cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A078074 Continued fraction for constant defined in A065483.

Original entry on oeis.org

1, 2, 1, 16, 1, 1, 3, 1, 5, 17, 1, 5, 2, 10, 3, 2, 14, 4, 19, 2, 3, 1, 20, 1, 1, 1, 3, 4, 1, 1, 5, 1, 1, 7, 1, 5, 3, 2, 1, 1, 1, 2, 16, 1, 2, 31, 3, 1, 2, 1, 2, 27, 11, 1, 27, 6, 6, 1, 1, 10, 1, 3, 14, 3, 1, 1, 1, 3, 10, 1, 1, 2, 8, 3, 1, 1, 2, 1, 2, 5, 4, 3, 1, 2, 1, 1, 2, 1, 4, 1, 2, 1
Offset: 0

Views

Author

Benoit Cloitre, Dec 02 2002

Keywords

Crossrefs

Cf. A065483 (decimal expansion).

Programs

  • PARI
    contfrac(prodeulerrat(1 + 1/(p^2*(p-1)))) \\ Amiram Eldar, Jul 08 2024

Extensions

Offset changed by Andrew Howroyd, Jul 05 2024

A036966 3-full (or cube-full, or cubefull) numbers: if a prime p divides n then so does p^3.

Original entry on oeis.org

1, 8, 16, 27, 32, 64, 81, 125, 128, 216, 243, 256, 343, 432, 512, 625, 648, 729, 864, 1000, 1024, 1296, 1331, 1728, 1944, 2000, 2048, 2187, 2197, 2401, 2592, 2744, 3125, 3375, 3456, 3888, 4000, 4096, 4913, 5000, 5184, 5488, 5832, 6561, 6859, 6912, 7776, 8000
Offset: 1

Views

Author

Keywords

Comments

Also called powerful_3 numbers.
For n > 1: A124010(a(n),k) > 2, k = 1..A001221(a(n)). - Reinhard Zumkeller, Dec 15 2013
a(m) mod prime(n) > 0 for m < A258600(n); a(A258600(n)) = A030078(n) = prime(n)^3. - Reinhard Zumkeller, Jun 06 2015

References

  • M. J. Halm, More Sequences, Mpossibilities 83, April 2003.
  • A. Ivic, The Riemann Zeta-Function, Wiley, NY, 1985, see p. 407.
  • E. Kraetzel, Lattice Points, Kluwer, Chap. 7, p. 276.

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, fromList, union)
    a036966 n = a036966_list !! (n-1)
    a036966_list = 1 : f (singleton z) [1, z] zs where
       f s q3s p3s'@(p3:p3s)
         | m < p3 = m : f (union (fromList $ map (* m) ps) s') q3s p3s'
         | otherwise = f (union (fromList $ map (* p3) q3s) s) (p3:q3s) p3s
         where ps = a027748_row m
               (m, s') = deleteFindMin s
       (z:zs) = a030078_list
    -- Reinhard Zumkeller, Jun 03 2015, Dec 15 2013
    
  • Maple
    isA036966 := proc(n)
        local p ;
        for p in ifactors(n)[2] do
            if op(2,p) < 3 then
                return false;
            end if;
        end do:
        return true ;
    end proc:
    A036966 := proc(n)
        option remember;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA036966(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, May 01 2013
  • Mathematica
    Select[ Range[2, 8191], Min[ Table[ # [[2]], {1}] & /@ FactorInteger[ # ]] > 2 &]
    Join[{1},Select[Range[8000],Min[Transpose[FactorInteger[#]][[2]]]>2&]] (* Harvey P. Dale, Jul 17 2013 *)
  • PARI
    is(n)=n==1 || vecmin(factor(n)[,2])>2 \\ Charles R Greathouse IV, Sep 17 2015
    
  • PARI
    list(lim)=my(v=List(),t); for(a=1,sqrtnint(lim\1,5), for(b=1,sqrtnint(lim\a^5,4), t=a^5*b^4; for(c=1,sqrtnint(lim\t,3), listput(v,t*c^3)))); Set(v) \\ Charles R Greathouse IV, Nov 20 2015
    
  • PARI
    list(lim)=my(v=List(),t); forsquarefree(a=1,sqrtnint(lim\1,5), my(a5=a[1]^5); forsquarefree(b=1,sqrtnint(lim\a5,4), if(gcd(a[1],b[1])>1, next); t=a5*b[1]^4; for(c=1,sqrtnint(lim\t,3), listput(v,t*c^3)))); Set(v) \\ Charles R Greathouse IV, Jan 12 2022
    
  • Python
    from math import gcd
    from sympy import integer_nthroot, factorint
    def A036966(n):
        def f(x):
            c = n+x
            for w in range(1,integer_nthroot(x,5)[0]+1):
                if all(d<=1 for d in factorint(w).values()):
                    for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1):
                        if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()):
                            c -= integer_nthroot(z//y**4,3)[0]
            return c
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime}(1 + 1/(p^2*(p-1))) (A065483). - Amiram Eldar, Jun 23 2020
Numbers of the form x^5*y^4*z^3. There is a unique representation with x,y squarefree and coprime. - Charles R Greathouse IV, Jan 12 2022

Extensions

More terms from Erich Friedman
Corrected by Vladeta Jovovic, Aug 17 2002

A065484 Decimal expansion of Product_{p prime >= 2} (1 + p/((p-1)^2*(p+1))).

Original entry on oeis.org

2, 2, 0, 3, 8, 5, 6, 5, 9, 6, 4, 3, 7, 8, 5, 9, 7, 8, 7, 8, 7, 2, 8, 2, 8, 3, 1, 6, 4, 8, 0, 0, 8, 9, 6, 6, 2, 5, 6, 7, 1, 7, 3, 1, 9, 3, 7, 8, 7, 8, 5, 8, 6, 3, 4, 1, 7, 0, 4, 9, 5, 5, 4, 4, 8, 7, 1, 6, 6, 8, 8, 6, 8, 1, 1, 8, 5, 2, 6, 9, 5, 4, 9, 7, 5, 7, 2, 6, 6, 0, 4, 1, 9, 0, 1, 3, 9, 5, 6
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2001, Aug 09 2010

Keywords

Comments

Decimal expansion of totient constant. - Eric W. Weisstein, Apr 20 2006

Examples

			2.203856596437859787872828316480...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 500; digits = 99; terms = 500; P[n_] := PrimeZetaP[n];
    LR = Join[{0, 0, 0}, LinearRecurrence[{2, -1, -1, 1}, {3, 4, 5, 3}, terms + 10]]; r[n_Integer] := LR[[n]];  (Pi^2/6)*Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]  ] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 + p/((p-1)^2*(p+1))) \\ Hugo Pfoertner, Jun 02 2020

Formula

Equals Pi^2 * A065483 / 6.
Also defined as: Sum_{m>=1} 1/(m*A000010(m)). See Weisstein link.
Equals 5 * Sum_{m>=1} (-1)^(m+1)/(m*A000010(m)). - Amiram Eldar, Nov 21 2022

A135177 a(n) = p^2*(p-1), where p = prime(n).

Original entry on oeis.org

4, 18, 100, 294, 1210, 2028, 4624, 6498, 11638, 23548, 28830, 49284, 67240, 77658, 101614, 146068, 201898, 223260, 296274, 352870, 383688, 486798, 564898, 697048, 903264, 1020100, 1082118, 1213594, 1283148, 1430128, 2032254, 2230930
Offset: 1

Views

Author

Omar E. Pol, Nov 25 2007

Keywords

Examples

			a(4) = 294 because the 4th prime number is 7, 7^2 = 49, 7-1 = 6 and 49 * 6 = 294.
		

Crossrefs

Cf. A001248 (p^2), A030078 (p^3), A045991 (n^2 * (n-1)), A065414, A065483, A138416 (terms halved), A152441.
Column 4 of A379010.

Programs

Formula

a(n) = p^3 - p^2 = A030078(n) - A001248(n).
a(n) = A000010(prime(n)^3). - R. J. Mathar, Oct 15 2017
Sum_{n>=1} 1/a(n) = A152441. - Amiram Eldar, Nov 09 2020
From Amiram Eldar, Nov 22 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = A065483.
Product_{n>=1} (1 - 1/a(n)) = A065414. (End)
a(n) = 2*A138416(n). - Antti Karttunen, Dec 14 2024

A190867 Count of the 3-full divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1
Offset: 1

Views

Author

R. J. Mathar, May 27 2011

Keywords

Comments

a(n) is the number of divisors d of n with d an element of A036966.
This is the 3-full analog of the 2-full case A005361.

Examples

			a(16)=3 because the divisors of 16 are {1,2,4,8,16}, and three of these are 3-full: 1, 8=2^3 and 16=2^4.
		

Crossrefs

Programs

  • Maple
    f:= n -> convert(map(t -> max(1,t[2]-1), ifactors(n)[2]),`*`):
    map(f, [$1..200]); # Robert Israel, Jul 19 2017
  • Mathematica
    Table[Product[Max[{1, i - 1}], {i, FactorInteger[n][[All, 2]]}], {n, 1, 200}] (* Geoffrey Critzer, Feb 12 2015 *)
    Table[1 + DivisorSum[n, 1 &, AllTrue[FactorInteger[#][[All, -1]], # > 2 &] &], {n, 120}] (* Michael De Vlieger, Jul 19 2017 *)
  • PARI
    A190867(n) = { my(f = factor(n), m = 1); for (k=1, #f~, m *= max(1,f[k, 2]-1); ); m; } \\ Antti Karttunen, Jul 19 2017
    
  • Python
    from functools import reduce
    from sympy import factorint
    from operator import mul
    def a(n): return 1 if n==1 else reduce(mul, [max(1, e - 1) for e in factorint(n).values()])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 19 2017

Formula

a(n) = Sum_{d|n, d in A036966} 1.
a(n) <= A005361(n).
Multiplicative with a(p^e) = max(1,e-1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + 1/(p^2*(p-1))) (A065483). (Ivić, 1978). - Amiram Eldar, Jul 23 2022
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + 1/p^(3*s)). - Amiram Eldar, Sep 21 2023

A325240 Numbers whose minimum prime exponent is 2.

Original entry on oeis.org

4, 9, 25, 36, 49, 72, 100, 108, 121, 144, 169, 196, 200, 225, 288, 289, 324, 361, 392, 400, 441, 484, 500, 529, 576, 675, 676, 784, 800, 841, 900, 961, 968, 972, 1089, 1125, 1152, 1156, 1225, 1323, 1352, 1369, 1372, 1444, 1521, 1568, 1600, 1681, 1764, 1800
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

Or barely powerful numbers, a subset of powerful numbers A001694.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose minimum multiplicity is 2 (counted by A244515).
Powerful numbers (A001694) that are not cubefull (A036966). - Amiram Eldar, Jan 30 2023

Examples

			The sequence of terms together with their prime indices begins:
    4: {1,1}
    9: {2,2}
   25: {3,3}
   36: {1,1,2,2}
   49: {4,4}
   72: {1,1,1,2,2}
  100: {1,1,3,3}
  108: {1,1,2,2,2}
  121: {5,5}
  144: {1,1,1,1,2,2}
  169: {6,6}
  196: {1,1,4,4}
  200: {1,1,1,3,3}
  225: {2,2,3,3}
  288: {1,1,1,1,1,2,2}
  289: {7,7}
  324: {1,1,2,2,2,2}
  361: {8,8}
  392: {1,1,1,4,4}
  400: {1,1,1,1,3,3}
		

Crossrefs

Positions of 2's in A051904.
Maximum instead of minimum gives A067259.

Programs

  • Mathematica
    Select[Range[1000],Min@@FactorInteger[#][[All,2]]==2&]
  • PARI
    is(n)={my(e=factor(n)[,2]); n>1 && vecmin(e) == 2; } \\ Amiram Eldar, Jan 30 2023
    
  • Python
    from math import isqrt, gcd
    from sympy import integer_nthroot, factorint, mobius
    def A325240(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x,3)[0])-l
            for w in range(1,integer_nthroot(x,5)[0]+1):
                if all(d<=1 for d in factorint(w).values()):
                    for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1):
                        if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()):
                            c += integer_nthroot(z//y**4,3)[0]
            return c
        return bisection(f,n,n**2) # Chai Wah Wu, Oct 02 2024

Formula

Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Product_{p prime} (1 + 1/(p^2*(p-1))) = A082695 - A065483 = 0.6038122832... . - Amiram Eldar, Jan 30 2023

A372695 Cubefull numbers that are not prime powers.

Original entry on oeis.org

216, 432, 648, 864, 1000, 1296, 1728, 1944, 2000, 2592, 2744, 3375, 3456, 3888, 4000, 5000, 5184, 5488, 5832, 6912, 7776, 8000, 9261, 10000, 10125, 10368, 10648, 10976, 11664, 13824, 15552, 16000, 16875, 17496, 17576, 19208, 20000, 20736, 21296, 21952, 23328, 25000
Offset: 1

Views

Author

Michael De Vlieger, May 14 2024

Keywords

Comments

Numbers k such that rad(k)^3 | k and omega(k) > 1. In other words, numbers with at least 2 distinct prime factors whose prime power factors have exponents that exceed 2.
Proper subset of the following sequences: A001694, A036966, A126706, A286708.
Superset of A372841.
Smallest term k with omega(k) = m is k = A002110(m)^3 = A115964(m).

Examples

			Table of smallest 12 terms and instances of omega(a(n)) = m for m = 2..4
    n      a(n)
  ------------------------
    1      216 = 2^3 * 3^3
    2      432 = 2^4 * 3^3
    3      648 = 2^3 * 3^4
    4      864 = 2^5 * 3^3
    5     1000 = 2^3 * 5^3
    6     1296 = 2^4 * 3^4
    7     1728 = 2^6 * 3^3
    8     1944 = 2^3 * 3^5
    9     2000 = 2^4 * 5^3
   10     2592 = 2^5 * 3^4
   11     2744 = 2^3 * 7^3
   12     3375 = 3^3 * 5^3
  ...
   43    27000 = 2^3 * 3^3 * 5^3
  ...
  587  9261000 = 2^3 * 3^3 * 5^3 * 7^3
		

Crossrefs

Programs

  • Mathematica
    nn = 25000; Rest@ Select[Union@ Flatten@ Table[a^5 * b^4 * c^3, {c, Surd[nn, 3]}, {b, Surd[nn/(c^3), 4]}, {a, Surd[nn/(b^4 * c^3), 5]}], Not@*PrimePowerQ]
  • Python
    from math import gcd
    from sympy import primepi, integer_nthroot, factorint
    def A372695(n):
        def f(x):
            c = n+1+x+sum(primepi(integer_nthroot(x, k)[0]) for k in range(3, x.bit_length()))
            for w in range(1,integer_nthroot(x,5)[0]+1):
                if all(d<=1 for d in factorint(w).values()):
                    for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1):
                        if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()):
                            c -= integer_nthroot(z//y**4,3)[0]
            return c
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 12 2024

Formula

Intersection of A036966 and A024619.
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2*(p-1))) - Sum_{p prime} 1/(p^2*(p-1)) - 1 = A065483 - A152441 - 1 = 0.0188749045... . - Amiram Eldar, May 17 2024

A045971 a(1)=8; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+1}^{e_i+2}.

Original entry on oeis.org

8, 27, 125, 81, 343, 3375, 1331, 243, 625, 9261, 2197, 10125, 4913, 35937, 42875, 729, 6859, 16875, 12167, 27783, 166375, 59319, 24389, 30375, 2401, 132651, 3125, 107811, 29791, 1157625, 50653, 2187, 274625, 185193, 456533, 50625, 68921, 328509, 614125
Offset: 1

Views

Author

Keywords

References

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p]^(e + 2); a[1] = 8; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2023 *)

Formula

Sum_{n>=1} 1/a(n) = (4/5) * A065483 - 7/8 = 0.196827322859... . - Amiram Eldar, Sep 19 2023

Extensions

More terms from David W. Wilson

A353502 Numbers with all prime indices and exponents > 2.

Original entry on oeis.org

1, 125, 343, 625, 1331, 2197, 2401, 3125, 4913, 6859, 12167, 14641, 15625, 16807, 24389, 28561, 29791, 42875, 50653, 68921, 78125, 79507, 83521, 103823, 117649, 130321, 148877, 161051, 166375, 205379, 214375, 226981, 274625, 279841, 300125, 300763, 357911
Offset: 1

Views

Author

Gus Wiseman, May 16 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The initial terms together with their prime indices:
       1: {}
     125: {3,3,3}
     343: {4,4,4}
     625: {3,3,3,3}
    1331: {5,5,5}
    2197: {6,6,6}
    2401: {4,4,4,4}
    3125: {3,3,3,3,3}
    4913: {7,7,7}
    6859: {8,8,8}
   12167: {9,9,9}
   14641: {5,5,5,5}
   15625: {3,3,3,3,3,3}
   16807: {4,4,4,4,4}
   24389: {10,10,10}
   28561: {6,6,6,6}
   29791: {11,11,11}
   42875: {3,3,3,4,4,4}
		

Crossrefs

The version for only parts is A007310, counted by A008483.
The version for <= 2 instead of > 2 is A018256, # of compositions A137200.
The version for only multiplicities is A036966, counted by A100405.
The version for indices and exponents prime (instead of > 2) is:
- listed by A346068
- counted by A351982
- only exponents: A056166, counted by A055923
- only parts: A076610, counted by A000607
The version for > 1 instead of > 2 is A062739, counted by A339222.
The version for compositions is counted by A353428, see A078012, A353400.
The partitions with these Heinz numbers are counted by A353501.
A000726 counts partitions with multiplicities <= 2, compositions A128695.
A001222 counts prime factors with multiplicity, distinct A001221.
A004250 counts partitions with some part > 2, compositions A008466.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A295341 counts partitions with some multiplicity > 2, compositions A335464.

Programs

  • Mathematica
    Select[Range[10000],#==1||!MemberQ[FactorInteger[#],{?(#<5&),}|{,?(#<3&)}]&]

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime > 3} (1 + 1/(p^2*(p-1))) = (72/95)*A065483 = 1.0154153584... . - Amiram Eldar, May 28 2022

A361264 Multiplicative with a(p^e) = p^(e + 2), e > 0.

Original entry on oeis.org

1, 8, 27, 16, 125, 216, 343, 32, 81, 1000, 1331, 432, 2197, 2744, 3375, 64, 4913, 648, 6859, 2000, 9261, 10648, 12167, 864, 625, 17576, 243, 5488, 24389, 27000, 29791, 128, 35937, 39304, 42875, 1296, 50653, 54872, 59319, 4000, 68921, 74088, 79507, 21296, 10125
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 06 2023

Keywords

Crossrefs

Programs

  • Mathematica
    g[p_, e_] := p^(e+2); a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1 + p^3*X/(1 - p*X))[n], ", "))

Formula

Dirichlet g.f.: Product_{primes p} (1 + p^3/(p^s - p)).
Dirichlet g.f.: zeta(s-3) * zeta(s-1) * Product_{primes p} (1 + p^(4-2*s) - p^(6-2*s) - p^(1-s)).
Sum_{k=1..n} a(k) ~ c * zeta(3) * n^4 / 4, where c = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A330523 = 0.53589615382833799980850263131854595064822237...
From Amiram Eldar, Sep 01 2023: (Start)
a(n) = n * A007947(n)^2 = A064549(n) * A007947(n) = A064549(A064549(n)).
A000005(a(n)) = A360997(n).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2*(p-1))) = A065483. (End)
Showing 1-10 of 16 results. Next