cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 76 results. Next

A194689 a(n) = Sum_{k=0..n} binomial(n,k)*w(k)*w(n-k) where w() = A000296().

Original entry on oeis.org

1, 0, 2, 2, 14, 42, 222, 1066, 6078, 36490, 238046, 1653610, 12214270, 95361866, 784071966, 6764984362, 61066919230, 575200190986, 5640081557598, 57450510336234, 606773139773054, 6633515763375306, 74950634205257630, 873995513192234410, 10504736507220958142, 129983468625156713354
Offset: 0

Views

Author

N. J. A. Sloane, Sep 01 2011

Keywords

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 771, Problem 37).

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k) * Binomial[n,k] * BellB[k,2] * 2^(n-k), {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jun 25 2022 *)
  • PARI
    N=66;  x='x+O('x^N);
    Q(k) = if (k>N, 1, 1 + x + x*k - x/(1 - 2*x*(k+1)/Q(k+1) ) );
    gf=1/Q(0);  Vec(Ser(gf))
    /* Joerg Arndt, Mar 07 2013 */
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(serlaplace(exp(2*(exp(x)-1-x)))) \\ Seiichi Manyama, Nov 20 2020

Formula

G.f.: 1/Q(0) where Q(k) = 1 + x + x*k - x/(1 - 2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 07 2013
G.f.: 1/Q(0), where Q(k)= 1 - x*k - 2*x^2*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 06 2013
E.g.f.: exp(2*(exp(x) - 1 - x)). - Ilya Gutkovskiy, Apr 07 2018
a(0) = 1; a(n) = 2 * Sum_{k=1..n-1} binomial(n-1,k) * a(n-1-k). - Seiichi Manyama, Nov 20 2020
a(n) ~ 4 * n^(n-2) * exp(n/LambertW(n/2) - n - 2) / (sqrt(1 + LambertW(n/2)) * LambertW(n/2)^(n-2)). - Vaclav Kotesovec, Jun 26 2022

A000558 Generalized Stirling numbers of second kind.

Original entry on oeis.org

1, 6, 32, 175, 1012, 6230, 40819, 283944, 2090424, 16235417, 132609666, 1135846062, 10175352709, 95108406130, 925496853980, 9357279554071, 98118527430960, 1065259283215810, 11956366813630835, 138539436100687988, 1655071323662574756, 20361556640795422729
Offset: 2

Views

Author

Keywords

Comments

From Olivier Gérard, Mar 25 2009: (Start)
a(n) is the number of hierarchical partitions of a set of n elements into two second level classes : k>1 subsets of [n] are further grouped in two classes.
a(n) is equivalently the number of trees of uniform height 3 with n labeled leaves, and a root of order two. (End)

Examples

			From _Olivier Gérard_, Mar 25 2009: (Start)
a(2) = 1, since there is only one partition of {1,2} into two classes, and only one way to partition those classes.
a(4) = 32 = 7*1 + 6*3 + 1*7 since there are 7 ways of partitioning {1,2,3,4} into two classes (which cannot be grouped further), 6 ways of partitioning a set of 4 elements into three classes and three ways to partition three classes into two super-classes, etc. (End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A130191.
Cf. A001861 for the related bicolor set partitions. - Olivier Gérard, Mar 25 2009

Programs

  • Mathematica
    nn = 22; t = Range[0, nn]! CoefficientList[Series[1/2*(Exp[Exp[x] - 1] - 1)^2, {x, 0, nn}], x]; Drop[t, 2] (* T. D. Noe, Aug 10 2012 *)
    a[n_] := Sum[StirlingS2[n, k] (2^(k-1)-1), {k, 0, n}];
    a /@ Range[2, 100] (* Jean-François Alcover, Mar 30 2021 *)

Formula

E.g.f.: (1/2) * (exp(exp(x) - 1) - 1)^2. - Vladeta Jovovic, Sep 28 2003
a(n) = Sum_{k=0..n} Stirling2(n,k) * Stirling2(k,2). - Olivier Gérard, Mar 25 2009
a(n) = Sum_{k=1..n-1} binomial(n-1,k) * Bell(k) * Bell(n-k). - Ilya Gutkovskiy, Feb 15 2021

Extensions

More terms from David W. Wilson, Jan 13 2000

A221159 a(n) = Sum_{i=0..n} Stirling2(n,i)*2^(3i).

Original entry on oeis.org

1, 8, 72, 712, 7624, 87496, 1067976, 13781448, 187104200, 2661876168, 39549629384, 611918940616, 9834596715464, 163824830616008, 2823080829871048, 50238768569014728, 921839901090823112, 17416746966515278280, 338394913332895863752, 6753431112631087835592, 138296031340416209103816
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2013

Keywords

Comments

The number of ways of putting n labeled balls into a set of bags and then putting the bags into 8 labeled boxes. - Peter Bala, Mar 23 2013

Crossrefs

Programs

Formula

E.g.f.: exp(8*(exp(x) - 1)). - Peter Bala, Mar 23 2013
a(n) ~ n^n * exp(n/LambertW(n/8)-8-n) / (sqrt(1+LambertW(n/8)) * LambertW(n/8)^n). - Vaclav Kotesovec, Mar 12 2014
G.f.: Sum_{j>=0} 8^j*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 11 2019

A108087 Array, read by antidiagonals, where A(n,k) = exp(-1)*Sum_{i>=0} (i+k)^n/i!.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 15, 15, 10, 4, 1, 52, 52, 37, 17, 5, 1, 203, 203, 151, 77, 26, 6, 1, 877, 877, 674, 372, 141, 37, 7, 1, 4140, 4140, 3263, 1915, 799, 235, 50, 8, 1, 21147, 21147, 17007, 10481, 4736, 1540, 365, 65, 9, 1, 115975, 115975, 94828, 60814, 29371, 10427, 2727, 537, 82, 10, 1
Offset: 0

Views

Author

Gerald McGarvey, Jun 05 2005

Keywords

Comments

The column for k=0 is A000110 (Bell or exponential numbers). The column for k=1 is A000110 starting at offset 1. The column for k=2 is A005493 (Sum_{k=0..n} k*Stirling2(n,k).). The column for k=3 is A005494 (E.g.f.: exp(3*z+exp(z)-1).). The column for k=4 is A045379 (E.g.f.: exp(4*z+exp(z)-1).). The row for n=0 is 1's sequence, the row for n=1 is the natural numbers. The row for n=2 is A002522 (n^2 + 1.). The row for n=3 is A005491 (n^3 + 3n + 1.). The row for n=4 is A005492.
Number of ways of placing n labeled balls into n+k boxes, where k of the boxes are labeled and the rest are indistinguishable. - Bradley Austin (artax(AT)cruzio.com), Apr 24 2006
The column for k = -1 (not shown) is A000296 (Number of partitions of an n-set into blocks of size >1. Also number of cyclically spaced (or feasible) partitions.). - Gerald McGarvey, Oct 08 2006
Equals antidiagonals of an array in which (n+1)-th column is the binomial transform of n-th column, with leftmost column = the Bell sequence, A000110. - Gary W. Adamson, Apr 16 2009
Number of partitions of [n+k] where at least k blocks contain their own index element. A(2,2) = 10: 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4. - Alois P. Heinz, Jan 07 2022

Examples

			Array A(n,k) begins:
   1,   1,   1,    1,    1,     1,     1,     1,     1,      1, ... A000012;
   1,   2,   3,    4,    5,     6,     7,     8,     9,     10, ... A000027;
   2,   5,  10,   17,   26,    37,    50,    65,    82,    101, ... A002522;
   5,  15,  37,   77,  141,   235,   365,   537,   757,   1031, ... A005491;
  15,  52, 151,  372,  799,  1540,  2727,  4516,  7087,  10644, ... A005492;
  52, 203, 674, 1915, 4736, 10427, 20878, 38699, 67340, 111211, ... ;
Antidiagonal triangle, T(n, k), begins as:
     1;
     1,    1;
     2,    2,    1;
     5,    5,    3,    1;
    15,   15,   10,    4,   1;
    52,   52,   37,   17,   5,   1;
   203,  203,  151,   77,  26,   6,  1;
   877,  877,  674,  372, 141,  37,  7,  1;
  4140, 4140, 3263, 1915, 799, 235, 50,  8,  1;
		

References

  • F. Ruskey, Combinatorial Generation, preprint, 2001.

Crossrefs

Main diagonal gives A134980.
Antidiagonal sums give A347420.

Programs

  • Magma
    A108087:= func< n,k | (&+[Binomial(n-k,j)*k^j*Bell(n-k-j): j in [0..n-k]]) >;
    [A108087(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Dec 02 2022
    
  • Maple
    with(combinat):
    A:= (n, k)-> add(binomial(n, i) * k^i * bell(n-i), i=0..n):
    seq(seq(A(d-k, k), k=0..d), d=0..12);  # Alois P. Heinz, Jul 18 2012
  • Mathematica
    Unprotect[Power]; 0^0 = 1; A[n_, k_] := Sum[Binomial[n, i] * k^i * BellB[n - i], {i, 0, n}]; Table[Table[A[d - k, k], {k, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Nov 05 2015, after Alois P. Heinz *)
  • PARI
    f(n,k)=round (suminf(i=0,(i+k)^n/i!)/exp(1));
    g(n,k)=for(k=0,k,print1(f(n,k),",")) \\ prints k+1 terms of n-th row
    
  • SageMath
    def A108087(n,k): return sum( k^j*bell_number(n-k-j)*binomial(n-k,j) for j in range(n-k+1))
    flatten([[A108087(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Dec 02 2022

Formula

For n> 1, A(n, k) = k^n + sum_{i=0..n-2} A086659(n, i)*k^i. (A086659 is set partitions of n containing k-1 blocks of length 1, with e.g.f: exp(x*y)*(exp(exp(x)-1-x)-1).)
A(n, k) = k * A(n-1, k) + A(n-1, k+1), A(0, k) = 1. - Bradley Austin (artax(AT)cruzio.com), Apr 24 2006
A(n,k) = Sum_{i=0..n} C(n,i) * k^i * Bell(n-i). - Alois P. Heinz, Jul 18 2012
Sum_{k=0..n-1} A(n-k,k) = A005490(n). - Alois P. Heinz, Jan 05 2022
From G. C. Greubel, Dec 02 2022: (Start)
T(n, n) = A000012(n).
T(n, n-1) = A000027(n).
T(n, n-2) = A002522(n-1).
T(n, n-3) = A005491(n-2).
T(n, n-4) = A005492(n+1).
T(2*n, n) = A134980(n).
T(2*n, n+1) = A124824(n), n >= 1.
Sum_{k=0..n} T(n, k) = A347420(n). (End)

A213170 E.g.f.: exp(2*(1-exp(x))).

Original entry on oeis.org

1, -2, 2, 2, -6, -14, 26, 178, 90, -2382, -9446, 13746, 287194, 998578, -3687782, -56264782, -208446118, 1017677490, 17194912282, 79540574642, -317691584294, -7577787031374, -47958156443238, 77252406086578, 4400217218583642, 39757699729476274, 54538870133137690
Offset: 0

Views

Author

Philippe Deléham, Feb 14 2013

Keywords

Comments

Exponential self-convolution of complementary Bell numbers (A000587). - Vladimir Reshetnikov, Oct 07 2016

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0,
          (-2)^m, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..27);  # Alois P. Heinz, Jul 17 2022
  • Mathematica
    CoefficientList[Series[E^(2*(1-E^x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 04 2014 *)
    Table[BellB[n, -2], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(exp(2*(1-exp(x))))) \\ G. C. Greubel, Nov 15 2017

Formula

a(n) = Sum_{k=0..n} A048993(n,k)*(-2)^k.
a(n) = Sum_{k=0..n} A000587(k)*A000587(n-k)*binomial(n,k).
G.f.: 1/(1+2*x/(1-x/(1+2*x/(1-2*x/(1+2*x/(1-3*x/(1+2*x/(1-4*x/(1+2*x/(1-...(continued fraction).
Sum_{k=0..n} binomial(n,k)*a(k) = a(n+1)/(-2). - Philippe Deléham, Feb 17 2013
G.f.: 1/Q(0) where Q(k) = 1 + x*(k+1) + x/(1 - 2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 07 2013
Lim sup n->infinity (abs(a(n))/n!)^(1/n) / abs(exp(1/LambertW(-n/2)) / LambertW(-n/2)) = 1. - Vaclav Kotesovec, Aug 04 2014
a(n) = B_n(-2), where B_n(x) is n-th Bell polynomial. - Vladimir Reshetnikov, Oct 20 2015
G.f.: Sum_{j>=0} (-2)^j*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 06 2019

A292860 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(k*(exp(x) - 1)).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 5, 0, 1, 4, 12, 22, 15, 0, 1, 5, 20, 57, 94, 52, 0, 1, 6, 30, 116, 309, 454, 203, 0, 1, 7, 42, 205, 756, 1866, 2430, 877, 0, 1, 8, 56, 330, 1555, 5428, 12351, 14214, 4140, 0, 1, 9, 72, 497, 2850, 12880, 42356, 88563, 89918, 21147, 0
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2017

Keywords

Examples

			Square array begins:
   1,   1,    1,     1,     1,      1,      1, ...
   0,   1,    2,     3,     4,      5,      6, ...
   0,   2,    6,    12,    20,     30,     42, ...
   0,   5,   22,    57,   116,    205,    330, ...
   0,  15,   94,   309,   756,   1555,   2850, ...
   0,  52,  454,  1866,  5428,  12880,  26682, ...
   0, 203, 2430, 12351, 42356, 115155, 268098, ...
		

Crossrefs

Rows n=0..2 give A000012, A001477, A002378.
Main diagonal gives A242817.
Same array, different indexing is A189233.
Cf. A292861.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1,
          (1+add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Sep 25 2017
  • Mathematica
    A[0, ] = 1; A[n /; n >= 0, k_ /; k >= 0] := A[n, k] = k*Sum[Binomial[n-1, j]*A[j, k], {j, 0, n-1}]; A[, ] = 0;
    Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 13 2021 *)
    A292860[n_, k_] := BellB[n, k]; Table[A292860[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Dec 23 2021 *)

Formula

A(0,k) = 1 and A(n,k) = k * Sum_{j=0..n-1} binomial(n-1,j) * A(j,k) for n > 0.
A(n,k) = Sum_{j=0..n} k^j * Stirling2(n,j). - Seiichi Manyama, Jul 27 2019
A(n,k) = BellPolynomial(n, k). - Peter Luschny, Dec 23 2021

A002875 Sorting numbers (see Motzkin article for details).

Original entry on oeis.org

1, 2, 4, 24, 128, 880, 7440
Offset: 0

Views

Author

Keywords

Comments

How is the sequence defined (see the links in A000262)? Also more terms would be welcome.
Based on the Motzkin article, where this sequence appears in the last row of the table on p. 173, one would expect that this sequence is the same as A294202. However, they seem to be unrelated. So the true definition of this sequence is a mystery. - Andrew Howroyd and Andrey Zabolotskiy, Oct 25 2017

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A108400 a(n) = Product_{k = 0..n} (2^k * k!).

Original entry on oeis.org

1, 2, 16, 768, 294912, 1132462080, 52183852646400, 33664847019245568000, 347485857744891213250560000, 64560982045934655213753964953600000, 239901585047846581083822477336190648320000000
Offset: 0

Views

Author

Philippe Deléham, Jul 02 2005

Keywords

Comments

Hankel transform (see A001906 for definition) of the sequences A000898, A001861, A035009(with first term omitted), A047974, A067147(unsigned version), A083886.
Hankel transform of the sequence with e.g.f. exp(x^2). Also (-1)^C(n+1,2)*a(n) is the Hankel transform of the sequence with e.g.f. exp(-x^2). - Paul Barry, Feb 12 2008
Let T(n,k) = (n+1)^k * (1+(-1)^(n-k))/2, then a(n) = det(T(i,j); 0<=i, j<=n). - Paul Barry, Feb 12 2008

Crossrefs

Programs

  • Magma
    BarnesG:= func< n | (&*[Factorial(j): j in [0..n-2]]) >;
    [2^Binomial(n+1,2)*BarnesG(n+2): n in [0..15]]; // G. C. Greubel, Jun 21 2022
    
  • Mathematica
    Table[Product[k!*2^k, {k,0,n}], {n,0,10}] (* Vaclav Kotesovec, Nov 14 2014 *)
    Table[2^Binomial[n+1,2]*BarnesG[n+2], {n,0,15}] (* G. C. Greubel, Jun 21 2022 *)
  • SageMath
    def barnes_g(n): return product(factorial(j) for j in (0..n-2))
    [2^binomial(n+1,2)*barnes_g(n+2) for n in (0..15)] # G. C. Greubel, Jun 21 2022

Formula

a(n) = A006125(n+1)*A000178(n).
a(n) = Product_{i=1..n} Product_{j=0..i-1} {2*(i-j)}. - Paul Barry, Aug 02 2008
a(n) ~ 2^((n+1)^2/2) * n^(n^2/2+n+5/12) * Pi^((n+1)/2) / (A * exp(3*n^2/4+n-1/12)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 14 2014

A036074 Expansion of e.g.f. exp((exp(p*x) - p - 1)/p + exp(x)) for p=4.

Original entry on oeis.org

1, 2, 9, 55, 412, 3619, 36333, 408888, 5080907, 68914023, 1011165446, 15935379409, 268125052373, 4792458452162, 90605469012877, 1805135197261131, 37775862401203916, 827992670793489263
Offset: 0

Views

Author

Keywords

References

  • T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
  • T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.

Crossrefs

Programs

  • Mathematica
    mx = 16; p = 4; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[Sum[Binomial[n,k] * 4^k * BellB[k, 1/4] * BellB[n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 29 2022 *)
  • Maxima
    a(n):=sum(sum(binomial(m,i)*sum(binomial(i,j)*(1/4)^j*(3*j+i)^n,j,0,i)*(-5/4)^(m-i),i,0,m)/m!,m,1,n); /* Vladimir Kruchinin, Sep 14 2010 */

Formula

a(n) = sum(sum(binomial(m,i)*sum(binomial(i,j)*(1/4)^j*(3*j+i)^n,j,0,i)*(-5/4)^(m-i),i,0,m)/m!,m,1,n), n > 0. - Vladimir Kruchinin, Sep 14 2010
a(n) ~ exp(exp(p*r)/p + exp(r) - 1 - 1/p - n) * (n/r)^(n + 1/2) / sqrt((1 + p*r)*exp(p*r) + (1 + r)*exp(r)), where r = LambertW(p*n)/p - 1/(1 + p/LambertW(p*n) + n^(1 - 1/p) * (1 + LambertW(p*n)) * (p/LambertW(p*n))^(2 - 1/p)) for p=4. - Vaclav Kotesovec, Jul 03 2022
a(n) ~ (4*n/LambertW(4*n))^n * exp(n/LambertW(4*n) + (4*n/LambertW(4*n))^(1/4) - n - 5/4) / sqrt(1 + LambertW(4*n)). - Vaclav Kotesovec, Jul 10 2022

Extensions

Edited by N. J. A. Sloane, Jul 11 2008 at the suggestion of Franklin T. Adams-Watters

A221176 a(n) = Sum_{i=0..n} Stirling2(n,i)*2^(4i).

Original entry on oeis.org

1, 16, 272, 4880, 91920, 1810192, 37142288, 791744272, 17490370320, 399558315792, 9421351690000, 228916588400400, 5723078052339472, 147025755978698512, 3876566243300318992, 104789417805394595600, 2901159958960121863952, 82188946843192555474704, 2380551266738846355103504, 70441182699006212824911632
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2013

Keywords

Comments

The number of ways of putting n labeled balls into a set of bags and then putting the bags into 16 labeled boxes. - Peter Bala, Mar 23 2013

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[16 (Exp[x]-1)],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Dec 19 2024 *)

Formula

E.g.f. exp(16*(exp(x) - 1)). - Peter Bala, Mar 23 2013
Previous Showing 21-30 of 76 results. Next