cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 79 results. Next

A004490 Colossally abundant numbers: m for which there is a positive exponent epsilon such that sigma(m)/m^{1 + epsilon} >= sigma(k)/k^{1 + epsilon} for all k > 1, so that m attains the maximum value of sigma(m)/m^{1 + epsilon}.

Original entry on oeis.org

2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800, 160626866400, 321253732800, 9316358251200, 288807105787200, 2021649740510400, 6064949221531200, 224403121196654400
Offset: 1

Views

Author

N. J. A. Sloane, Jan 22 2001

Keywords

References

  • S. Ramanujan, Highly composite numbers, Proc. London Math. Soc., 14 (1915), 347-407. Reprinted in Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, pp. 78-129. See esp. pp. 87, 115.

Crossrefs

A subsequence of A004394 (superabundant numbers).
Cf. A002093 (highly abundant numbers), A002182, A005101 (abundant numbers), A006038, A189228 (superabundant numbers that are not colossally abundant).

Formula

a(n) = Product_{k=1..n} A073751(k). - Jeppe Stig Nielsen, Nov 28 2021

A119347 Number of distinct sums of distinct divisors of n. Here 0 (as the sum of an empty subset) is excluded from the count.

Original entry on oeis.org

1, 3, 3, 7, 3, 12, 3, 15, 7, 15, 3, 28, 3, 15, 15, 31, 3, 39, 3, 42, 15, 15, 3, 60, 7, 15, 15, 56, 3, 72, 3, 63, 15, 15, 15, 91, 3, 15, 15, 90, 3, 96, 3, 63, 55, 15, 3, 124, 7, 63, 15, 63, 3, 120, 15, 120, 15, 15, 3, 168, 3, 15, 59, 127, 15, 144, 3, 63, 15, 142, 3, 195, 3, 15, 63, 63
Offset: 1

Views

Author

Emeric Deutsch, May 15 2006

Keywords

Comments

If a(n)=sigma(n) (=sum of the divisors of n =A000203(n); i.e. all numbers from 1 to sigma(n) are sums of distinct divisors of n), then n is called a practical number (A005153). The actual sums obtained from the divisors of n are given in row n of the triangle A119348.
The records appear to occur at the highly abundant numbers, A002093, excluding 3 and 10. For n in A174533, a(n) = sigma(n)-2. - T. D. Noe, Mar 29 2010
The indices of records occur at the highly abundant numbers, excluding 3 and 10, if Jaycob Coleman's conjecture at A002093 that all these numbers are practical numbers (A005153) is true. - Amiram Eldar, Jun 13 2020
Zumkeller numbers A083207 give the positions of even terms in this sequence (likewise, the positions of odd terms in A308605). - Antti Karttunen and Ilya Gutkovskiy, Nov 29 2024

Examples

			a(5)=3 because the divisors of 5 are 1 and 5 and all the possible sums: are 1,5 and 6; a(6)=12 because we can form all sums 1,2,...,12 by adding up the terms of a nonempty subset of the divisors 1,2,3,6 of 6.
		

Crossrefs

One less than A308605.
Cf. A083207 (positions of even terms).

Programs

  • Haskell
    import Data.List (subsequences, nub)
    a119347 = length . nub . map sum . tail . subsequences . a027750_row'
    -- Reinhard Zumkeller, Jun 27 2015
    
  • Maple
    with(numtheory): with(linalg): a:=proc(n) local dl,t: dl:=convert(divisors(n),list): t:=tau(n): nops({seq(innerprod(dl,convert(2^t+i,base,2)[1..t]),i=1..2^t-1)}) end: seq(a(n),n=1..90);
  • Mathematica
    a[n_] := Total /@ Rest[Subsets[Divisors[n]]] // Union // Length;
    Array[a, 100] (* Jean-François Alcover, Jan 27 2018 *)
  • PARI
    A119347(n) = { my(p=1); fordiv(n, d, p *= (1 + 'x^d)); sum(i=1,poldegree(p),(0Antti Karttunen, Nov 28 2024
    
  • PARI
    A119347(n) = { my(c=[0]); fordiv(n, d, c = Set(concat(c,vector(#c,i,c[i]+d)))); (#c)-1; }; \\ after Chai Wah Wu's Python-code, Antti Karttunen, Nov 29 2024
  • Python
    from sympy import divisors
    def A119347(n):
        c = {0}
        for d in divisors(n,generator=True):
            c |=  {a+d for a in c}
        return len(c)-1 # Chai Wah Wu, Jul 05 2023
    

Formula

For n > 1, 3 <= a(n) <= sigma(n). - Charles R Greathouse IV, Feb 11 2019
For p prime, a(p) = 3. For k >= 0, a(2^k) = 2^(k + 1) - 1. - Ctibor O. Zizka, Oct 19 2023
From Antti Karttunen, Nov 29 2024: (Start)
a(n) = A308605(n)-1.
a(n) = 2*(A237290(n)/A000203(n)) - 1. [Found by Sequence Machine. See A237290.]
a(n) <= A100587(n).
(End)

Extensions

Definition clarified by Antti Karttunen, Nov 29 2024

A034090 Numbers k whose sum of proper divisors (A001065(k)) exceeds that of all smaller numbers.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 18, 20, 24, 30, 36, 48, 60, 72, 84, 90, 96, 108, 120, 144, 168, 180, 216, 240, 288, 300, 336, 360, 420, 480, 504, 540, 600, 660, 720, 840, 960, 1008, 1080, 1200, 1260, 1440, 1560, 1680, 1980, 2100, 2160, 2340, 2400, 2520, 2880, 3120, 3240
Offset: 1

Views

Author

Keywords

Comments

The highly abundant numbers A002093 are a subsequence since if sigma(k) - k > sigma(m) - m for all m < n then sigma(k) > sigma(m). - Charles R Greathouse IV, Sep 13 2016

Examples

			From _William A. Tedeschi_, Aug 19 2010: (Start)
-- 12: 1+2+3+4+6 = 16
13: 1 = 1
14: 1+2+7 = 10
15: 1+3+5 = 9
16: 1+2+4+8 = 15
17: 1 = 1
-- 18: 1+2+3+6+9 = 21
As 12 had the previous (earliest) highest, it is a term; then since 18 has the new highest, it is a term. (End)
Table of initial values of n, a(n), A034091(n) = f(a(n)), where f(k) = sigma(k)-k = A001065(k):
1, 1, 0
2, 2, 1
3, 4, 3
4, 6, 6
5, 8, 7
6, 10, 8
7, 12, 16
8, 18, 21
9, 20, 22
10, 24, 36
11, 30, 42
12, 36, 55
13, 48, 76
14, 60, 108
15, 72, 123
16, 84, 140
17, 90, 144
18, 96, 156
19, 108, 172
20, 120, 240
		

Crossrefs

This sequence and A034091 together give the record high points in A001065.
Supersequence of A002093.

Programs

  • Mathematica
    A = {}; mx = -1; For[ k = 1, k < 10000, k++, t = DivisorSigma[1, k] - k; If[ t > mx, mx = t; AppendTo[A, k]]]; A (* slightly modified by Robert G. Wilson v, Aug 28 2022 *)
    DeleteDuplicates[Table[{n,DivisorSigma[1,n]-n},{n,5000}],GreaterEqual[ #1[[2]],#2[[2]]]&][[All,1]] (* Harvey P. Dale, Jan 15 2023 *)
  • PARI
    r=0; for(n=1,1e6, t=sigma(n)-n; if(t>r, r=t; print1(n", "))) \\ Charles R Greathouse IV, Sep 13 2016

Extensions

More terms from Erich Friedman

A093036 Number of palindromic divisors of a(n) sets a new record.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 66, 132, 264, 792, 1848, 2772, 5544, 13332, 14652, 24024, 26664, 72072, 79992, 186648, 205128, 264264, 559944, 792792, 1333332, 2666664, 7279272, 7999992, 13333320, 14666652, 26690664, 29333304, 80071992, 134666532, 269333064, 807999192
Offset: 1

Views

Author

Jason Earls, May 08 2004

Keywords

Comments

Beginning with 132, it appears that all entries are congruent mod 11*12; 11 to produce palindromic divisors and 12 for numerous divisors. - Robert G. Wilson v, May 14 2004
The number of palindromic divisors of a(n) are 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 19, 20, 21, 22, 24, 27, 28, 29, 30, 33, 37, 39, 43, 50, 52, 54, 57, 59, 61, 68, 72, 80, 90.
Every term is of the form Product_{i>=1} A226732(i)^e(i) for e(i) >= 0. - David A. Corneth, Jan 10 2021

References

  • Jason Earls, "Palindions," Mathematical Bliss, Pleroma Publications, 2009, pages 115-120. ASIN: B002ACVZ6O. [From Jason Earls, Nov 25 2009]

Crossrefs

Programs

  • Mathematica
    palindromicQ[n_, b_:10] := If[FromDigits[Reverse[IntegerDigits[n, b]], b] == n, True, False]; a = 0; Do[c = Count[palindromicQ[ # ] & /@ Divisors[n], True]; If[c > a, Print[n]; a = c], {n, 300000000}] (* Robert G. Wilson v, May 14 2004 with a small modification from Alonso del Arte to permit reuse in many other sequences' programs *)

Extensions

Edited and extended by Robert G. Wilson v, May 14 2004
a(35)-a(36) from Chai Wah Wu, Jan 21 2021

A030057 Least number that is not a sum of distinct divisors of n.

Original entry on oeis.org

2, 4, 2, 8, 2, 13, 2, 16, 2, 4, 2, 29, 2, 4, 2, 32, 2, 40, 2, 43, 2, 4, 2, 61, 2, 4, 2, 57, 2, 73, 2, 64, 2, 4, 2, 92, 2, 4, 2, 91, 2, 97, 2, 8, 2, 4, 2, 125, 2, 4, 2, 8, 2, 121, 2, 121, 2, 4, 2, 169, 2, 4, 2, 128, 2, 145, 2, 8, 2, 4, 2, 196, 2, 4, 2, 8, 2, 169, 2, 187, 2, 4, 2, 225, 2, 4, 2, 181
Offset: 1

Views

Author

Keywords

Comments

a(n) = 2 if and only if n is odd. a(2^n) = 2^(n+1). - Emeric Deutsch, Aug 07 2005
a(n) > n if and only if n belongs to A005153, and then a(n) = sigma(n) + 1. - Michel Marcus, Oct 18 2013
The most frequent values are 2 (50%), 4 (16.7%), 8 (5.7%), 13 (3.2%), 16 (2.4%), 29 (1.3%), 32 (1%), 40, 43, 61, ... - M. F. Hasler, Apr 06 2014
The indices of records occur at the highly abundant numbers, excluding 3 and 10, if Jaycob Coleman's conjecture at A002093 that all these numbers are practical numbers (A005153) is true. - Amiram Eldar, Jun 13 2020

Examples

			a(10)=4 because 4 is the least positive integer that is not a sum of distinct divisors (namely 1,2,5 and 10) of 10.
		

Crossrefs

Distinct elements form A030058.
Cf. A027750.

Programs

  • Haskell
    a030057 n = head $ filter ((== 0) . p (a027750_row n)) [1..] where
       p _      0 = 1
       p []     _ = 0
       p (k:ks) x = if x < k then 0 else p ks (x - k) + p ks x
    -- Reinhard Zumkeller, Feb 27 2012
    
  • Maple
    with(combinat): with(numtheory): for n from 1 to 100 do div:=powerset(divisors(n)): b[n]:=sort({seq(sum(div[i][j],j=1..nops(div[i])),i=1..nops(div))}) od: for n from 1 to 100 do B[n]:={seq(k,k=0..1+sigma(n))} minus b[n] od: seq(B[n][1],n=1..100); # Emeric Deutsch, Aug 07 2005
  • Mathematica
    a[n_] :=  First[ Complement[ Range[ DivisorSigma[1, n] + 1], Total /@ Subsets[ Divisors[n]]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 02 2012 *)
  • Python
    from sympy import divisors
    def A030057(n):
        c = {0}
        for d in divisors(n,generator=True):
            c |=  {a+d for a in c}
        k = 1
        while k in c:
            k += 1
        return k # Chai Wah Wu, Jul 05 2023

Extensions

Edited by N. J. A. Sloane, May 05 2007

A034885 Record values of sigma(n).

Original entry on oeis.org

1, 3, 4, 7, 12, 15, 18, 28, 31, 39, 42, 60, 72, 91, 96, 124, 168, 195, 224, 234, 252, 280, 360, 403, 480, 546, 576, 600, 744, 819, 868, 992, 1170, 1344, 1512, 1560, 1680, 1860, 1872, 2016, 2418, 2880, 3048, 3224, 3600, 3844, 4368, 4914, 5040, 5082, 5952, 6045
Offset: 1

Views

Author

Keywords

Comments

RECORDS transform of A000203.

Crossrefs

Programs

  • Mathematica
    DeleteDuplicates[DivisorSigma[1,Range[5000]],GreaterEqual] (* Harvey P. Dale, Dec 20 2023 *)

Formula

a(n) = A000203(A002093(n)).

A285614 Unitary highly abundant numbers: numbers n such that usigma(n) > usigma(m) for all m < n, where usigma(n) = sum of unitary divisors of n (A034448).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 10, 12, 14, 18, 21, 22, 26, 30, 42, 60, 66, 78, 90, 102, 114, 130, 138, 150, 170, 174, 186, 210, 294, 318, 330, 390, 462, 510, 546, 570, 690, 798, 858, 870, 930, 1050, 1110, 1218, 1230, 1290, 1410, 1470, 1554, 1590, 1722, 1770, 1830, 1974
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2017

Keywords

Comments

Corresponds to A002093 (Highly abundant numbers), with usigma(n) = sum of unitary divisors of n (divisors d such that gcd(d, n/d)=1, A034448) instead of sigma(n) (sum of divisors, A000203).
Contains many terms of A280013 (sum of squarefree divisors instead of unitary divisors), but not all of them - the first terms of A280013 that are not in this sequence are 16530, 26070, 8734110, 8757210,...

Examples

			The first 9 values of usigma(n) for n=1..9 are: 1, 3, 4, 5, 6, 12, 8, 9, 10. usigma(10)=18 is higher than these 9 values, thus 10 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; a = {}; k = 0; Do[s = usigma[n]; If[s > k, AppendTo[a, n]; k = s], {n, 1000}]; a

A234521 Sequence of numbers from A234519 such that A234519(n) > A234519(k) for all k < n.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 44, 48, 50, 54, 56, 60, 64, 66, 72, 78, 80, 84, 90, 96, 100, 102, 108, 112, 120, 126, 132, 144, 150, 156, 160, 168, 180, 192, 200, 204, 210, 216, 220, 224, 228, 240, 252, 264, 276, 280, 288, 300
Offset: 1

Views

Author

Jaroslav Krizek, Jan 13 2014

Keywords

Comments

A234519 = natural numbers n sorted by decreasing values of number k(n) = sigma(n)^(1/n), where sigma(n) = A000203(n) = the sum of divisors of n.
Conjecture: a(n) = supersequence of A002093 - highly abundant numbers - numbers n such that sigma(n) > sigma(m) for all m < n.

Crossrefs

A065385 Numbers m at which value of cototient function (A051953) reaches a new record: cototient(m) > cototient(k) for all k < m.

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 102, 108, 114, 120, 126, 132, 138, 144, 150, 168, 180, 198, 204, 210, 240, 252, 264, 270, 294, 300, 330, 360, 378, 390, 420, 450, 462, 480, 504, 510, 540, 546, 570, 600, 630, 660, 690, 714
Offset: 1

Views

Author

Labos Elemer, Nov 05 2001

Keywords

Comments

For totient values prime numbers give similar records.

Examples

			a(8) = 30 because for m = 1...29 the cototient values are all smaller than cototient(30) = 22 = A065386(8) and this is the 8th number at which such a record is reached; analogous sequences are A002093, A002182, A015702 or A005250 for functions other than cototient.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Array[# - EulerPhi@ # &, 10^3]}, Map[FirstPosition[s, #][[1]] &, Union@ FoldList[Max, s]]] (* Michael De Vlieger, May 16 2018 *)
  • PARI
    r=-1; for(n=1,1000,d=n-eulerphi(n); if(r
    				
  • PARI
    { n=0; x=-1; for (m=1, 10^9, c=m - eulerphi(m); if (c > x, x=c; write("b065385.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 17 2009

Formula

a=0; s=0; Do[s=n-EulerPhi[n]; If[s>a, a=s; Print[n]], {n, 1, 10000}]

A292983 Bi-unitary highly abundant numbers: numbers n such that bsigma(n) > bsigma(m) for all m < n, where bsigma is the sum of the bi-unitary divisors function (A188999).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 21, 22, 24, 30, 40, 42, 48, 54, 66, 72, 78, 88, 96, 120, 160, 168, 210, 216, 240, 264, 312, 330, 360, 378, 384, 408, 456, 480, 600, 648, 672, 840, 1056, 1080, 1320, 1512, 1560, 1680, 1848, 1920, 2040, 2184, 2280, 2640
Offset: 1

Views

Author

Amiram Eldar, Sep 27 2017

Keywords

Comments

Analogous to highly abundant numbers (A002093) with bi-unitary sigma (A188999) instead of sigma (A000203).

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; a = {}; bmax = 0; Do[b = bsigma[n]; If[b > bmax, AppendTo[a, n]; bmax = b], {n, 3000}]; a (* after Michael De Vlieger at A188999 *)
Previous Showing 11-20 of 79 results. Next