cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 68 results. Next

A027376 Number of ternary irreducible monic polynomials of degree n; dimensions of free Lie algebras.

Original entry on oeis.org

1, 3, 3, 8, 18, 48, 116, 312, 810, 2184, 5880, 16104, 44220, 122640, 341484, 956576, 2690010, 7596480, 21522228, 61171656, 174336264, 498111952, 1426403748, 4093181688, 11767874940, 33891544368, 97764009000, 282429535752, 817028131140, 2366564736720, 6863037256208, 19924948267224, 57906879556410
Offset: 0

Views

Author

Keywords

Comments

Number of Lyndon words of length n on {1,2,3}. A Lyndon word is primitive (not a power of another word) and is earlier in lexicographic order than any of its cyclic shifts. - John W. Layman, Jan 24 2006
Exponents in an expansion of the Hardy-Littlewood constant Product(1 - (3*p - 1)/(p - 1)^3, p prime >= 5), whose decimal expansion is in A065418: the constant equals Product_{n >= 2} (zeta(n)*(1 - 2^(-n))*(1 - 3^(-n)))^(-a(n)). - Michael Somos, Apr 05 2003
Number of aperiodic necklaces with n beads of 3 colors. - Herbert Kociemba, Nov 25 2016
Number of irreducible harmonic polylogarithms, see page 299 of Gehrmann and Remiddi reference and table 1 of Maître article. - F. Chapoton, Aug 09 2021
For n>=2, a(n) is the number of Hesse loops of length 2*n, see Theorem 22 of Dutta, Halbeisen, Hungerbühler link. - Sayan Dutta, Sep 22 2023
For n>=2, a(n) is the number of orbits of size n of isomorphism classes of elliptic curves under the Hesse derivative, see Theorem 2 of Kettinger link. - Jake Kettinger, Aug 07 2024

Examples

			For n = 2 the a(2)=3 polynomials are  x^2+1, x^2+x+2, x^2+2*x+2. - _Robert Israel_, Dec 16 2015
		

References

  • E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.

Crossrefs

Programs

  • Maple
    with(numtheory): A027376 := n -> `if`(n = 0, 1,
    add(mobius(d)*3^(n/d), d = divisors(n))/n):
    seq(A027376(n), n = 0..32);
  • Mathematica
    a[0]=1; a[n_] := Module[{ds=Divisors[n], i}, Sum[MoebiusMu[ds[[i]]]3^(n/ds[[i]]), {i, 1, Length[ds]}]/n]
    a[0]=1; a[n_] := DivisorSum[n, MoebiusMu[n/#]*3^#&]/n; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 01 2015 *)
    mx=40;f[x_,k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,3],{x,0,mx}],x] (* Herbert Kociemba, Nov 25 2016 *)
  • PARI
    a(n)=if(n<1,n==0,sumdiv(n,d,moebius(n/d)*3^d)/n)

Formula

a(n) = (1/n)*Sum_{d|n} mu(d)*3^(n/d).
(1 - 3*x) = Product_{n>0} (1 - x^n)^a(n).
G.f.: k = 3, 1 - Sum_{i >= 1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016
a(n) ~ 3^n / n. - Vaclav Kotesovec, Jul 01 2018
a(n) = 2*A046211(n) + A046209(n). - R. J. Mathar, Oct 21 2021

A065465 Decimal expansion of Product_{p prime} (1 - 1/(p^2*(p+1))).

Original entry on oeis.org

8, 8, 1, 5, 1, 3, 8, 3, 9, 7, 2, 5, 1, 7, 0, 7, 7, 6, 9, 2, 8, 3, 9, 1, 8, 2, 2, 9, 0, 3, 2, 2, 7, 8, 4, 7, 1, 2, 9, 8, 6, 9, 2, 5, 7, 2, 0, 8, 0, 7, 6, 7, 3, 3, 6, 7, 0, 1, 6, 8, 5, 3, 5, 5, 4, 8, 6, 5, 7, 9, 0, 6, 3, 7, 9, 4, 1, 6, 9, 7, 4, 1, 0, 2, 2, 0, 4, 5, 5, 1, 7, 9, 7, 0, 2, 0, 9, 6
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

From Richard R. Forberg, May 22 2023: (Start)
This constant is the asymptotic mean of (phi(n)/n)*(sigma(n)/n), where phi is the Euler totient function (A000010) and sigma is the sum-of-divisors function (A000203).
In contrast, the product of the separate means, mean(phi(n)/n) * mean(sigma(n)/n), converges to 1, with the asymptotic mean(sigma(n)/n) = Pi^2/6 = zeta(2). See A013661.
Also see A062354. (End)

Examples

			0.88151383972517077692839182290...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 98; terms = 1000; LR = Join[{0, 0, 0}, LinearRecurrence[{-2, -1, 1, 1}, {-3, 4, -5, 3}, terms+10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*PrimeZetaP[n-1]/(n-1), {n, 4, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 16 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p^2*(p+1))) \\ Amiram Eldar, Mar 14 2021

Formula

Sum_{n>=1} phi(n)/(n*J(n)) = (this constant)*A013661 with phi()=A000010() and J() = A007434() [Cohen, Corollary 5.1.1]. - R. J. Mathar, Apr 11 2011

A065473 Decimal expansion of the strongly carefree constant: Product_{p prime} (1 - (3*p-2)/(p^3)).

Original entry on oeis.org

2, 8, 6, 7, 4, 7, 4, 2, 8, 4, 3, 4, 4, 7, 8, 7, 3, 4, 1, 0, 7, 8, 9, 2, 7, 1, 2, 7, 8, 9, 8, 3, 8, 4, 4, 6, 4, 3, 4, 3, 3, 1, 8, 4, 4, 0, 9, 7, 0, 5, 6, 9, 9, 5, 6, 4, 1, 4, 7, 7, 8, 5, 9, 3, 3, 6, 6, 5, 2, 2, 4, 3, 1, 3, 1, 9, 4, 3, 2, 5, 8, 2, 4, 8, 9, 1, 2, 6, 8, 2, 5, 5, 3, 7, 4, 2, 3, 7, 4, 6, 8, 5, 3, 6, 4, 7
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

Also decimal expansion of the probability that an integer triple (x, y, z) is pairwise coprime. - Charles R Greathouse IV, Nov 14 2011
The probability that 2 numbers chosen at random are coprime, and both squarefree (Delange, 1969). - Amiram Eldar, Aug 04 2020

Examples

			0.2867474284344787341078927127898384...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6, p. 41.
  • Gerald Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3rd edition, American Mathematical Society, 2015, page 59, exercise 55 and 56.

Crossrefs

Programs

  • Mathematica
    digits = 100; NSum[-(2+(-2)^n)*PrimeZetaP[n]/n, {n, 2, Infinity}, NSumTerms -> 2 digits, WorkingPrecision -> 2 digits, Method -> "AlternatingSigns"] // Exp // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 11 2016 *)
  • PARI
    prodeulerrat(1 - (3*p-2)/(p^3)) \\ Amiram Eldar, Mar 17 2021

Formula

Equals Prod_{p prime} (1 - 1/p)^2*(1 + 2/p). - Michel Marcus, Apr 16 2016
The constant c in Sum_{k<=x} mu(k)^2 * 2^omega(k) = c * x * log(x) + O(x), where mu is A008683 and omega is A001221, and in Sum_{k<=x} 3^omega(k) = (1/2) * c * x * log(x)^2 + O(x*log(x)) (see Tenenbaum, 2015). - Amiram Eldar, May 24 2020
Equals A065472 * A227929 = A065472 / A098198. - Amiram Eldar, Aug 04 2020

Extensions

Name corrected by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 03 2003
More digits from Vaclav Kotesovec, Dec 19 2019

A027377 Number of irreducible polynomials of degree n over GF(4); dimensions of free Lie algebras.

Original entry on oeis.org

1, 4, 6, 20, 60, 204, 670, 2340, 8160, 29120, 104754, 381300, 1397740, 5162220, 19172790, 71582716, 268431360, 1010580540, 3817733920, 14467258260, 54975528948, 209430785460, 799644629550, 3059510616420
Offset: 0

Views

Author

Keywords

Comments

Apart from initial terms, exponents in expansion of A065419 as a product zeta(n)^(-a(n)).
Number of aperiodic necklaces with n beads of 4 colors. - Herbert Kociemba, Nov 25 2016

References

  • E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.

Crossrefs

Column k=4 of A074650.

Programs

  • Maple
    A027377 := proc(n) local d,s; if n = 0 then RETURN(1); else s := 0; for d in divisors(n) do s := s+mobius(d)*4^(n/d); od; RETURN(s/n); fi; end;
  • Mathematica
    a[n_] := Sum[MoebiusMu[d]*4^(n/d), {d, Divisors[n]}] / n; a[0] = 1; Table[a[n], {n, 0, 23}](* Jean-François Alcover, Nov 29 2011 *)
    mx=40;f[x_,k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,4],{x,0,mx}],x] (* Herbert Kociemba, Nov 25 2016 *)
  • PARI
    a(n)=if(n,sumdiv(n,d,moebius(d)<<(2*n/d))/n,1) \\ Charles R Greathouse IV, Nov 29 2011

Formula

a(n) = Sum_{d|n} mu(d)*4^(n/d)/n.
G.f.: k=4, 1 - Sum_{i>=1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016
a(n) = A054661(n) + 3 * A054660(n). - Andrey Zabolotskiy, Dec 17 2020
a(n) = 2 * (A054664(n) + A054660(n)). - Andrey Zabolotskiy, Dec 19 2020
a(n) = A054719(n)/n, n>0. - R. J. Mathar, Dec 16 2024

A065414 Decimal expansion of rank 2 Artin constant Product_{p prime} (1-1/(p^3-p^2)).

Original entry on oeis.org

6, 9, 7, 5, 0, 1, 3, 5, 8, 4, 9, 6, 3, 6, 5, 9, 0, 3, 2, 8, 4, 6, 7, 0, 3, 5, 0, 8, 2, 0, 9, 2, 2, 9, 2, 4, 0, 7, 3, 1, 5, 3, 9, 4, 6, 2, 1, 4, 5, 1, 5, 3, 9, 5, 3, 5, 4, 3, 7, 8, 7, 5, 2, 8, 8, 6, 4, 5, 9, 1, 1, 0, 5, 9, 6, 0, 9, 5, 5, 6, 6, 6, 6, 6, 1, 5, 4, 8, 3, 8, 5, 1, 3, 0, 7, 1, 8, 7, 9
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2001

Keywords

Examples

			0.697501358496365903284670350820922924...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.4, p. 105.

Crossrefs

Programs

  • Mathematica
    digits = 99; m0 = 1000; dm = 100; Clear[s]; r[n_] := RootSum[-1 - #^2 + #^3 &, #^n&] - 1; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 3, m}, NSumTerms -> m0, WorkingPrecision -> 300] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m - dm], 10, digits][[1]], Print[m]; m = m + dm]; RealDigits[s[m], 10, digits][[1]] (* Jean-François Alcover, Apr 14 2016 *)
  • PARI
    prodeulerrat(1-1/(p^3-p^2)) \\ Amiram Eldar, Mar 12 2021

A065487 Decimal expansion of Product_{p prime} (1 + 1/(p*(p^2-1))).

Original entry on oeis.org

1, 2, 3, 1, 2, 9, 1, 1, 4, 8, 8, 8, 8, 6, 0, 3, 5, 6, 2, 7, 7, 4, 7, 8, 7, 6, 5, 1, 2, 7, 2, 0, 3, 3, 7, 0, 9, 8, 6, 3, 6, 9, 4, 5, 9, 4, 5, 6, 1, 7, 1, 5, 3, 4, 1, 2, 4, 8, 3, 1, 1, 2, 8, 7, 5, 6, 9, 2, 6, 9, 6, 0, 7, 9, 7, 4, 1, 0, 8, 6, 7, 8, 0, 7, 2, 2, 1, 1, 4, 0, 4, 9, 3, 3, 5, 2, 7, 8, 2
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Examples

			1.2312911488886035627747876512720337...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 600; digits = 99; terms = 600; P[n_] := PrimeZetaP[n]; LR = Join[{0, 0, 0}, LinearRecurrence[{0, 2, -1, -1, 1}, {3, 0, 5, -3, 7}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 + 1/(p*(p^2-1))) \\ Amiram Eldar, Mar 17 2021

Formula

Equals Sum_{k>=1} 1/A001615(A036966(k)). - Amiram Eldar, Jun 23 2020
Equals Sum_{k>=1} A003557(k)/k^3. - Amiram Eldar, Jan 25 2024
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A047994(k)/A000010(k). - Amiram Eldar, Feb 04 2024

A065484 Decimal expansion of Product_{p prime >= 2} (1 + p/((p-1)^2*(p+1))).

Original entry on oeis.org

2, 2, 0, 3, 8, 5, 6, 5, 9, 6, 4, 3, 7, 8, 5, 9, 7, 8, 7, 8, 7, 2, 8, 2, 8, 3, 1, 6, 4, 8, 0, 0, 8, 9, 6, 6, 2, 5, 6, 7, 1, 7, 3, 1, 9, 3, 7, 8, 7, 8, 5, 8, 6, 3, 4, 1, 7, 0, 4, 9, 5, 5, 4, 4, 8, 7, 1, 6, 6, 8, 8, 6, 8, 1, 1, 8, 5, 2, 6, 9, 5, 4, 9, 7, 5, 7, 2, 6, 6, 0, 4, 1, 9, 0, 1, 3, 9, 5, 6
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2001, Aug 09 2010

Keywords

Comments

Decimal expansion of totient constant. - Eric W. Weisstein, Apr 20 2006

Examples

			2.203856596437859787872828316480...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 500; digits = 99; terms = 500; P[n_] := PrimeZetaP[n];
    LR = Join[{0, 0, 0}, LinearRecurrence[{2, -1, -1, 1}, {3, 4, 5, 3}, terms + 10]]; r[n_Integer] := LR[[n]];  (Pi^2/6)*Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]  ] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 + p/((p-1)^2*(p+1))) \\ Hugo Pfoertner, Jun 02 2020

Formula

Equals Pi^2 * A065483 / 6.
Also defined as: Sum_{m>=1} 1/(m*A000010(m)). See Weisstein link.
Equals 5 * Sum_{m>=1} (-1)^(m+1)/(m*A000010(m)). - Amiram Eldar, Nov 21 2022

A059887 a(n) = |{m : multiplicative order of 5 mod m=n}|.

Original entry on oeis.org

3, 5, 3, 12, 9, 37, 3, 28, 18, 47, 3, 180, 3, 53, 81, 176, 9, 446, 21, 564, 39, 117, 9, 884, 180, 53, 360, 244, 21, 5959, 9, 800, 39, 111, 369, 9536, 21, 483, 39, 5476, 9, 18289, 9, 1140, 2958, 111, 3, 9424, 6, 3852, 177, 884, 21, 81048, 561, 1188, 69, 227, 9
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, gcd(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m). a(n) = number of orders of degree-n monic irreducible polynomials over GF(5).
Also, number of primitive factors of 5^n - 1 (cf. A218357). - Max Alekseyev, May 03 2022

Crossrefs

Number of primitive factors of b^n - 1: A059499 (b=2), A059885(b=3), A059886 (b=4), this sequence (b=5), A059888 (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).
Column k=5 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(5^d-1), d=divisors(n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    a[n_] := Sum[MoebiusMu[n/d]*DivisorSigma[0, 5^d-1], {d, Divisors[n]}];
    Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Dec 13 2024, after Alois P. Heinz *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*numdiv(5^d-1)); \\ Michel Marcus, Dec 13 2024

Formula

a(n) = Sum_{d|n} mu(n/d)*tau(5^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

A065483 Decimal expansion of totient constant Product_{p prime} (1 + 1/(p^2*(p-1))).

Original entry on oeis.org

1, 3, 3, 9, 7, 8, 4, 1, 5, 3, 5, 7, 4, 3, 4, 7, 2, 4, 6, 5, 9, 9, 1, 5, 2, 5, 8, 6, 5, 1, 4, 8, 8, 6, 0, 5, 2, 7, 7, 5, 2, 4, 2, 2, 4, 9, 7, 8, 8, 1, 8, 2, 8, 0, 6, 6, 6, 3, 0, 1, 5, 0, 6, 7, 6, 4, 6, 7, 9, 4, 8, 2, 7, 2, 7, 6, 0, 0, 9, 8, 2, 3, 7, 3, 7, 3, 4, 3, 6, 6, 4, 4, 0, 8, 5, 0, 4, 5, 4
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

The sum of the reciprocals of the cubefull numbers (A036966). - Amiram Eldar, Jun 23 2020

Examples

			1.339784153574347246599152586514886052775...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 500; digits = 99; terms = 500; P[n_] := PrimeZetaP[n]; LR = Join[{0, 0, 0}, LinearRecurrence[{2, -1, -1, 1}, {3, 4, 5, 3}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 + 1/(p^2*(p-1))) \\ Vaclav Kotesovec, Sep 19 2020

Formula

Equals (6/Pi^2) * A065484. - Amiram Eldar, Jun 23 2020

A038063 Product_{k>=1}1/(1 - x^k)^a(k) = 1 + 2x.

Original entry on oeis.org

2, -3, 2, -3, 6, -11, 18, -30, 56, -105, 186, -335, 630, -1179, 2182, -4080, 7710, -14588, 27594, -52377, 99858, -190743, 364722, -698870, 1342176, -2581425, 4971008, -9586395, 18512790, -35792449, 69273666, -134215680, 260300986
Offset: 1

Views

Author

Christian G. Bower, Jan 04 1999

Keywords

Comments

Apart from initial terms, exponents in expansion of A065472 as a product zeta(n)^(-a(n)).

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(#+1) * MoebiusMu[n/#]*2^# &] / n; Array[a, 33] (* Amiram Eldar, May 29 2025 *)
  • PARI
    {a(n)=polcoeff(sum(k=1,n,moebius(k)/k*log(1+2*x^k+x*O(x^n))),n)} \\ Paul D. Hanna, Oct 13 2010

Formula

a(n) = (1/n) * Sum_{d divides n} (-1)^(d+1)*moebius(n/d)*2^d. - Vladeta Jovovic, Sep 06 2002
G.f.: Sum_{n>=1} moebius(n)*log(1 + 2*x^n)/n, where moebius(n) = A008683(n). - Paul D. Hanna, Oct 13 2010
For n == 0, 1, 3 (mod 4), a(n) = (-1)^(n+1)*A001037(n), which for n>1 also equals (-1)^(n+1)*A059966(n) = (-1)^(n+1)*A060477(n).
For n == 2 (mod 4), a(n) = -(A001037(n) + A001037(n/2)). - George Beck and Max Alekseyev, May 23 2016
a(n) ~ -(-1)^n * 2^n / n. - Vaclav Kotesovec, Jun 12 2018
Previous Showing 11-20 of 68 results. Next