oct 28 2014
Comments and formula clarified by Franck Maminirina Ramaharo, Oct 23 2018
Previous Showing 11-20 of 371 results. Next