cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 163 results. Next

A324224 Total number T(n,k) of 1's in falling diagonals with index k in all n X n permutation matrices divided by |k|!; triangle T(n,k), n>=1, 1-n<=k<=n-1, read by rows.

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 6, 4, 1, 1, 6, 18, 24, 18, 6, 1, 1, 8, 36, 96, 120, 96, 36, 8, 1, 1, 10, 60, 240, 600, 720, 600, 240, 60, 10, 1, 1, 12, 90, 480, 1800, 4320, 5040, 4320, 1800, 480, 90, 12, 1, 1, 14, 126, 840, 4200, 15120, 35280, 40320, 35280, 15120, 4200, 840, 126, 14, 1
Offset: 1

Views

Author

Alois P. Heinz, Feb 18 2019

Keywords

Examples

			Triangle T(n,k) begins:
  :                                 1                              ;
  :                           1,    2,    1                        ;
  :                     1,    4,    6,    4,    1                  ;
  :               1,    6,   18,   24,   18,    6,   1             ;
  :          1,   8,   36,   96,  120,   96,   36,   8,  1         ;
  :      1, 10,  60,  240,  600,  720,  600,  240,  60, 10,  1     ;
  :  1, 12, 90, 480, 1800, 4320, 5040, 4320, 1800, 480, 90, 12, 1  ;
		

Crossrefs

Columns k=0-6 give (offsets may differ): A000142, A001563, A001286, A005990, A061206, A062199, A062148.
Row sums give A306495(n-1).
Cf. A132159 (right part of triangle), A306234, A324225.

Programs

  • Maple
    b:= proc(s, c) option remember; (n-> `if`(n=0, c,
          add(b(s minus {i}, c+x^(n-i)), i=s)))(nops(s))
        end:
    T:= n-> (p-> seq(coeff(p, x, i)/abs(i)!, i=1-n..n-1))(b({$1..n}, 0)):
    seq(T(n), n=1..8);
    # second Maple program:
    egf:= k-> (t-> x^t/t!*hypergeom([2, t], [t+1], x))(abs(k)+1):
    T:= (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(seq(T(n, k), k=1-n..n-1), n=1..8);
    # third Maple program:
    T:= (n, k)-> (t-> `if`(t
    				
  • Mathematica
    T[n_, k_] := With[{t = Abs[k]}, If[tJean-François Alcover, Mar 25 2021, after 3rd Maple program *)

Formula

T(n,k) = T(n,-k).
T(n,k) = (n-t)*(n-1)!/t! if t < n with t = |k|, T(n,k) = 0 otherwise.
T(n,k) = 1/|k|! * A324225(n,k).
E.g.f. of column k: x^t/t! * hypergeom([2, t], [t+1], x) with t = |k|+1.
Sum_{k=1-n..n-1} T(n,k) = A306495(n-1).

A061018 Triangle: a(n,m) = number of permutations of (1,2,...,n) with one or more fixed points in the m first positions.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 10, 13, 15, 24, 42, 56, 67, 76, 120, 216, 294, 358, 411, 455, 720, 1320, 1824, 2250, 2612, 2921, 3186, 5040, 9360, 13080, 16296, 19086, 21514, 23633, 25487, 40320, 75600, 106560, 133800, 157824, 179058, 197864, 214551, 229384
Offset: 1

Views

Author

Wouter Meeussen, May 23 2001

Keywords

Comments

Row sums of n are the number of derangements (permutations without fixed point) of n+1, i.e. A000166(n+1).

Examples

			For n=3, the permutations are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1); and (x, 2, 3), (x, 3, 2) have a fixed point x in position 1, (x, x, 3), (x, 3, 2), (3, x, 1) have a fixed point x in positions 1 or 2 and (x, x, x), (2, 1, x), (x, 3, 2), (3, x, 1) have a fixed point x in positions 1, 2 or 3, hence {2, 3, 4}
{1},
{1, 1},
{2, 3, 4},
{6, 10, 13, 15},
{24, 42, 56, 67, 76},
{120, 216, 294, 358, 411, 455},
{720, 1320, 1824, 2250, 2612, 2921, 3186}, ...
		

Crossrefs

Programs

  • Maple
    A061018 := proc(n,m): (n-1)! + add(A061312(n-2,k), k=0..m-2) end: A061312:= proc(n,m): if m=-1 then 0 elif m=0 then n*n! else procname(n,m-1) - procname(n-1,m-1) fi: end: seq(seq(A061018(n,m), m=1..n), n=1..8); # Johannes W. Meijer, Jul 27 2011
    T := (n, k) -> `if`(n=k,n!-GAMMA(n+1,-1)/exp(1),n!*(1-hypergeom([-k],[-n],-1))):
    for n from 1 to 9 do seq(simplify(T(n,k)), k=1..n) od; # Peter Luschny, Oct 03 2017
  • Mathematica
    Table[Count[Permutations[Range[n]], p_/;( Times@@Take[(p-Range[n]), k]===0)], {n, 7}, {k, n}]

Formula

a(n,m) = (n-1)! + Sum_{k=0..m-2} T(n-2, k) where T(n,-1) = 0, T(0,0) = 0, T(n,0) = A001563(n) = n*n!, T(n,m) = T(n,m-1) - T(n-1,m-1) (see A061312).
T(n, k) = n!*(1 - hypergeom([-k], [-n], -1)) for 1 <= k < n and T(n, n) = n! -Gamma(n+1, -1)/exp(1). - Peter Luschny, Oct 03 2017

Extensions

Edited and information added by Johannes W. Meijer, Jul 27 2011

A069149 Numbers k such that k*k!/A062758(k) is an integer where A062758(k) is the product of squares of divisors of k.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 11, 12, 13, 15, 17, 19, 21, 23, 24, 25, 27, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 43, 45, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 61, 63, 64, 65, 67, 69, 70, 71, 72, 73, 75, 77, 79, 80, 81, 83, 84, 85, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99
Offset: 1

Views

Author

Benoit Cloitre, Apr 08 2002

Keywords

Comments

Also numbers k such that k! is divisible by k ^ (tau(k) - 1). - David A. Corneth, Apr 23 2018

Crossrefs

Complement of A069148.
Cf. A001563 (n*n!), A062758.

Programs

  • Mathematica
    Select[Range[100], Divisible[#!*#, Times @@ Divisors[#]^2] &] (* Ivan Neretin, Apr 22 2018 *)
    Select[Range[100], Divisible[#!, #^(DivisorSigma[0, #] - 1)] &] (* Amiram Eldar, Jul 07 2022 *)
  • PARI
    for(n=1, 320, if((n*(n!))%(n^numdiv(n))==0, print1(n, ", ")))
    
  • PARI
    is(n) = {my(f = factor(n), qdiv = numdiv(f)); for(i = 1, #f~, cn = n; t = 0; while(cn \= f[i,1], t += cn); if(t < f[i,2] * (qdiv - 1), return(0))); 1} \\ David A. Corneth, Apr 27 2018

A094304 Sum of all possible sums formed from all but one of the previous terms, starting 1.

Original entry on oeis.org

1, 0, 1, 4, 18, 96, 600, 4320, 35280, 322560, 3265920, 36288000, 439084800, 5748019200, 80951270400, 1220496076800, 19615115520000, 334764638208000, 6046686277632000, 115242726703104000, 2311256907767808000, 48658040163532800000, 1072909785605898240000
Offset: 1

Views

Author

Amarnath Murthy, Apr 29 2004

Keywords

Comments

Apart from initial 1, same sequence as A001563. Additive analog of A057438.
a(1) = 1, for n >= 2: a(n) = sum of previous terms * (n-2) = (Sum_(i=1...n-2) a(i)) * (n-2). a(n) = A001563(n-2) = A094258(n-1) for n >= 3. - Jaroslav Krizek, Oct 16 2009

Examples

			a(2) = 0 as there is only one previous term and empty sum is taken to be 0.
a(4) = (a(1) +a(2))+ (a(1) +a(3)) + (a(2) +a(3)) = (1+0) +(1+1) +(0+1) = 4.
a(5) = (a(1)+a(2)+a(3)) +(a(1)+a(2)+ a(4)) +(a(1)+a(3)+a(4)) +(a(2)+a(3)+a(4)) = (1+0+1) +(1+0+4) +(1+1+4) +(0+1+4) = 2 + 5 + 6 + 5 = 18.
		

Crossrefs

Programs

  • Maple
    a := n -> (n-2)*(n-2)!: 1,seq(a(n), n=2..23); # Emeric Deutsch, May 01 2008
  • Mathematica
    In[2]:= l = {1}; Do[k = Length[l] - 1; p = Plus @@ Flatten[Select[Subsets[l], Length[ # ]==k& ]]; AppendTo[l, p], {n, 20}]; l (* Ryan Propper, May 28 2006 *)
  • PARI
    v=vector(30);v[1]=1;v[2]=0;for(n=3,#v,s=0;for(i=1,2^(n-1)-1, vb=binary(i); if(hammingweight(vb)==n-2,s=s+sum(j=1,#vb, if(vb[j], v[n-#vb+j-1]))));v[n]=s;print1(s,",")) /* Ralf Stephan, Sep 22 2013 */

Formula

a(n) = (n-2)!(n-2) for n>=2. - Emeric Deutsch, May 01 2008
G.f.: x*T(0), where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 - (1 -x -2*x*k)*(1 -3*x -2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 10 2013
a(n) = S1(n,1) - S1(n-1,1), where S1 are the unsigned Stirling cycle numbers. - Peter Luschny, Apr 10 2016
a(n) = A122974(n-1,n-1). - Alois P. Heinz, Nov 24 2019

Extensions

Edited by N. J. A. Sloane, May 29 2006

A145572 Numerators of partial sums for Liouville's constant, read as base 2 (binary) numbers.

Original entry on oeis.org

1, 3, 49, 12845057, 1017690263500988729456314874071089153, 4222921592695952872362526736376161058920018764920519780147745963811744865992371113095993596088044297100172572224585271942341064532181870606866447799704872724575357044373908131956500952542608981420222196042850818326529
Offset: 1

Views

Author

Wolfdieter Lang Mar 06 2009

Keywords

Comments

a(n) is A145571(n) (a decimal number with digits only from {0,1}) read as base 2 number converted back into decimal notation.
The sequence of digit lengths is 1,1,2,8,37,217,1518,... (see A317873).
This sequence gives the numerators of the partial sums for the constant A092874 (called there "binary" Liouville number). See the B(n) formula below. - Wolfdieter Lang, Apr 10 2024

Examples

			a(3)=49, because A145571(3)=110001, and the binary number 110001 translates to 2^5+2^4+2^0=32+16+1 = 49.
		

Crossrefs

Cf. A001563, A092874, A145571 (numerators of approximations for Liouville's number).
Cf. A317873.

Programs

  • Mathematica
    a[n_] := FromDigits[RealDigits[Sum[1/10^k!, {k, n}], 10, n!][[1]], 2]; Array[a, 6] (* Robert G. Wilson v, Aug 08 2018 *)
    Block[{k = 0}, NestList[#*2^(++k*k!) + 1 &, 1, 5]] (* Paolo Xausa, Jun 27 2024 *)

Formula

a(n) = A145571(n) interpreted as number in binary notation, then converted to decimal notation.
From Wolfdieter Lang, Apr 10 2024: (Start)
a(n) = Sum_{j=0..n} 2^(n! - j!) = 2^(n!)*B(n) = numerator(B(n)), where B(n) := Sum_{j=1..n} 1/2^(j!), for n >= 1 (Proof from the positions of 1 in A145571).
a(1) = 1, and a(n) = a(n-1)*2^z(n) + 1, where z(n) = n! - (n-1)! = A001563(n-1), for n >= 2.
(End)

A154306 a(n) = (n+1)^3*(3+n)!/6.

Original entry on oeis.org

1, 32, 540, 7680, 105000, 1451520, 20744640, 309657600, 4849891200, 79833600000, 1381360780800, 25107347865600, 478826764416000, 9568689242112000, 200074178304000000, 4370687116443648000, 99607063051431936000
Offset: 0

Views

Author

Omar E. Pol, Jan 06 2009

Keywords

Comments

Row 3 of square array A152818.

Crossrefs

Programs

Formula

E.g.f.: (1 + 25*x + 67*x^2 + 27*x^3)/(1-x)^7. - R. J. Mathar, Dec 21 2011

Extensions

More terms from Sean A. Irvine, Dec 01 2009

A154307 a(n) = (n+1)^4*(4+n)!/24.

Original entry on oeis.org

1, 80, 2430, 53760, 1050000, 19595520, 363031200, 6812467200, 130947062400, 2594592000000, 53182390060800, 1129830653952000, 24898991749632000, 569337009905664000, 13505007035520000000, 332172220849717248000
Offset: 0

Views

Author

Omar E. Pol, Jan 06 2009

Keywords

Comments

Row 4 of square array A152818.

Crossrefs

Programs

  • Magma
    [(n+1)^4*Factorial(4+n)/24: n in [0..20]]; // Vincenzo Librandi, Sep 11 2016
  • Mathematica
    Table[(n + 1)^4*(4 + n)!/24, {n, 0, 25}] (* G. C. Greubel, Sep 10 2016 *)

Formula

E.g.f.: (1 + 71*x + 531*x^2 + 821*x^3 + 256*x^4)/(1-x)^9. - R. J. Mathar, Dec 21 2011

Extensions

Extended by Max Alekseyev, Apr 13 2009

A154308 a(n) = (n+1)^5*(5+n)!/120.

Original entry on oeis.org

1, 192, 10206, 344064, 9450000, 235146240, 5590680480, 130799370240, 3064161260160, 72648576000000, 1755018872006400, 43385497111756800, 1100535435333734400, 28694585299245465600, 769785401024640000000, 21259022134381903872000, 604515265659140419584000, 17698965059877321572352000
Offset: 0

Views

Author

Omar E. Pol, Jan 06 2009

Keywords

Comments

Row 5 of square array A152818.

Crossrefs

Programs

  • Magma
    [(n+1)^5*Factorial(5+n)/120: n in [0..20]]; // Vincenzo Librandi, Sep 11 2016
    
  • Mathematica
    Table[(n + 1)^5*(5 + n)!/120, {n, 0, 25}] (* G. C. Greubel, Sep 10 2016 *)
  • PARI
    for(n=0,25, print1((n+1)^5*(5+n)!/120, ", ")) \\ G. C. Greubel, Nov 24 2017

Formula

a(n) = A000142(n+1)*A000583(n+1)*A000389(n+5). - R. J. Mathar, Jan 17 2009
E.g.f.: (1 + 181*x + 3046*x^2 + 11606*x^3 + 12281*x^4 + 3125*x^5)/(1-x)^11. - R. J. Mathar, Dec 21 2011

Extensions

More terms from R. J. Mathar, Jan 17 2009

A161158 a(n) = A003696(n+1)/A001353(n+1).

Original entry on oeis.org

1, 14, 161, 1792, 19809, 218638, 2412353, 26614784, 293628097, 3239445006, 35739069409, 394290020096, 4349990523425, 47991114171406, 529460241815169, 5841251080892416, 64443392518654337, 710969410782059534
Offset: 0

Views

Author

R. J. Mathar, Jun 03 2009

Keywords

Comments

Proposed by R. Guy in the seqfan list Mar 28 2009.
With an offset of 1, this sequence is the case P1 = 14, P2 = 32, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 27 2014

Crossrefs

Programs

  • GAP
    a:=[1,14,161,1792];; for n in [5..20] do a[n]:=14*a[n-1]-34*a[n-2] +14*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Dec 24 2019
  • Magma
    I:=[1,14,161,1792]; [n le 4 select I[n] else 14*Self(n-1)-34*Self(n-2) +14*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Apr 28 2014
    
  • Maple
    seq(simplify( ChebyshevU(n, (4+sqrt(2))/2)*ChebyshevU(n, (4-sqrt(2))/2) ), n = 0 .. 20); # G. C. Greubel, Dec 24 2019
  • Mathematica
    CoefficientList[Series[(1-x^2)/(1-14x+34x^2-14x^3+x^4), {x, 0, 20}], x] (* Vincenzo Librandi, Apr 28 2014 *)
    Table[Simplify[ChebyshevU[n, (4+Sqrt[2])/2]*ChebyshevU[n, (4-Sqrt[2])/2]], {n, 0, 20}] (* G. C. Greubel, Dec 24 2019 *)
  • PARI
    vector(21, n, round(polchebyshev(n-1, 2, (4+sqrt(2))/2)*polchebyshev(n-1, 2, (4-sqrt(2))/2)) ) \\ G. C. Greubel, Dec 24 2019
    
  • Sage
    [round(chebyshev_U(n,(4+sqrt(2))/2)*chebyshev_U(n,(4-sqrt(2))/2)) for n in (0..20)] # G. C. Greubel, Dec 24 2019
    

Formula

a(n) = 14*a(n-1) -34*a(n-2) +14*a(n-3) -a(n-4).
G.f.: (1-x^2)/(1-14*x+34*x^2-14*x^3+x^4).
From Peter Bala, Apr 27 2014: (Start)
The following remarks assume an offset of 1.
a(n) = (1/sqrt(17))*( T(n,(7 + sqrt(17))/2) - T(n,(7 - sqrt(17))/2) ), where T(n,x) is the Chebyshev polynomial of the first kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n,M), where M is the 2 X 2 matrix [0, -8; 1, 7].
a(n) = U(n-1,1/2*(4 + sqrt(2)))*U(n-1,1/2*(4 - sqrt(2))), where U(n,x) is the Chebyshev polynomial of the second kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)

A188914 a(n) = n*n! + 1 = (n+1)! - n! + 1.

Original entry on oeis.org

1, 2, 5, 19, 97, 601, 4321, 35281, 322561, 3265921, 36288001, 439084801, 5748019201, 80951270401, 1220496076801, 19615115520001, 334764638208001, 6046686277632001, 115242726703104001, 2311256907767808001, 48658040163532800001, 1072909785605898240001
Offset: 0

Views

Author

John M. Campbell, Apr 17 2011

Keywords

Comments

It is unknown if all numbers of the form n*n!+1 are squarefree. n*n!+1 is squarefree for 0 < n < 52. It is unknown if there exist infinitely many primes of the form n*n!+1. For primes in this sequence, see A049984.

Crossrefs

Programs

  • Mathematica
    Table[(n*Factorial[n])+1,{n,0,30}]
  • PARI
    a(n) = n*n! + 1; \\ Michel Marcus, Aug 03 2022

Formula

E.g.f.: exp(x) + x/(1 - x)^2. - Stefano Spezia, Aug 03 2022

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 03 2022
Previous Showing 101-110 of 163 results. Next