cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 52 results. Next

A100224 Triangle, read by rows, of the coefficients of [x^k] in G100224(x)^n such that the row sums are 2^n-1 for n>0, where G100224(x) is the g.f. of A100224.

Original entry on oeis.org

1, 1, 0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 4, 6, 1, 0, 5, 5, 10, 10, 1, 0, 6, 6, 15, 18, 17, 1, 0, 7, 7, 21, 28, 35, 28, 1, 0, 8, 8, 28, 40, 60, 64, 46, 1, 0, 9, 9, 36, 54, 93, 117, 117, 75, 1, 0, 10, 10, 45, 70, 135, 190, 230, 210, 122
Offset: 0

Views

Author

Paul D. Hanna, Nov 28 2004

Keywords

Comments

Diagonals are: T(n,n)=A001610(n-1) for n>0, with T(0,0)=1, T(n+1,n)=A006490(n), T(n+2,n)=A006491(n), T(n+3,n)=A006492(n), T(n+4,n)=A006493(n). The ratio of the generating functions of any two adjacent diagonals gives: (1-x)/(1-x-x^2) = 1+ x^2+ x^3+ 2*x^4+ 3*x^5+ 5*x^6+ 8*x^7+ 13*x^8+...

Examples

			Rows begin:
  [1],
  [1,0],
  [1,0,2],
  [1,0,3,3],
  [1,0,4,4,6],
  [1,0,5,5,10,10],
  [1,0,6,6,15,18,17],
  [1,0,7,7,21,28,35,28],
  [1,0,8,8,28,40,60,64,46],...
where row sums form 2^n-1 for n>0:
2^1-1 = 1+0 = 1
2^2-1 = 1+0+2 = 3
2^3-1 = 1+0+3+3 = 7
2^4-1 = 1+0+4+4+6 = 15
2^5-1 = 1+0+5+5+10+10 = 31.
The main diagonal forms A001610 = [0,2,3,6,10,17,...], where Sum_{n>=1} (A001610(n-1)/n)*x^n = log((1-x)/(1-x-x^2)).
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(n
    				

Formula

G.f.: A(x, y)=(1-2*x*y+2*x^2*y^2)/((1-x*y)*(1-x*y-x^2*y^2-x*(1-x*y))).

A122194 Numbers that are the sum of exactly two sets of Fibonacci numbers.

Original entry on oeis.org

3, 5, 6, 9, 10, 15, 17, 25, 28, 41, 46, 67, 75, 109, 122, 177, 198, 287, 321, 465, 520, 753, 842, 1219, 1363, 1973, 2206, 3193, 3570, 5167, 5777, 8361, 9348, 13529, 15126, 21891, 24475, 35421, 39602, 57313, 64078, 92735, 103681, 150049, 167760, 242785
Offset: 1

Views

Author

Ron Knott, Aug 25 2006

Keywords

Examples

			a(1)=3 as 3 is the sum of just 2 Fibonacci sets {3=Fibonacci(4)} and {1=Fibonacci(2), 2=Fibonacci(3)};
a(2)=5 as 5 is sum of Fibonacci sets {5} and {2,3} only.
		

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n mod 2=0 then return 2*Fibonacci(Int((n+6)/2)) -1;
        else return Lucas(1,-1, Int((n+5)/2))[2] -1;
        fi;
      end;
    List([1..50], n-> a(n) ); # G. C. Greubel, Jul 13 2019
  • Magma
    f:=Floor; [(n mod 2) eq 0 select 2*Fibonacci(f((n+6)/2))-1 else Lucas(f((n+5)/2))-1: n in [1..50]]; // G. C. Greubel, Jul 13 2019
    
  • Maple
    fib:= combinat[fibonacci]:
    lucas:=n->fib(n-1)+fib(n+1):
    a:=n -> if n mod 2 = 0 then 2 *fib(n/2+3) -1 else lucas((n+1)/2+2)-1 fi:
    seq(a(n), n=1..50);
  • Mathematica
    LinearRecurrence[{1, 1, -1, 1, -1}, {3, 5, 6, 9, 10, 15}, 40] (* Vincenzo Librandi, Jul 25 2017 *)
    Table[If[Mod[n,2]==0, 2*Fibonacci[(n+6)/2]-1, LucasL[(n+5)/2]-1], {n,50}] (* G. C. Greubel, Jul 13 2019 *)
  • PARI
    vector(50, n, f=fibonacci; if(n%2==0, 2*f((n+6)/2)-1, f((n+7)/2) + f((n+3)/2)-1)) \\ G. C. Greubel, Jul 13 2019
    
  • Sage
    def a(n):
        if (mod(n,2)==0): return 2*fibonacci((n+6)/2) - 1
        else: return lucas_number2((n+5)/2, 1,-1) -1
    [a(n) for n in (1..50)] # G. C. Greubel, Jul 13 2019
    

Formula

a(2n-1) = A000032(n+2) - 1,
a(2n) = 2*A000045(n+3) - 1.
a(2n-1) = A001610(n+2), a(2n) = A001595(n+2).
a(1)=3, a(2)=5, a(3)=6, a(4)=9, a(n) = a(n-2) + a(n-4) + 1, n > 4.
G.f.: (3 + 2*x - 2*x^2 + x^3 - 3*x^4)/(1-x-x^2+x^3-x^4+x^5).
a(n) = A272632(n)-1. - R. J. Mathar, Jan 13 2023

A142586 Binomial transform of A014217.

Original entry on oeis.org

1, 2, 5, 14, 39, 107, 290, 779, 2079, 5522, 14615, 38579, 101634, 267347, 702455, 1844114, 4838079, 12686507, 33254210, 87141659, 228301839, 598026002, 1566300455, 4101923939, 10741568514, 28126975907, 73647747815, 192833044754, 504884940879, 1321888886747
Offset: 0

Views

Author

Paul Curtz, Sep 21 2008

Keywords

Comments

The second term in the k-th iterated differences is 2, 3, 6, 10, 17, 28, 46, ... = A001610(k+1).

Crossrefs

Programs

  • Magma
    [1] cat [Lucas(2*n) - 2^(n-1): n in [1..30]]; // G. C. Greubel, Apr 13 2021
    
  • Maple
    1,seq(combinat[fibonacci](2*n+1) +combinat[fibonacci](2*n-1) -2^(n-1), n = 1..30); # G. C. Greubel, Apr 13 2021
  • Mathematica
    CoefficientList[Series[(1-3x+2x^2+x^3)/((1-3x+x^2)(1-2x)),{x,0,30}],x] (* or *) Join[{1},LinearRecurrence[{5,-7,2},{2,5,14},30]] (* Harvey P. Dale, Aug 08 2011 *)
  • PARI
    Vec((1-3*x+2*x^2+x^3)/((1-3*x+x^2)*(1-2*x)) + O(x^30)) \\ Colin Barker, Jun 05 2017
    
  • Sage
    [1]+[lucas_number2(2*n,1,-1) -2^(n-1) for n in (1..30)] # G. C. Greubel, Apr 13 2021

Formula

From R. J. Mathar, Sep 22 2008: (Start)
G.f.: (1 - 3*x + 2*x^2 + x^3)/((1-3*x+x^2)*(1-2*x)).
a(n) = A005248(n) - 2^(n-1), n>0. (End)
a(n) = 5*a(n-1) - 7*a(n-2) + 2*a(n-3); a(0)=1, a(1)=2, a(2)=5, a(3)=14. - Harvey P. Dale, Aug 08 2011
a(n) = (-2^(-1+n) + ((3-sqrt(5))/2)^n + ((3+sqrt(5))/2)^n) for n > 0. - Colin Barker, Jun 05 2017

Extensions

Edited and extended by R. J. Mathar, Sep 22 2008

A160665 Numbers k such that the arithmetic mean of the first k Lucas numbers A000032 is an integer.

Original entry on oeis.org

1, 3, 24, 48, 72, 96, 120, 144, 192, 216, 240, 288, 336, 360, 384, 406, 432, 480, 576, 600, 648, 672, 720, 768, 864, 936, 960, 1008, 1080, 1104, 1152, 1200, 1224, 1296, 1320, 1344, 1368, 1440, 1536, 1680, 1728, 1800, 1920, 1944, 2016, 2160, 2208, 2304
Offset: 1

Views

Author

Ctibor O. Zizka, May 22 2009

Keywords

Comments

Numbers k such that Sum_{i=0..k} A000032(i)/(k+1) is an integer. - Robert G. Wilson v, May 25 2009
Why do the terms in A141767 so closely correspond to A160665? Except for k = 1, 3, 406, 44758, 341446, 1413286, 3170242, 4861698, 7912534, ..., k == 0 (mod 24). - Robert G. Wilson v, May 25 2009

Crossrefs

Programs

  • Maple
    A000032 := proc(n) option remember ; if n <= 1 then 2-n; else procname(n-1)+procname(n-2) ; fi; end: A001610 := proc(n) add(A000032(i),i=0..n-1) ; end: for n from 1 to 3000 do if A001610(n) mod n = 0 then printf("%d,",n) ; fi; od: # R. J. Mathar, May 25 2009
  • Mathematica
    lst = {}; a = 2; b = 1; s = 3; n = 3; While[n < 2447, c = a + b; s = s + c; If[Mod[c, n] == 0, AppendTo[lst, n]]; a = b; b = c; n++ ]; lst (* Robert G. Wilson v, May 25 2009 *)

Formula

{k: k | A001610(k)}. - R. J. Mathar, May 25 2009

Extensions

More terms from R. J. Mathar and Robert G. Wilson v, May 25 2009

A203009 (n-1)-st elementary symmetric function of first n Lucas numbers, starting with L(0)=2.

Original entry on oeis.org

1, 3, 11, 50, 374, 4282, 78924, 2322060, 110101476, 8413051008, 1038251025216, 207035781419520, 66749863269991104, 34803836775900988992, 29353783726459293724224, 40050488883338399323186560, 88407698594458813846355350656
Offset: 1

Views

Author

Clark Kimberling, Dec 29 2011

Keywords

Comments

From R. J. Mathar, Oct 01 2016 (Start):
The k-th elementary symmetric functions of the A000032(j), j=0..n-1, form a triangle T(n,k), 0<=k<=n, n>=0:
1
1 2
1 3 2
1 6 11 6
1 10 35 50 24
1 17 105 295 374 168
1 28 292 1450 3619 4282 1848
1 46 796 6706 29719 69424 78924 33264
1 75 2130 29790 224193 931275 2092220 2322060 964656
This here is the first subdiagonal. The diagonal is A135407. The 2nd column is A001610, the 3rd A242300, the 4th A213807. (End)

Crossrefs

Cf. A203010.

Programs

  • Mathematica
    f[k_] := LucasL[k - 1]; t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 16}] (* A203009 *)

A242926 a(n) = denominator of B(0,n), where B(n,n) = 0, B(n-1,n) = 1/n and otherwise B(m,n) = B(m-1,n+1) - B(m-1,n).

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 4, 3, 5, 1, 4, 1, 7, 15, 8, 1, 18, 1, 10, 21, 11, 1, 24, 5, 13, 9, 14, 1, 30, 1, 16, 11, 17, 35, 12, 1, 19, 39, 20, 1, 42, 1, 22, 9, 23, 1, 48, 7, 25, 17, 26, 1, 54, 55, 28, 19, 29, 1, 20, 1
Offset: 0

Views

Author

Paul Curtz, May 26 2014

Keywords

Comments

The numerators are A189731(n).
B(0,n) = 0, 1, 1, 3/2, 2, 17/6, 4, 23/4, 25/3, 61/5, 18, 107/4, 40, 421/7, ...
is a super autosequence as defined in A242563.
The positive integers in B(0,n) give A064723(n). Corresponding rank: A006093(n+1). B(0,n) is linked to the primes A000040.
Divisor of B(0,n), n > 0: 1, 1, 1, 2, 2, 4, 5, ... = A172128(n+1).
Common (LCM) denominators for the antidiagonals: 1, 1, 1, 2, 2, 6, 6, 12, 12, ... = A139550(n+1)?.
1 = 1
1/2 + 3/2 = 2
1/3 + 5/6 + 17/6 = 4
1/4 + 7/12 + 7/4 + 23/4 = 25/3
etc.
The positive terms of the first bisection are the sum of the corresponding antidiagonal terms upon the 0's.
0 followed by A001610(n), i.e., 0, 0, 2, 3, 6, 10, 17, ... is an autosequence of the second kind.

Crossrefs

Programs

  • Mathematica
    Table[Denominator[(LucasL[n+1]-1)/(n+1)], {n, 0, 100}] (* Artur Jasinski, Nov 06 2022 *)

Formula

a(2n+1) = A175386(n).
a(n) = denominator(A001610(n)/(n+1)). [edited by Michel Marcus, Nov 14 2022]
a(n) = denominator((A000204(n+1) - 1)/(n+1)). - Artur Jasinski, Nov 06 2022

Extensions

a(24)-a(60) from Jean-François Alcover, May 26 2014

A306416 Number of ordered set partitions of {1, ..., n} with no singletons or cyclical adjacencies (successive elements in the same block, where 1 is a successor of n).

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 26, 84, 950, 6000, 62522, 556116, 6259598, 69319848, 874356338, 11384093196, 161462123894, 2397736692144, 37994808171962, 631767062124564, 11088109048500158, 203828700127054008, 3928762035148317314, 79079452776283889820, 1661265965479375937030, 36332908076071038467520, 826376466514358722894154
Offset: 0

Views

Author

Gus Wiseman, Feb 14 2019

Keywords

Examples

			The a(4) = 2 ordered set partitions are: {{1,3},{2,4}}, {{2,4},{1,3}}.
		

Crossrefs

Cf. A000110, A000126, A000296, A000670, A001610, A032032 (adjacencies allowed), A052841 (singletons allowed), A124323, A169985, A306417, A324011 (orderless case), A324012, A324015.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[Length[stn]!,{stn,Select[sps[Range[n]],And[Count[#,{_}]==0,Total[If[First[#]==1&&Last[#]==n,1,0]+Count[Subtract@@@Partition[#,2,1],-1]&/@#]==0]&]}],{n,0,10}]

Extensions

a(12)-a(26) from Alois P. Heinz, Feb 14 2019

A306418 Regular triangle read by rows where T(n, k) is the number of set partitions of {1, ..., n} requiring k steps of removing singletons and cyclical adjacency initiators until reaching a fixed point, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 0, 2, 3, 0, 1, 2, 12, 0, 0, 0, 12, 35, 5, 0, 0, 5, 56, 100, 42, 0, 0, 0, 14, 282, 343, 231, 7, 0, 0, 0, 66, 1406, 1476, 1088, 104, 0, 0, 0, 0, 307, 7592, 7383, 4929, 909, 27, 0, 0, 0, 0, 1554, 44227, 40514, 22950, 6240, 470, 20, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Feb 14 2019

Keywords

Comments

See Callan's article for details on this transformation (SeparateIS).

Examples

			Triangle begins:
    1
    0    1
    0    2    0
    0    2    3    0
    1    2   12    0    0
    0   12   35    5    0    0
    5   56  100   42    0    0    0
   14  282  343  231    7    0    0    0
   66 1406 1476 1088  104    0    0    0    0
  307 7592 7383 4929  909   27    0    0    0    0
		

Crossrefs

Row sums are A000110. First column is A324011.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    qbj[stn_]:=With[{ini=Join@@Table[Select[s,If[#==Max@@Max@@@stn,MemberQ[s,First[Union@@stn]],MemberQ[s,(Union@@stn)[[Position[Union@@stn,#][[1,1]]+1]]]]&],{s,stn}],sng=Join@@Select[stn,Length[#]==1&]},DeleteCases[Table[Complement[s,Union[sng,ini]],{s,stn}],{}]];
    Table[Length[Select[sps[Range[n]],Length[FixedPointList[qbj,#]]-2==k&]],{n,0,8},{k,0,n}]

A146481 Decimal expansion of Product_{n>=2} (1 - 1/(n*(n-1))).

Original entry on oeis.org

2, 9, 6, 6, 7, 5, 1, 3, 4, 7, 4, 3, 5, 9, 1, 0, 3, 4, 5, 7, 0, 1, 5, 5, 0, 2, 0, 2, 1, 9, 1, 4, 2, 8, 6, 4, 8, 6, 4, 8, 3, 1, 5, 1, 9, 1, 7, 8, 9, 4, 7, 8, 9, 0, 8, 1, 6, 7, 3, 5, 7, 3, 3, 1, 6, 5, 9, 0, 6, 1, 6, 2, 9, 1, 5, 1, 9, 6, 0, 8, 8, 8, 3, 6, 6, 7, 4, 8, 1, 6, 4, 0, 2, 1, 2, 6, 2, 2, 1, 4, 5, 4, 1, 7, 7
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2009

Keywords

Comments

Product of Artin's constant A005596 and the equivalent almost-prime products.

Examples

			0.2966751347435910345... = (1 - 1/2)*(1 - 1/6)*(1 - 1/12)*(1 - 1/20)*...
		

Crossrefs

Cf. A005596.

Programs

  • Maple
    phi := (1+sqrt(5))/2; evalf(-sin(Pi*phi)/Pi) ; # R. J. Mathar, Feb 20 2009
  • Mathematica
    RealDigits[-Cos[Pi*Sqrt[5]/2]/Pi, 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)

Formula

The logarithm is -Sum_{s>=2} Sum_{j=1..floor(s/(1+r))} binomial(s-r*j-1, j-1)*(1-Zeta(s))/j at r=1.
s*Sum_{j=1..floor(s/2)} binomial(s-j-1, j-1)/j = A001610(s-1).
Equals 1/Product_{k=1..2} Gamma(1-x_k) = -sin(A094886)/A000796, where x_k are the 2 roots of the polynomial x*(x+1)-1. [R. J. Mathar, Feb 20 2009]

Extensions

More terms from Jean-François Alcover, Feb 11 2013

A175004 Interspersion related to the Wythoff Array.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 10, 9, 8, 12, 17, 15, 14, 11, 20, 28, 25, 23, 19, 13, 33, 46, 41, 38, 31, 22, 16, 54, 75, 67, 62, 51, 36, 27, 18, 88, 122, 109, 101, 83, 59, 44, 30, 21, 143, 198, 177, 164, 135, 96, 72, 49, 35, 24, 232, 321, 287, 266, 219, 156, 117, 80, 57, 40, 26, 376, 520, 465, 431, 355, 253, 190, 130, 93, 65, 43, 29
Offset: 1

Views

Author

Clark Kimberling, Apr 03 2010

Keywords

Comments

The rows satisfy the recurrence r(n)=r(n-1)+r(n-2)+1.
Every positive integer occurs exactly once, so that as a sequence, A175004 is a permutation of the natural numbers. As an array, it is an interspersion, hence also a dispersion. Specifically, it is the dispersion of the sequence floor(n*x+2/x), where x=(golden ratio). For a discussion of dispersions, see A191426.

Examples

			Corner of the array:
1....2....4....7....12...20... (cf. A000071)
3....6....10...17...28...46... (cf. A001610)
5....9....15...25...41...67... (cf. A001595)
8....14...23...38...62...101..
		

Crossrefs

Cf. A035513.

Programs

  • Mathematica
    (* program generates the dispersion array T of the complement of increasing sequence f[n] *)
    r = 40; r1 = 12; (* r=# rows of T, r1=# rows to show *)
    c = 40; c1 = 12; (* c= # cols of T, c1=# cols to show *)
    x = GoldenRatio; f[n_] := Floor[n*x + 2/x]
    (* f(n) is complement of column 1 *)
    mex[list_] :=  NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A175004 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* array as a sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011, added here Jun 03 2011 by Clark Kimberling *)

Formula

Let W'=W-1, where W is the Wythoff array, given by A035513.
Row 1 of W' is (0,1,2,4,7,12,...); replace this by (1,2,4,7,12,...).
The resulting array is A175004.
Previous Showing 41-50 of 52 results. Next