A333715
a(n) = [x^(3*n)] ( (1 + x)/(1 - x) )^n.
Original entry on oeis.org
1, 2, 24, 326, 4672, 69002, 1038984, 15856206, 244396544, 3795731282, 59307908024, 931222155030, 14680871849152, 232236016459098, 3684420837693480, 58600075142247326, 934064636705476608, 14917333936933664674, 238641621366613695576, 3823510794994321546214, 61344017874989324388672
Offset: 0
Examples of congruences:
a(11) - a(1) = 931222155030 - 2 = (2^2)*(11^3)*163*1073069 == ( mod 11^3 )
a(3*7) - a(3) = 985413034951400888962602 - 326 = (2^2)*(7^4)*263* 390130947874776863 == 0 ( mod 7^3 )
a(5^2) - a(5) = 66292579025690123511768694002 - 69002 = (2^3)*(5^6)*39461* 13439614612035199009 == 0 ( mod 5^6 )
-
seq(add(binomial(n,k)*binomial(3*n+k-1,n-1), k = 0..n), n = 0..20);
-
Table[Binomial[3*n-1, n-1] * Hypergeometric2F1[-n, 3*n, 2*n+1, -1], {n, 0, 20}] (* Vaclav Kotesovec, Apr 04 2020 *)
A156894
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*n+k-1,k).
Original entry on oeis.org
1, 3, 19, 138, 1059, 8378, 67582, 552576, 4563235, 37972290, 317894394, 2674398268, 22590697614, 191475925332, 1627653567916, 13870754053388, 118464647799075, 1013709715774130, 8689197042438274, 74594573994750972, 641252293546113434, 5519339268476249676, 47558930664216470628
Offset: 0
-
A156894:= func< n | (&+[ Binomial(n,k)*Binomial(2*n+k-1,k): k in [0..n]]) >;
[A156894(n): n in [0..30]]; // G. C. Greubel, Jan 06 2022
-
a := n -> hypergeom([-n, 2*n], [1], -1);
seq(round(evalf(a(n),32)), n=0..19); # Peter Luschny, Aug 02 2014
-
Table[Sum[Binomial[n,k]Binomial[2n+k-1,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Nov 12 2014 *)
-
a(n) = if (n < 1, 1, sum(k=0, n, binomial(n,k)*binomial(2*n+k-1,k)));
vector(50, n, a(n-1)) \\ Altug Alkan, Oct 05 2015
-
[round( hypergeometric([-n, 2*n], [1], -1) ) for n in (0..30)] # G. C. Greubel, Jan 06 2022
A352373
a(n) = [x^n] ( 1/((1 - x)^2*(1 - x^2)) )^n for n >= 1.
Original entry on oeis.org
2, 12, 74, 484, 3252, 22260, 154352, 1080612, 7621526, 54071512, 385454940, 2758690636, 19810063392, 142662737376, 1029931873824, 7451492628260, 54013574117106, 392188079586468, 2851934621212598, 20766924805302984, 151403389181347160, 1105047483656041080
Offset: 1
n = 2: 12 distributions of 2 identical objects in 4 white and 2 black baskets
White Black
1) (0) (0) (0) (0) [2] [0]
2) (0) (0) (0) (0) [0] [2]
3) (2) (0) (0) (0) [0] [0]
4) (0) (2) (0) (0) [0] [0]
5) (0) (0) (2) (0) [0] [0]
6) (0) (0) (0) (2) [0] [0]
7) (1) (1) (0) (0) [0] [0]
8) (1) (0) (1) (0) [0] [0]
9) (1) (0) (0) (1) [0] [0]
10) (0) (1) (1) (0) [0] [0]
11) (0) (1) (0) (1) [0] [0]
12) (0) (0) (1) (1) [0] [0]
Examples of supercongruences:
a(7) - a(1) = 154352 - 2 = 2*(3^2)*(5^2)*(7^3) == 0 (mod 7^3);
a(2*11) - a(2) = 1105047483656041080 - 12 = (2^2)*3*(11^3)*13*101*103*2441* 209581 == 0 (mod 11^3).
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
Cf.
A000984,
A001448,
A001700,
A002003,
A091527,
A119259,
A156894,
A165817,
A211419,
A211421,
A234839,
A262733,
A276098,
A348410,
A351856,
A351857.
-
seq(add( binomial(3*n-2*k-1,n-2*k)*binomial(n+k-1,k), k = 0..floor(n/2)), n = 1..25);
-
nterms=25;Table[Sum[Binomial[3n-2k-1,n-2k]Binomial[n+k-1,k],{k,0,Floor[n/2]}],{n,nterms}] (* Paolo Xausa, Apr 10 2022 *)
A110171
Triangle read by rows: T(n,k) (0 <= k <= n) is the number of Delannoy paths of length n that start with exactly k (0,1) steps (or, equivalently, with exactly k (1,0) steps).
Original entry on oeis.org
1, 2, 1, 8, 4, 1, 38, 18, 6, 1, 192, 88, 32, 8, 1, 1002, 450, 170, 50, 10, 1, 5336, 2364, 912, 292, 72, 12, 1, 28814, 12642, 4942, 1666, 462, 98, 14, 1, 157184, 68464, 27008, 9424, 2816, 688, 128, 16, 1, 864146, 374274, 148626, 53154, 16722, 4482, 978, 162, 18, 1
Offset: 0
T(2,1)=4 because we have NED, NENE, NEEN and NDE.
Triangle starts:
1;
2, 1;
8, 4, 1;
38, 18, 6, 1;
192, 88, 32, 8, 1;
From _Paul Barry_, May 07 2009: (Start)
Production matrix is
2, 1,
4, 2, 1,
6, 2, 2, 1,
8, 2, 2, 2, 1,
10, 2, 2, 2, 2, 1,
12, 2, 2, 2, 2, 2, 1,
14, 2, 2, 2, 2, 2, 2, 1,
16, 2, 2, 2, 2, 2, 2, 2, 1,
18, 2, 2, 2, 2, 2, 2, 2, 2, 1 (End)
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
- Robert A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, Volume 6, 2003, Article 03.1.5.
- W.-j. Woan, The Lagrange Inversion Formula and Divisibility Properties, JIS 10 (2007) 07.7.8, example 5.
-
Q:=sqrt(1-6*z+z^2): G:=(1+z+Q)/Q/(2-t+t*z+t*Q): Gser:=simplify(series(G,z=0,13)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 10 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
-
T[n_, n_] = 1;
T[n_, k_] := Sum[Binomial[n, i] Binomial[2n-k-i-1, n-k-i], {i, 0, n}];
Table[T[n, k], {n, 0, 9}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jun 13 2019 *)
-
A110171 = lambda n,k : binomial(n, k)*hypergeometric([k-n, n], [k+1], -1)
for n in (0..9): [round(A110171(n,k).n(100)) for k in (0..n)] # Peter Luschny, Sep 17 2014
A114655
Triangle read by rows: T(n,k) is the number of Schroeder paths of length 2n and having k weak ascents (1<=k<=n). A Schroeder path of length 2n is a lattice path from (0,0) to (2n,0) consisting of U=(1,1), D=(1,-1) and H=(2,0) steps and never going below the x-axis. A weak ascent in a Schroeder path is a maximal sequence of consecutive U and H steps.
Original entry on oeis.org
2, 4, 2, 8, 12, 2, 16, 48, 24, 2, 32, 160, 160, 40, 2, 64, 480, 800, 400, 60, 2, 128, 1344, 3360, 2800, 840, 84, 2, 256, 3584, 12544, 15680, 7840, 1568, 112, 2, 512, 9216, 43008, 75264, 56448, 18816, 2688, 144, 2, 1024, 23040, 138240, 322560, 338688, 169344
Offset: 1
T(3,3)=2 because we have (U)D(U)D(H) and (U)D(U)D(U)D, where U=(1,1), D=(1,-1) and H=(2,0) (the weak ascents are shown between parentheses).
Triangle starts:
2;
4,2;
8,12,2;
16,48,24,2;
32,160,160,40,2.
-
T:=(n,k)->2^(n-k+1)*binomial(n,k)*binomial(n,k-1)/n: for n from 1 to 10 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
-
Flatten[Table[2^(n-k+1) Binomial[n,k] Binomial[n,k-1]/n,{n,10}, {k,n}]] (* Harvey P. Dale, Oct 01 2011 *)
A333579
a(n) = [x^n] ( (1 + x + x^2)/(1 - x + x^2) )^n.
Original entry on oeis.org
1, 2, 8, 32, 128, 502, 1904, 6862, 22784, 64832, 120008, -223606, -4311424, -33271366, -205802344, -1142307968, -5919738880, -29159028386, -137718099760, -626077804826, -2740865583872, -11523690799904, -46214332516520, -174358991625134, -601230820510720
Offset: 0
Examples of congruences a(p) - a(1) == 0 ( mod p^3 ):
a(11) - a(1) = -223606 - 2 = -(2^3)*3*7*11^3 == 0 ( mod 11^3 )
a(19) - a(1) = -626077804826 - 2 = -(2^2)*7*(19^3)*151*21589 == 0 ( mod 19^3 )
-
seq(add(add(add((-1)^(n-k-i-j)*binomial(n, k)*binomial(k, i)*binomial(n+j-1, j)*binomial(j, n-k-i-j), j = 0..n-k-i), i = 0..n-k), k = 0..n), n = 0..25);
#alternative program
G := x -> (1 + x + x^2)/(1 - x + x^2):
H := (x,n) -> series(G(x)^n, x, n+1):
a:= n -> coeff(H(x, n), x, n):
seq(a(n), n = 0..25);
-
a[n_]:=SeriesCoefficient[((1 + x + x^2)/(1 - x + x^2))^n,{x,0,n}]; Array[a,25,0] (* Stefano Spezia, Apr 30 2024 *)
-
a(n) = polcoeff(((1 + x + x^2)/(1 - x + x^2))^n+ O(x^(n+1)), n, x); \\ Michel Marcus, Mar 31 2020
A362408
a(n) = [x^n] (F(x)/F(-x))^n where F(x) = (1 + x)*(1 + x^3).
Original entry on oeis.org
1, 2, 8, 44, 256, 1502, 8912, 53510, 324352, 1980332, 12160008, 75015162, 464566144, 2886488906, 17985045464, 112333392044, 703119387648, 4409231140086, 27696141476336, 174229516043630, 1097501783152256, 6921721148337452, 43701895245221848
Offset: 0
-
F(x) := (1 + x)*(1 + x^3): G(x) := taylor(F(x)/F(-x),x = 0, 50); seq(coeftayl(G(x)^n, x = 0, n), n = 0..50);
A050147
a(n) = T(n,n-1), array T as in A050143. Also T(2n+1,n), array T as in A055807.
Original entry on oeis.org
1, 3, 12, 56, 280, 1452, 7700, 41456, 225648, 1238420, 6840988, 37986984, 211842696, 1185635388, 6655993380, 37463920608, 211350457824, 1194706644516, 6765300359468, 38370431711000, 217931108199672
Offset: 1
-
a[n_]:=Binomial[2*n-3,n-1]*Hypergeometric2F1[-n+1,-n,-2*n+3,-1];
Table[a[n],{n,1,21}] (* Detlef Meya, Dec 04 2023 *)
-
a(n):=if n=1 then 1 else sum((binomial(n,i+1))*binomial(n+i-2,n-2),i,0,n-2)+binomial(2*n-3,n-2); /* Vladimir Kruchinin, Nov 25 2014 */
A361743
Central circular Delannoy numbers: a(n) is the number of Delannoy loops on an n X n toroidal grid.
Original entry on oeis.org
1, 2, 16, 114, 768, 5010, 32016, 201698, 1257472, 7777314, 47800080, 292292946, 1779856128, 10799942322, 65336473104, 394246725570, 2373580947456, 14262064668738, 85546366040592, 512323096241714, 3063932437123840, 18300660294266322, 109183694129335056
Offset: 0
When n=2 see Figure 3 of "The circular Delannoy Category".
-
a[n_Integer?Positive] := Sum[k Binomial[n, k] Binomial[n, k] 2^k, {k, 1, n}]
-
a(n) = if(n == 0, 1, sum(k=0, n, binomial(n, k)^2*k*2^k)) \\ Winston de Greef, Mar 22 2023
-
from math import comb
def A361743(n): return sum(comb(n,k)**2*k<Chai Wah Wu, Mar 22 2023
A363418
Square array read by ascending antidiagonals: T(n,k) = [x^(n*k)] ((1 + x)/(1 - x))^k for n, k >= 1.
Original entry on oeis.org
2, 2, 8, 2, 16, 38, 2, 24, 146, 192, 2, 32, 326, 1408, 1002, 2, 40, 578, 4672, 14002, 5336, 2, 48, 902, 11008, 69002, 142000, 28814, 2, 56, 1298, 21440, 216002, 1038984, 1459810, 157184, 2, 64, 1766, 36992, 525002, 4320608, 15856206, 15158272, 864146
Offset: 1
Square array begins
n\k | 1 2 3 4 5 6 7
- - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 | 2 8 38 192 1002 5336 28814 ... (A002003)
2 | 2 16 146 1408 14002 142000 1459810 ... (A103885)
3 | 2 24 326 4672 69002 1038984 15856206 ... (A333715)
4 | 2 32 578 11008 216002 4320608 87588482 ...
5 | 2 40 902 21440 525002 13104184 331482062 ...
6 | 2 48 1298 36992 1086002 32497680 985524066 ...
7 | 2 56 1766 58688 2009002 70097384 2478629134 ...
8 | 2 64 2306 87552 3424002 136485568 5513464322 ...
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
-
# display as a square array
T := (n,k) -> add( binomial(k, j)*binomial((n + 1)*k - j - 1, n*k - j) , j = 0..k): for n from 1 to 10 do seq(T(n, k), k = 1..10) end do;
#alternative program
seq(print(seq(simplify(2*k*hypergeom([1 - k, 1 - n*k], [2], 2)), k = 1..10)), n = 1..10);
# display as a sequence
seq(seq(T(n+1-i, i), i = 1..n), n = 1..10);
-
T(n,k) = sum(j=0, k, binomial(k, j)*binomial((n + 1)*k - j - 1, n*k - j)) \\ Andrew Howroyd, Jan 05 2024
Comments