1, 0, 1, -1, 1, 1, 0, 1, 2, 1, 1, 1, 7, 3, 1, 0, 1, 26, 17, 4, 1, -1, 1, 97, 99, 31, 5, 1, 0, 1, 362, 577, 244, 49, 6, 1, 1, 1, 1351, 3363, 1921, 485, 71, 7, 1, 0, 1, 5042, 19601, 15124, 4801, 846, 97, 8, 1, -1, 1, 18817, 114243, 119071, 47525, 10081, 1351, 127, 9, 1, 0, 1, 70226, 665857, 937444, 470449, 120126, 18817, 2024, 161
Offset: 0
As a number triangle, rows begin:
{1},
{0,1},
{-1,1,1},
{0,1,2,1},
...
As a square array, rows begin
1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, ...
-1, 1, 7, 17, 31, ...
0, 1, 26, 99, 244, ...
1, 1, 97, 577, 1921, ...
A232948
T(n,k)=Number of nXk 0..3 arrays with no element x(i,j) adjacent to value 3-x(i,j) horizontally, vertically or antidiagonally, and top left element zero.
Original entry on oeis.org
1, 3, 3, 9, 17, 9, 27, 99, 99, 27, 81, 577, 1163, 577, 81, 243, 3363, 13707, 13707, 3363, 243, 729, 19601, 161621, 328989, 161621, 19601, 729, 2187, 114243, 1905737, 7915555, 7915555, 1905737, 114243, 2187, 6561, 665857, 22471303, 190528543
Offset: 1
Some solutions for n=3 k=4
..0..2..3..2....0..2..3..2....0..2..3..3....0..1..1..0....0..2..3..3
..2..3..3..3....0..2..2..0....2..3..3..1....1..1..1..1....0..2..2..2
..2..2..3..2....2..0..2..2....2..2..3..1....3..3..1..0....0..2..0..2
A322790
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Sum_{j=0..k} binomial(2*k,2*j)*(n+1)^(k-j)*n^j.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 17, 5, 1, 1, 99, 49, 7, 1, 1, 577, 485, 97, 9, 1, 1, 3363, 4801, 1351, 161, 11, 1, 1, 19601, 47525, 18817, 2889, 241, 13, 1, 1, 114243, 470449, 262087, 51841, 5291, 337, 15, 1, 1, 665857, 4656965, 3650401, 930249, 116161, 8749, 449, 17, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 3, 17, 99, 577, 3363, 19601, ...
1, 5, 49, 485, 4801, 47525, 470449, ...
1, 7, 97, 1351, 18817, 262087, 3650401, ...
1, 9, 161, 2889, 51841, 930249, 16692641, ...
1, 11, 241, 5291, 116161, 2550251, 55989361, ...
1, 13, 337, 8749, 227137, 5896813, 153090001, ...
-
A[0, k_] := 1; A[n_, k_] := Sum[Binomial[2 k, 2 j]*(n + 1)^(k - j)*n^j, {j, 0, k}]; Table[A[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 26 2018 *)
A099142
a(n) = 6^n * T(n, 4/3) where T is the Chebyshev polynomial of the first kind.
Original entry on oeis.org
1, 8, 92, 1184, 15632, 207488, 2757056, 36643328, 487039232, 6473467904, 86042074112, 1143628341248, 15200538791936, 202038000386048, 2685388609667072, 35692849740775424, 474411605904392192
Offset: 0
-
LinearRecurrence[{16,-36},{1,8},20] (* Harvey P. Dale, Mar 09 2018 *)
-
a(n) = 6^n*polchebyshev(n, 1, 4/3); \\ Michel Marcus, Sep 08 2019
A106525
Values of x in x^2 - 49 = 2*y^2.
Original entry on oeis.org
9, 11, 21, 43, 57, 119, 249, 331, 693, 1451, 1929, 4039, 8457, 11243, 23541, 49291, 65529, 137207, 287289, 381931, 799701, 1674443, 2226057, 4660999, 9759369, 12974411, 27166293, 56881771, 75620409, 158336759, 331531257, 440748043
Offset: 1
Andras Erszegi (erszegi.andras(AT)chello.hu), May 07 2005
In the following, aa(n) denotes A001541(n):
a(9)=693; as mod(9,3)=0, a(9)=aa(3)*7=99*7=693, also 693^2-49=2*490^2
a(10)=1451; as mod(10,3)=1, a(10)=(aa(5)+aa(2)+aa(3)-aa(4))/2 =(3363+17+99-577)/2=1451, also 1451^2-49=2*1026^2.
The solutions (proper and every third pair improper) of x^2 - 2*y^2 = +49 begin [9, 4], [11, 6], [21, 14], [43, 30], [57, 40], [119, 84], [249, 176], [331, 234], [693, 490], [1451, 1026], [1929, 1364], [4039, 2856], [8457, 5980], [11243, 7950], [23541, 16646], ... - _Wolfdieter Lang_, Sep 27 2016
-
I:=[9,11,21,43,57,119]; [n le 6 select I[n] else 6*Self(n-3)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Oct 26 2018
-
LinearRecurrence[{0,0,6,0,0,-1}, {9,11,21,43,57,119}, 50] (* Vincenzo Librandi, Oct 26 2018 *)
-
Vec((9+11*x+21*x^2-11*x^3-9*x^4-7*x^5)/(1-6*x^3+x^6) + O(x^50)) \\ Colin Barker, Sep 28 2016
-
def A106525_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( x*(9+11*x+21*x^2-11*x^3-9*x^4-7*x^5)/(1-6*x^3+x^6) ).list()
a=A106525_list(41); a[1:] # G. C. Greubel, Sep 15 2021
A143609
Numerators of the upper principal and intermediate convergents to 2^(1/2).
Original entry on oeis.org
2, 3, 10, 17, 58, 99, 338, 577, 1970, 3363, 11482, 19601, 66922, 114243, 390050, 665857, 2273378, 3880899, 13250218, 22619537, 77227930, 131836323, 450117362, 768398401, 2623476242, 4478554083, 15290740090, 26102926097, 89120964298, 152139002499
Offset: 1
2*x + 3*x^2 + 10*x^3 + 17*x^4 + 58*x^5 + 99*x^6 + 338*x^7 + 577*x^8 + ...
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
- Colin Barker, Table of n, a(n) for n = 1..1000
- Creighton Kenneth Dement, Comments on A143608 and A143609
- Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
-
Rest@ CoefficientList[Series[x (2 + 3 x - 2 x^2 - x^3)/(1 - 6 x^2 + x^4), {x, 0, 30}], x] (* Michael De Vlieger, Mar 27 2016 *)
-
{a(n) = if( n<1, 0, polcoeff( x * (2 + 3*x - 2*x^2 - x^3) / (1 - 6*x^2 + x^4) + x * O(x^n), n))} /* Michael Somos, Sep 03 2013 */
-
x='x+O('x^99); Vec(x*(2+3*x-2*x^2-x^3)/(1-6*x^2+x^4)) \\ Altug Alkan, Mar 27 2016
A228564
Largest odd divisor of n^2 + 1.
Original entry on oeis.org
1, 1, 5, 5, 17, 13, 37, 25, 65, 41, 101, 61, 145, 85, 197, 113, 257, 145, 325, 181, 401, 221, 485, 265, 577, 313, 677, 365, 785, 421, 901, 481, 1025, 545, 1157, 613, 1297, 685, 1445, 761, 1601, 841, 1765, 925, 1937, 1013, 2117, 1105, 2305, 1201, 2501, 1301, 2705
Offset: 0
A002522(3) = 3^2+1 = 10 => a(3) = 10/2 = 5.
-
for n = 0 to 45 : t=n^2+1
x: if not t mod 2 then t=t/2 : goto x
print str$(t);", "; : next n
print
end
-
List([0..60],n->NumeratorRat((n^2+1)/(n+1))); # Muniru A Asiru, Feb 20 2019
-
[(n^2+1)*(3+(-1)^n)/4: n in [0..60]]; // Bruno Berselli, Aug 26 2013
-
[Denominator(2*n^2/(n^2+1)): n in [0..60]]; // Vincenzo Librandi, Aug 19 2014
-
lod:= t -> t/2^padic:-ordp(t,2):
seq(lod(n^2+1),n=0..60); # Robert Israel, Aug 19 2014
-
Table[(n^2 + 1) (3 + (-1)^n)/4, {n, 0, 60}] (* Bruno Berselli, Aug 26 2013 *)
-
a(n)=if(n<2,n>0,m=n\4;[4*a(2*m)-3,2*a(2*m)+4*m-1,4*a(2*m)+16*m+1,2*a(2*m)+12*m+3][(n%4)+1]) \\ Ralf Stephan, Aug 26 2013
-
a(n)=(n^2+1)/2^valuation(n^2+1,2) \\ Ralf Stephan, Aug 26 2013
-
[(n^2+1)*(3+(-1)^n)/4 for n in (0..60)] # G. C. Greubel, Feb 20 2019
Comments