cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A048993 Triangle of Stirling numbers of 2nd kind, S(n,k), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 6, 1, 0, 1, 15, 25, 10, 1, 0, 1, 31, 90, 65, 15, 1, 0, 1, 63, 301, 350, 140, 21, 1, 0, 1, 127, 966, 1701, 1050, 266, 28, 1, 0, 1, 255, 3025, 7770, 6951, 2646, 462, 36, 1, 0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Also known as Stirling set numbers.
S(n,k) enumerates partitions of an n-set into k nonempty subsets.
The o.g.f. for the sequence of diagonal k (k=0 for the main diagonal) is G(k,x) = ((x^k)/(1-x)^(2*k+1))*Sum_{m=0..k-1} A008517(k,m+1)*x^m. A008517 is the second-order Eulerian triangle. - Wolfdieter Lang, Oct 14 2005
From Philippe Deléham, Nov 14 2007: (Start)
Sum_{k=0..n} S(n,k)*x^k = B_n(x), where B_n(x) = Bell polynomials.
The first few Bell polynomials are:
B_0(x) = 1;
B_1(x) = 0 + x;
B_2(x) = 0 + x + x^2;
B_3(x) = 0 + x + 3x^2 + x^3;
B_4(x) = 0 + x + 7x^2 + 6x^3 + x^4;
B_5(x) = 0 + x + 15x^2 + 25x^3 + 10x^4 + x^5;
B_6(x) = 0 + x + 31x^2 + 90x^3 + 65x^4 + 15x^5 + x^6;
(End)
This is the Sheffer triangle (1, exp(x) - 1), an exponential (binomial) convolution triangle. The a-sequence is given by A006232/A006233 (Cauchy sequence). The z-sequence is the zero sequence. See the link under A006232 for the definition and use of these sequences. The row sums give A000110 (Bell), and the alternating row sums give A000587 (see the Philippe Deléham formulas and crossreferences below). - Wolfdieter Lang, Oct 16 2014
Also the inverse Bell transform of the factorial numbers (A000142). For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015
From Wolfdieter Lang, Feb 21 2017: (Start)
The transposed (trans) of this lower triagonal Sheffer matrix of the associated type S = (1, exp(x) - 1) (taken as N X N matrix for arbitrarily large N) provides the transition matrix from the basis {x^n/n!}, n >= 0, to the basis {y^n/n!}, n >= 0, with y^n/n! = Sum_{m>=n} S^{trans}(n, m) x^m/m! = Sum_{m>=0} x^m/m!*S(m, n).
The Sheffer transform with S = (g, f) of a sequence {a_n} to {b_n} for n >= 0, in matrix notation vec(b) = S vec(a), satisfies, with e.g.f.s A and B, B(x) = g(x)*A(f(x)) and B(x) = A(y(x)) identically, with vec(xhat) = S^{trans,-1} vec(yhat) in symbolic notation with vec(xhat)_n = x^n/n! (similarly for vec(yhat)).
(End)
Number of partitions of {1, 2, ..., n+1} into k+1 nonempty subsets such that no subset contains two adjacent numbers. - Thomas Anton, Sep 26 2022

Examples

			The triangle S(n,k) begins:
  n\k 0 1    2     3      4       5       6      7      8     9   10 11 12
  0:  1
  1:  0 1
  2:  0 1    1
  3:  0 1    3     1
  4:  0 1    7     6      1
  5:  0 1   15    25     10       1
  6:  0 1   31    90     65      15       1
  7:  0 1   63   301    350     140      21      1
  8:  0 1  127   966   1701    1050     266     28      1
  9:  0 1  255  3025   7770    6951    2646    462     36     1
 10:  0 1  511  9330  34105   42525   22827   5880    750    45    1
 11:  0 1 1023 28501 145750  246730  179487  63987  11880  1155   55  1
 12:  0 1 2047 86526 611501 1379400 1323652 627396 159027 22275 1705 66  1
 ... reformatted and extended - _Wolfdieter Lang_, Oct 16 2014
Completely symmetric function S(4, 2) = h^{(2)}_2 = 1^2 + 2^2 + 1^1*2^1 = 7; S(5, 2) = h^{(2)}_3 = 1^3 + 2^3 + 1^2*2^1 + 1^1*2^2 = 15. - _Wolfdieter Lang_, May 26 2017
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence: S(5, 3) = S(4, 2) + 2*S(4, 3) = 7 + 3*6 = 25.
Boas-Buck recurrence for column m = 3, and n = 5: S(5, 3) = (3/2)*((5/2)*S(4, 3) + 10*Bernoulli(2)*S(3, 3)) = (3/2)*(15 + 10*(1/6)*1) = 25. (End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 310.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Springer, p. 92.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 244.
  • J. Riordan, An Introduction to Combinatorial Analysis, p. 48.

Crossrefs

See especially A008277 which is the main entry for this triangle.
A000110(n) = sum(S(n, k)) k=0..n, n >= 0. Cf. A085693.
Cf. A084938, A106800 (mirror image), A138378, A213061 (mod 2).

Programs

  • Haskell
    a048993 n k = a048993_tabl !! n !! k
    a048993_row n = a048993_tabl !! n
    a048993_tabl = iterate (\row ->
       [0] ++ (zipWith (+) row $ zipWith (*) [1..] $ tail row) ++ [1]) [1]
    -- Reinhard Zumkeller, Mar 26 2012
  • Maple
    for n from 0 to 10 do seq(Stirling2(n,k),k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, Nov 01 2006
  • Mathematica
    t[n_, k_] := StirlingS2[n, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v *)
  • Maxima
    create_list(stirling2(n,k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    for(n=0, 22, for(k=0, n, print1(stirling(n, k, 2), ", ")); print()); \\ Joerg Arndt, Apr 21 2013
    

Formula

S(n, k) = k*S(n-1, k) + S(n-1, k-1), n > 0; S(0, k) = 0, k > 0; S(0, 0) = 1.
Equals [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is Deléham's operator defined in A084938.
Sum_{k = 0..n} x^k*S(n, k) = A213170(n), A000587(n), A000007(n), A000110(n), A001861(n), A027710(n), A078944(n), A144180(n), A144223(n), A144263(n) respectively for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7. - Philippe Deléham, May 09 2004, Feb 16 2013
S(n, k) = Sum_{i=0..k} (-1)^(k+i)binomial(k, i)i^n/k!. - Paul Barry, Aug 05 2004
Sum_{k=0..n} k*S(n,k) = B(n+1)-B(n), where B(q) are the Bell numbers (A000110). - Emeric Deutsch, Nov 01 2006
Equals the inverse binomial transform of A008277. - Gary W. Adamson, Jan 29 2008
G.f.: 1/(1-xy/(1-x/(1-xy/(1-2x/(1-xy/1-3x/(1-xy/(1-4x/(1-xy/(1-5x/(1-... (continued fraction equivalent to Deléham DELTA construction). - Paul Barry, Dec 06 2009
G.f.: 1/Q(0), where Q(k) = 1 - (y+k)*x - (k+1)*y*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 09 2013
Inverse of padded A008275 (padded just as A048993 = padded A008277). - Tom Copeland, Apr 25 2014
E.g.f. for the row polynomials s(n,x) = Sum_{k=0..n} S(n,k)*x^k is exp(x*(exp(z)-1)) (Sheffer property). E.g.f. for the k-th column sequence with k leading zeros is ((exp(x)-1)^k)/k! (Sheffer property). - Wolfdieter Lang, Oct 16 2014
G.f. for column k: x^k/Product_{j=1..k} (1-j*x), k >= 0 (with the empty product for k = 0 put to 1). See Abramowitz-Stegun, p. 824, 24.1.4 B. - Wolfdieter Lang, May 26 2017
Boas-Buck recurrence for column sequence m: S(n, k) = (k/(n - k))*(n*S(n-1, k)/2 + Sum_{p=k..n-2} (-1)^(n-p)*binomial(n,p)*Bernoulli(n-p)*S(p, k)), for n > k >= 0, with input T(k,k) = 1. See a comment and references in A282629. An example is given below. - Wolfdieter Lang, Aug 11 2017
The n-th row polynomial has the form x o x o ... o x (n factors), where o denotes the white diamond multiplication operator defined in Bala - see Example E4. - Peter Bala, Jan 07 2018
Sum_{k=1..n} k*S(n,k) = A138378(n). - Alois P. Heinz, Jan 07 2022
S(n,k) = Sum_{j=k..n} (-1)^(j-k)*A059297(n,j)*A354794(j,k). - Mélika Tebni, Jan 27 2023

A000587 Rao Uppuluri-Carpenter numbers (or complementary Bell numbers): e.g.f. = exp(1 - exp(x)).

Original entry on oeis.org

1, -1, 0, 1, 1, -2, -9, -9, 50, 267, 413, -2180, -17731, -50533, 110176, 1966797, 9938669, 8638718, -278475061, -2540956509, -9816860358, 27172288399, 725503033401, 5592543175252, 15823587507881, -168392610536153, -2848115497132448, -20819319685262839
Offset: 0

Views

Author

Keywords

Comments

Alternating row sums of Stirling2 triangle A048993.
Related to the matrix-exponential of the Pascal-matrix, see A000110 and A011971. - Gottfried Helms, Apr 08 2007
Closely linked to A000110 and especially the contribution there of Jonathan R. Love (japanada11(AT)yahoo.ca), Feb 22 2007, by offering what is a complementary finding.
Number of set partitions of 1..n with an even number of parts, minus the number of such partitions with an odd number of parts. - Franklin T. Adams-Watters, May 04 2010
After -2, the smallest prime is a(36) = -1454252568471818731501051, no others through a(100). What is the first prime >0 in the sequence? - Jonathan Vos Post, Feb 02 2011
a(723) ~ 1.9*10^1265 is almost certainly prime. - D. S. McNeil, Feb 02 2011
Stirling transform of a(n) = [1, -1, 0, 1, 1, ...] is A033999(n) = [1, -1, 1, -1, 1, ...]. - Michael Somos, Mar 28 2012
Negated coefficients in the asymptotic expansion: A005165(n)/n! ~ 1 - 1/n + 1/n^2 + 0/n^3 - 1/n^4 - 1/n^5 + 2/n^6 + 9/n^7 + 9/n^8 - 50/n^9 - 267/n^10 - 413/n^11 + O(1/n^12), starting from the O(1/n) term. - Vladimir Reshetnikov, Nov 09 2016
Named after Venkata Ramamohana Rao Uppuluri and John A. Carpenter of the Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee. They are called "Rényi numbers" by Fekete (1999), after the Hungarian mathematician Alfréd Rényi (1921-1970). - Amiram Eldar, Mar 11 2022

Examples

			G.f. = 1 - x + x^3 + x^4 - 2*x^5 - 9*x^6 - 9*x^7 + 50*x^8 + 267*x^9 + 413*x^10 - ...
		

References

  • N. A. Kolokolnikova, Relations between sums of certain special numbers (Russian), in Asymptotic and enumeration problems of combinatorial analysis, pp. 117-124, Krasnojarsk. Gos. Univ., Krasnoyarsk, 1976.
  • Alfréd Rényi, Új modszerek es eredmenyek a kombinatorikus analfzisben. I. MTA III Oszt. Ivozl., Vol. 16 (1966), pp. 7-105.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • M. V. Subbarao and A. Verma, Some remarks on a product expansion. An unexplored partition function, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics (Gainesville, FL, 1999), pp. 267-283, Kluwer, Dordrecht, 2001.

Crossrefs

Cf. A000110, A011971 (base triangle PE), A078937 (PE^2).

Programs

  • Haskell
    a000587 n = a000587_list !! n
    a000587_list = 1 : f a007318_tabl [1] where
       f (bs:bss) xs = y : f bss (y : xs) where y = - sum (zipWith (*) xs bs)
    -- Reinhard Zumkeller, Mar 04 2014
  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1-2*t,
          add(b(n-j, 1-t)*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jun 28 2016
  • Mathematica
    Table[ -1 * Sum[ (-1)^( k + 1) StirlingS2[ n, k ], {k, 0, n} ], {n, 0, 40} ]
    With[{nn=30},CoefficientList[Series[Exp[1-Exp[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 04 2011 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ 1 - Exp[x]], {x, 0, n}]]; (* Michael Somos, May 27 2014 *)
    a[ n_] := If[ n < 0, 0, With[{m = n + 1}, SeriesCoefficient[ Series[ Nest[ x Factor[ 1 - # /. x -> x / (1 - x)] &, 0, m], {x, 0, m}], {x, 0, m}]]]; (* Michael Somos, May 27 2014 *)
    Table[BellB[n, -1], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
    b[1] = 1; k = 1; Flatten[{1, Table[Do[j = k; k -= b[m]; b[m] = j;, {m, 1, n-1}]; b[n] = k; k*(-1)^n, {n, 1, 40}]}] (* Vaclav Kotesovec, Sep 09 2019 *)
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( 1 - exp( x + x * O(x^n))), n))}; /* Michael Somos, Mar 14 2011 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, n++; A = O(x); for( k=1, n, A = x - x * subst(A, x, x / (1 - x))); polcoeff( A, n))}; /* Michael Somos, Mar 14 2011 */
    
  • PARI
    Vec(serlaplace(exp(1 - exp(x+O(x^99))))) /* Joerg Arndt, Apr 01 2011 */
    
  • PARI
    a(n)=round(exp(1)*suminf(k=0,(-1)^k*k^n/k!))
    vector(20,n,a(n-1)) \\ Derek Orr, Sep 19 2014 -- a direct approach
    
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(1 - exp(x)))) \\ Michel Marcus, Sep 19 2014
    
  • Python
    # The objective of this implementation is efficiency.
    # n -> [a(0), a(1), ..., a(n)] for n > 0.
    def A000587_list(n):
        A = [0 for i in range(n)]
        A[n-1] = 1
        R = [1]
        for j in range(0, n):
            A[n-1-j] = -A[n-1]
            for k in range(n-j, n):
                A[k] += A[k-1]
            R.append(A[n-1])
        return R
    # Peter Luschny, Apr 18 2011
    
  • Python
    # Python 3.2 or higher required
    from itertools import accumulate
    A000587, blist, b = [1,-1], [1], -1
    for _ in range(30):
        blist = list(accumulate([b]+blist))
        b = -blist[-1]
        A000587.append(b) # Chai Wah Wu, Sep 19 2014
    
  • Sage
    expnums(26, -1) # Zerinvary Lajos, May 15 2009
    

Formula

a(n) = e*Sum_{k>=0} (-1)^k*k^n/k!. - Benoit Cloitre, Jan 28 2003
E.g.f.: exp(1 - e^x).
a(n) = Sum_{k=0..n} (-1)^k S2(n, k), where S2(i, j) are the Stirling numbers of second kind A008277.
G.f.: (x/(1-x))*A(x/(1-x)) = 1 - A(x); the binomial transform equals the negative of the sequence shifted one place left. - Paul D. Hanna, Dec 08 2003
With different signs: g.f.: Sum_{k>=0} x^k/Product_{L=1..k} (1 + L*x).
Recurrence: a(n) = -Sum_{i=0..n-1} a(i)*C(n-1, i). - Ralf Stephan, Feb 24 2005
Let P be the lower-triangular Pascal-matrix, PE = exp(P-I) a matrix-exponential in exact integer arithmetic (or PE = lim exp(P)/exp(1) as limit of the exponential); then a(n) = PE^-1 [n,1]. - Gottfried Helms, Apr 08 2007
Take the series 0^n/0! - 1^n/1! + 2^n/2! - 3^n/3! + 4^n/4! + ... If n=0 then the result will be 1/e, where e = 2.718281828... If n=1, the result will be -1/e. If n=2, the result will be 0 (i.e., 0/e). As we continue for higher natural number values of n sequence for the Roa Uppuluri-Carpenter numbers is generated in the numerator, i.e., 1/e, -1/e, 0/e, 1/e, 1/e, -2/e, -9/e, -9/e, 50/e, 267/e, ... . - Peter Collins (pcolins(AT)eircom.net), Jun 04 2007
The sequence (-1)^n*a(n), with general term Sum_{k=0..n} (-1)^(n-k)*S2(n, k), has e.g.f. exp(1-exp(-x)). It also has Hankel transform (-1)^C(n+1,2)*A000178(n) and binomial transform A109747. - Paul Barry, Mar 31 2008
G.f.: 1 / (1 + x / (1 - x / (1 + x / (1 - 2*x / (1 + x / (1 - 3*x / (1 + x / ...))))))). - Michael Somos, May 12 2012
From Sergei N. Gladkovskii, Sep 28 2012 to Feb 07 2014: (Start)
Continued fractions:
G.f.: -1/U(0) where U(k) = x*k - 1 - x + x^2*(k+1)/U(k+1).
G.f.: 1/(U(0)+x) where U(k) = 1 + x - x*(k+1)/(1 + x/U(k+1)).
G.f.: 1+x/G(0) where G(k) = x*k - 1 + x^2*(k+1)/G(k+1).
G.f.: (1 - G(0))/(x+1) where G(k) = 1 - 1/(1-k*x)/(1-x/(x+1/G(k+1) )).
G.f.: 1 + x/(G(0)-x) where G(k) = x*k + 2*x - 1 - x*(x*k+x-1)/G(k+1).
G.f.: G(0)/(1+x), where G(k) = 1-x^2*(k+1)/(x^2*(k+1)+(x*k-1-x)*(x*k-1)/G(k+1)).
(End)
a(n) = B_n(-1), where B_n(x) is n-th Bell polynomial. - Vladimir Reshetnikov, Oct 20 2015
From Mélika Tebni, May 20 2022: (Start)
a(n) = Sum_{k=0..n} (-1)^k*Bell(k)*A129062(n, k).
a(n) = Sum_{k=0..n} (-1)^k*k!*A130191(n, k). (End)

A001861 Expansion of e.g.f. exp(2*(exp(x) - 1)).

Original entry on oeis.org

1, 2, 6, 22, 94, 454, 2430, 14214, 89918, 610182, 4412798, 33827974, 273646526, 2326980998, 20732504062, 192982729350, 1871953992254, 18880288847750, 197601208474238, 2142184050841734, 24016181943732414, 278028611833689478, 3319156078802044158, 40811417293301014150
Offset: 0

Views

Author

Keywords

Comments

Values of Bell polynomials: ways of placing n labeled balls into n unlabeled (but 2-colored) boxes.
First column of the square of the matrix exp(P)/exp(1) given in A011971. - Gottfried Helms, Mar 30 2007
Base matrix in A011971, second power in A078937, third power in A078938, fourth power in A078939. - Gottfried Helms, Apr 08 2007
Equals row sums of triangle A144061. - Gary W. Adamson, Sep 09 2008
Equals eigensequence of triangle A109128. - Gary W. Adamson, Apr 17 2009
Hankel transform is A108400. - Paul Barry, Apr 29 2009
The number of ways of putting n labeled balls into a set of bags and then putting the bags into 2 labeled boxes. An example is given below. - Peter Bala, Mar 23 2013
The f-vectors of n-dimensional hypercube are given by A038207 = exp[M*B(.,2)] = exp[M*A001861(.)] where M = A238385-I and (B(.,x))^n = B(n,x) are the Bell polynomials (cf. A008277). - Tom Copeland, Apr 17 2014
Moments of the Poisson distribution with mean 2. - Vladimir Reshetnikov, May 17 2016
Exponential self-convolution of Bell numbers (A000110). - Vladimir Reshetnikov, Oct 06 2016

Examples

			a(2) = 6: The six ways of putting 2 balls into bags (denoted by { }) and then into 2 labeled boxes (denoted by [ ]) are
01: [{1,2}] [ ];
02: [ ] [{1,2}];
03: [{1}] [{2}];
04: [{2}] [{1}];
05: [{1} {2}] [ ];
06: [ ] [{1} {2}].
- _Peter Bala_, Mar 23 2013
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For boxes of 1 color, see A000110, for 3 colors see A027710, for 4 colors see A078944, for 5 colors see A144180, for 6 colors see A144223, for 7 colors see A144263, for 8 colors see A221159.
First column of A078937.
Equals 2*A035009(n), n>0.
Row sums of A033306, A036073, A049020, and A144061.

Programs

  • Magma
    [&+[2^k*StirlingSecond(n, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, May 18 2019
  • Maple
    A001861:=n->add(Stirling2(n,k)*2^k, k=0..n); seq(A001861(n), n=0..20); # Wesley Ivan Hurt, Apr 18 2014
    # second Maple program:
    b:= proc(n, m) option remember;
         `if`(n=0, 2^m, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    Table[Sum[StirlingS2[n, k]*2^k, {k, 0, n}], {n, 0, 21}] (* Geoffrey Critzer, Oct 06 2009 *)
    mx = 16; p = 1; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
    Table[BellB[n, 2], {n, 0, 20}] (* Vaclav Kotesovec, Jan 06 2013 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(exp(2*(exp(x+x*O(x^n))-1)),n))
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, 2^m*x^m/prod(k=1,m,1-k*x +x*O(x^n))), n)} /* Paul D. Hanna, Feb 15 2012 */
    
  • PARI
    {a(n) = sum(k=0, n, 2^k*stirling(n, k, 2))} \\ Seiichi Manyama, Jul 28 2019
    
  • Sage
    expnums(30, 2) # Zerinvary Lajos, Jun 26 2008
    

Formula

a(n) = Sum_{k=0..n} 2^k*Stirling2(n, k). - Emeric Deutsch, Oct 20 2001
a(n) = exp(-2)*Sum_{k>=1} 2^k*k^n/k!. - Benoit Cloitre, Sep 25 2003
G.f. satisfies 2*(x/(1-x))*A(x/(1-x)) = A(x) - 1; twice the binomial transform equals the sequence shifted one place left. - Paul D. Hanna, Dec 08 2003
PE = exp(matpascal(5)-matid(6)); A = PE^2; a(n)=A[n,1]. - Gottfried Helms, Apr 08 2007
G.f.: 1/(1-2x-2x^2/(1-3x-4x^2/(1-4x-6x^2/(1-5x-8x^2/(1-6x-10x^2/(1-... (continued fraction). - Paul Barry, Apr 29 2009
O.g.f.: Sum_{n>=0} 2^n*x^n / Product_{k=1..n} (1-k*x). - Paul D. Hanna, Feb 15 2012
a(n) ~ exp(-2-n+n/LambertW(n/2))*n^n/LambertW(n/2)^(n+1/2). - Vaclav Kotesovec, Jan 06 2013
G.f.: (G(0) - 1)/(x-1)/2 where G(k) = 1 - 2/(1-k*x)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
G.f.: 1/Q(0) where Q(k) = 1 + x*k - x - x/(1 - 2*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 07 2013
G.f.: ((1+x)/Q(0)-1)/(2*x), where Q(k) = 1 - (k+1)*x - 2*(k+1)*x^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: T(0)/(1-2*x), where T(k) = 1 - 2*x^2*(k+1)/( 2*x^2*(k+1) - (1-2*x-x*k)*(1-3*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 24 2013
a(n) = Sum_{k=0..n} A033306(n,k) = Sum_{k=0..n} binomial(n,k)*Bell(k)*Bell(n-k), where Bell = A000110 (see Motzkin, p. 170). - Danny Rorabaugh, Oct 18 2015
a(0) = 1 and a(n) = 2 * Sum_{k=0..n-1} binomial(n-1,k)*a(k) for n > 0. - Seiichi Manyama, Sep 25 2017 [corrected by Ilya Gutkovskiy, Jul 12 2020]

A292861 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*(1 - exp(x))).

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, 0, 0, 1, -3, 2, 1, 0, 1, -4, 6, 2, 1, 0, 1, -5, 12, -3, -6, -2, 0, 1, -6, 20, -20, -21, -14, -9, 0, 1, -7, 30, -55, -20, 24, 26, -9, 0, 1, -8, 42, -114, 45, 172, 195, 178, 50, 0, 1, -9, 56, -203, 246, 370, 108, -111, 90, 267, 0, 1, -10, 72, -328, 679, 318, -1105, -2388, -3072, -2382, 413, 0
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2017

Keywords

Examples

			Square array begins:
   1,  1,   1,   1,   1,     1,     1, ...
   0, -1,  -2,  -3,  -4,    -5,    -6, ...
   0,  0,   2,   6,  12,    20,    30, ...
   0,  1,   2,  -3, -20,   -55,  -114, ...
   0,  1,  -6, -21, -20,    45,   246, ...
   0, -2, -14,  24, 172,   370,   318, ...
   0, -9,  26, 195, 108, -1105, -4074, ...
		

Crossrefs

Columns k=0..4 give A000007, A000587, A213170, A309084, A309085.
Rows n=0..1 give A000012, (-1)*A001477.
Main diagonal gives A292866.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1,
          -(1+add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Sep 25 2017
  • Mathematica
    A[n_, k_] := Sum[(-k)^j StirlingS2[n, j], {j, 0, n}];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 10 2021 *)
    A292861[n_, k_] := BellB[k, k - n];
    Table[A292861[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Peter Luschny, Dec 23 2021 *)

Formula

A(0,k) = 1 and A(n,k) = -k * Sum_{j=0..n-1} binomial(n-1,j) * A(j,k) for n > 0.
A(n,k) = Sum_{j=0..n} (-k)^j * Stirling2(n,j). - Seiichi Manyama, Jul 27 2019
A(n,k) = BellPolynomial(n, -k). - Peter Luschny, Dec 23 2021

A309084 a(n) = exp(3) * Sum_{k>=0} (-3)^k*k^n/k!.

Original entry on oeis.org

1, -3, 6, -3, -21, 24, 195, -111, -3072, -4053, 57003, 277854, -697539, -12261567, -29861778, 371727465, 3511027599, 2028432480, -188521156857, -1470389129931, 1655487186864, 121873222577823, 915525253963023, -2095901567014530, -103715912230195863, -836215492271268459
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 11 2019

Keywords

Crossrefs

Column k = 3 of A292861.

Programs

  • Magma
    [1] cat [(&+[((-3)^k*StirlingSecond(m, k)):k in [0..m]]):m in [1..25]]; // Marius A. Burtea, Jul 27 2019
  • Maple
    b:= proc(n, m) option remember; `if`(n=0,
          (-3)^m, m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..27);  # Alois P. Heinz, Jul 17 2022
  • Mathematica
    Table[Exp[3] Sum[(-3)^k k^n/k!, {k, 0, Infinity}], {n, 0, 25}]
    Table[BellB[n, -3], {n, 0, 25}]
    nmax = 25; CoefficientList[Series[Sum[(-3)^j x^j/Product[(1 - k x), {k, 1, j}] , {j, 0, nmax}], {x, 0, nmax}], x]
    nmax = 25; CoefficientList[Series[Exp[3 (1 - Exp[x])], {x, 0, nmax}], x] Range[0, nmax]!

Formula

G.f.: Sum_{j>=0} (-3)^j*x^j / Product_{k=1..j} (1 - k*x).
E.g.f.: exp(3*(1 - exp(x))).
a(n) = Sum_{k=0..n} (-3)^k * Stirling2(n,k).

A309085 a(n) = exp(4) * Sum_{k>=0} (-4)^k*k^n/k!.

Original entry on oeis.org

1, -4, 12, -20, -20, 172, 108, -2388, -3220, 47532, 161900, -1062740, -8532628, 13623212, 431041132, 1206169260, -17833021588, -169685043796, 180187176044, 13462762665132, 79377664422252, -553096696140884, -11670986989785492, -44371854928405844, 829755609457185644
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 11 2019

Keywords

Crossrefs

Column k = 4 of A292861.

Programs

  • Magma
    [1] cat [(&+[((-4)^k*StirlingSecond(m,k)):k in [0..m]]):m in [1..24]]; // Marius A. Burtea, Jul 11 2019
    
  • Mathematica
    Table[Exp[4] Sum[(-4)^k k^n/k!, {k, 0, Infinity}], {n, 0, 24}]
    Table[BellB[n, -4], {n, 0, 24}]
    nmax = 24; CoefficientList[Series[Sum[(-4)^j x^j/Product[(1 - k x), {k, 1, j}] , {j, 0, nmax}], {x, 0, nmax}], x]
    nmax = 24; CoefficientList[Series[Exp[4 (1 - Exp[x])], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    a(n) = sum(k=0, n, (-4)^k * stirling(n,k,2)); \\ Michel Marcus, Jul 12 2019

Formula

G.f.: Sum_{j>=0} (-4)^j*x^j / Product_{k=1..j} (1 - k*x).
E.g.f.: exp(4*(1 - exp(x))).
a(n) = Sum_{k=0..n} (-4)^k * Stirling2(n,k).

A308536 Expansion of e.g.f. exp(1 - exp(2*x)).

Original entry on oeis.org

1, -2, 0, 8, 16, -64, -576, -1152, 12800, 136704, 422912, -4464640, -72626176, -413966336, 1805123584, 64448004096, 651340611584, 1132294045696, -73000566390784, -1332193006190592, -10293724166750208, 56984418960539648, 3042980275005947904, 46913652420264329216
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Exp[1 - Exp[2x]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = -Sum[2^k Binomial[n - 1, k - 1] a[n - k], {k, n}]; a[0] = 1; Table[a[n], {n, 0, 23}]
    Table[2^n BellB[n, -1], {n, 0, 23}]

Formula

O.g.f.: 1/(1 + 2*x/(1 - 2*x/(1 + 2*x/(1 - 4*x/(1 + 2*x/(1 - 6*x/(1 + 2*x/(1 - 8*x/(1 + ...))))))))), a continued fraction.
a(0) = 1; a(n) = -Sum_{k=1..n} 2^k*binomial(n-1,k-1)*a(n-k).
a(n) = exp(1) * 2^n * Sum_{k>=0} (-1)^k*k^n/k!.
a(n) = 2^n * A000587(n).

A335980 Expansion of e.g.f. exp(2 * (1 - exp(-x)) + x).

Original entry on oeis.org

1, 3, 7, 11, 7, -5, 23, 75, -281, -101, 4663, -14229, -41721, 532667, -1464489, -8840053, 103689511, -313202725, -2348557705, 32041266859, -127039882425, -762423051013, 14393151011735, -81523161874741, -236027974047897, 8564406463119387
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 03 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Exp[2 (1 - Exp[-x]) + x], {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = a[n - 1] + 2 Sum[(-1)^(n - k - 1) Binomial[n - 1, k] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 25}]
  • PARI
    my(N=33, x='x+O('x^N)); Vec(serlaplace(exp(2 * (1 - exp(-x)) + x))) \\ Joerg Arndt, Jul 04 2020

Formula

a(n) = exp(2) * (-1)^n * Sum_{k>=0} (-2)^k * (k - 1)^n / k!.
a(0) = 1; a(n) = a(n-1) + 2 * Sum_{k=0..n-1} (-1)^(n-k-1) * binomial(n-1,k) * a(k).

A002633 Related to discordant permutations.

Original entry on oeis.org

1, -3, 5, -3, 9, -3, -51, -675, -5871, -46467, -331371, -1852227, -920295, 224455293, 5571057501, 104877816093, 1781775072801, 28519837563645, 431525731169061, 5994769814117757, 68879336771960361, 346333945918252797, -15047168730918615315, -793523760950138583843
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[ n_ ] := a[ n ]=(2n-5)a[ n-1 ]-(n-1)(n-4)a[ n-2 ]-(n-1)(n-2)a[ n-3 ]; a[ 0 ]=1; a[ 1 ]=-3; a[ 2 ]=5; Table[ a[ n ], {n, 0, 24} ] (* Typo fixed by Vaclav Kotesovec, Mar 20 2014 *)

Formula

a(n) - (2n-5)*a(n-1) + (n-1)*(n-4)*a(n-2) + (n-1)*(n-2)*a(n-3) = 0.
From Mélika Tebni, Mar 02 2022: (Start)
a(n) = Sum_{k=0..n} A213170(k)*A269953(n, k).
E.g.f.: exp(-x*(3 - x) / (1 - x)). (End)

Extensions

More terms from Wouter Meeussen

A341586 E.g.f.: (exp(1 - exp(x)) - 1)^2 / 2.

Original entry on oeis.org

1, 0, -4, -5, 22, 98, -5, -1458, -5136, 9053, 161328, 549822, -1954067, -30099188, -114161728, 500200027, 8875931202, 42311243830, -149028931789, -3816065804086, -24704581255020, 33033659868037, 2184285021783940, 20047242475274290, 30117550563701293
Offset: 2

Views

Author

Ilya Gutkovskiy, Feb 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 26; CoefficientList[Series[(Exp[1 - Exp[x]] - 1)^2/2, {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 2] &
    Table[Sum[(-1)^k StirlingS2[n, k] StirlingS2[k, 2], {k, 2, n}], {n, 2, 26}]

Formula

a(n) = Sum_{k=2..n} (-1)^k * Stirling2(n, k) * Stirling2(k, 2).
a(n) = Sum_{k=2..n} (-1)^k * Stirling2(n, k) * (2^(k-1) - 1).
a(n) = Sum_{k=1..n-1} binomial(n-1, k) * A000587(k) * A000587(n-k).
Showing 1-10 of 10 results.