cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A000203 a(n) = sigma(n), the sum of the divisors of n. Also called sigma_1(n).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144
Offset: 1

Views

Author

Keywords

Comments

Multiplicative: If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (this sequence) (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
A number n is abundant if sigma(n) > 2n (cf. A005101), perfect if sigma(n) = 2n (cf. A000396), deficient if sigma(n) < 2n (cf. A005100).
a(n) is the number of sublattices of index n in a generic 2-dimensional lattice. - Avi Peretz (njk(AT)netvision.net.il), Jan 29 2001 [In the language of group theory, a(n) is the number of index-n subgroups of Z x Z. - Jianing Song, Nov 05 2022]
The sublattices of index n are in one-to-one correspondence with matrices [a b; 0 d] with a>0, ad=n, b in [0..d-1]. The number of these is Sum_{d|n} d = sigma(n), which is a(n). A sublattice is primitive if gcd(a,b,d) = 1; the number of these is n * Product_{p|n} (1+1/p), which is A001615. [Cf. Grady reference.]
Sum of number of common divisors of n and m, where m runs from 1 to n. - Naohiro Nomoto, Jan 10 2004
a(n) is the cardinality of all extensions over Q_p with degree n in the algebraic closure of Q_p, where p>n. - Volker Schmitt (clamsi(AT)gmx.net), Nov 24 2004. Cf. A100976, A100977, A100978 (p-adic extensions).
Let s(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) + a(n-12) + a(n-15) - a(n-22) - a(n-26) + ..., then a(n) = s(n) if n is not pentagonal, i.e., n != (3 j^2 +- j)/2 (cf. A001318), and a(n) is instead s(n) - ((-1)^j)*n if n is pentagonal. - Gary W. Adamson, Oct 05 2008 [corrected Apr 27 2012 by William J. Keith based on Ewell and by Andrey Zabolotskiy, Apr 08 2022]
Write n as 2^k * d, where d is odd. Then a(n) is odd if and only if d is a square. - Jon Perry, Nov 08 2012
Also total number of parts in the partitions of n into equal parts. - Omar E. Pol, Jan 16 2013
Note that sigma(3^4) = 11^2. On the other hand, Kanold (1947) shows that the equation sigma(q^(p-1)) = b^p has no solutions b > 2, q prime, p odd prime. - N. J. A. Sloane, Dec 21 2013, based on postings to the Number Theory Mailing List by Vladimir Letsko and Luis H. Gallardo
Limit_{m->infinity} (Sum_{n=1..prime(m)} a(n)) / prime(m)^2 = zeta(2)/2 = Pi^2/12 (A072691). See more at A244583. - Richard R. Forberg, Jan 04 2015
a(n) + A000005(n) is an odd number iff n = 2m^2, m>=1. - Richard R. Forberg, Jan 15 2015
a(n) = a(n+1) for n = 14, 206, 957, 1334, 1364 (A002961). - Zak Seidov, May 03 2016
Equivalent to the Riemann hypothesis: a(n) < H(n) + exp(H(n))*log(H(n)), for all n>1, where H(n) is the n-th harmonic number (Jeffrey Lagarias). See A057641 for more details. - Ilya Gutkovskiy, Jul 05 2016
a(n) is the total number of even parts in the partitions of 2*n into equal parts. More generally, a(n) is the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 18 2019
From Jianing Song, Nov 05 2022: (Start)
a(n) is also the number of order-n subgroups of C_n X C_n, where C_n is the cyclic group of order n. Proof: by the correspondence theorem in the group theory, there is a one-to-one correspondence between the order-n subgroups of C_n X C_n = (Z x Z)/(nZ x nZ) and the index-n subgroups of Z x Z containing nZ x nZ. But an index-n normal subgroup of a (multiplicative) group G contains {g^n : n in G} automatically. The desired result follows from the comment from Naohiro Nomoto above.
The number of subgroups of C_n X C_n that are isomorphic to C_n is A001615(n). (End)

Examples

			For example, 6 is divisible by 1, 2, 3 and 6, so sigma(6) = 1 + 2 + 3 + 6 = 12.
Let L = <V,W> be a 2-dimensional lattice. The 7 sublattices of index 4 are generated by <4V,W>, <V,4W>, <4V,W+-V>, <2V,2W>, <2V+W,2W>, <2V,2W+V>. Compare A001615.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 116ff.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 407.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 2nd formula.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, pp. 141, 166.
  • H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003.
  • Ross Honsberger, "Mathematical Gems, Number One," The Dolciani Mathematical Expositions, Published and Distributed by The Mathematical Association of America, page 116.
  • Kanold, Hans Joachim, Kreisteilungspolynome und ungerade vollkommene Zahlen. (German), Ber. Math.-Tagung Tübingen 1946, (1947). pp. 84-87.
  • M. Krasner, Le nombre des surcorps primitifs d'un degré donné et le nombre des surcorps métagaloisiens d'un degré donné d'un corps de nombres p-adiques. Comptes Rendus Hebdomadaires, Académie des Sciences, Paris 254, 255, 1962.
  • A. Lubotzky, Counting subgroups of finite index, Proceedings of the St. Andrews/Galway 93 group theory meeting, Th. 2.1. LMS Lecture Notes Series no. 212 Cambridge University Press 1995.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.1, page 77.
  • G. Pólya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ Press 1954, page 92.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 91, 395.
  • Robert M. Young, Excursions in Calculus, The Mathematical Association of America, 1992 p. 361.

Crossrefs

See A034885, A002093 for records. Bisections give A008438, A062731. Values taken are listed in A007609. A054973 is an inverse function.
For partial sums see A024916.
Row sums of A127093.
Cf. A009194, A082062 (gcd(a(n),n) and its largest prime factor), A179931, A192795 (gcd(a(n),A001157(n)) and largest prime factor).
Cf. also A034448 (sum of unitary divisors).
Cf. A007955 (products of divisors).
A001227, A000593 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016

Programs

  • GAP
    A000203:=List([1..10^2],n->Sigma(n)); # Muniru A Asiru, Oct 01 2017
    
  • Haskell
    a000203 n = product $ zipWith (\p e -> (p^(e+1)-1) `div` (p-1)) (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, May 07 2012
    
  • Magma
    [SumOfDivisors(n): n in [1..70]];
    
  • Magma
    [DivisorSigma(1,n): n in [1..70]]; // Bruno Berselli, Sep 09 2015
    
  • Maple
    with(numtheory): A000203 := n->sigma(n); seq(A000203(n), n=1..100);
  • Mathematica
    Table[ DivisorSigma[1, n], {n, 100}]
    a[ n_] := SeriesCoefficient[ QPolyGamma[ 1, 1, q] / Log[q]^2, {q, 0, n}]; (* Michael Somos, Apr 25 2013 *)
  • Maxima
    makelist(divsum(n),n,1,1000); /* Emanuele Munarini, Mar 26 2011 */
    
  • MuPAD
    numlib::sigma(n)$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n<1, 0, sigma(n))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) /(1 - p*X))[n])};
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum( k=1, n, x^k / (1 - x^k)^2, x * O(x^n)), n))}; /* Michael Somos, Jan 29 2005 */
    
  • PARI
    max_n = 30; ser = - sum(k=1,max_n,log(1-x^k)); a(n) = polcoeff(ser,n)*n \\ Gottfried Helms, Aug 10 2009
    
  • Python
    from sympy import divisor_sigma
    def a(n): return divisor_sigma(n, 1)
    print([a(n) for n in range(1, 71)]) # Michael S. Branicky, Jan 03 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def a(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Feb 25 2024
    (APL, Dyalog dialect) A000203 ← +/{ð←⍵{(0=⍵|⍺)/⍵}⍳⌊⍵*÷2 ⋄ 1=⍵:ð ⋄ ð,(⍵∘÷)¨(⍵=(⌊⍵*÷2)*2)↓⌽ð} ⍝ Antti Karttunen, Feb 20 2024
  • SageMath
    [sigma(n, 1) for n in range(1, 71)]  # Zerinvary Lajos, Jun 04 2009
    
  • Scheme
    (definec (A000203 n) (if (= 1 n) n (let ((p (A020639 n)) (e (A067029 n))) (* (/ (- (expt p (+ 1 e)) 1) (- p 1)) (A000203 (A028234 n)))))) ;; Uses macro definec from http://oeis.org/wiki/Memoization#Scheme - Antti Karttunen, Nov 25 2017
    
  • Scheme
    (define (A000203 n) (let ((r (sqrt n))) (let loop ((i (inexact->exact (floor r))) (s (if (integer? r) (- r) 0))) (cond ((zero? i) s) ((zero? (modulo n i)) (loop (- i 1) (+ s i (/ n i)))) (else (loop (- i 1) s)))))) ;; (Stand-alone program) - Antti Karttunen, Feb 20 2024
    

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1). - David W. Wilson, Aug 01 2001
For the following bounds and many others, see Mitrinovic et al. - N. J. A. Sloane, Oct 02 2017
If n is composite, a(n) > n + sqrt(n).
a(n) < n*sqrt(n) for all n.
a(n) < (6/Pi^2)*n^(3/2) for n > 12.
G.f.: -x*deriv(eta(x))/eta(x) where eta(x) = Product_{n>=1} (1-x^n). - Joerg Arndt, Mar 14 2010
L.g.f.: -log(Product_{j>=1} (1-x^j)) = Sum_{n>=1} a(n)/n*x^n. - Joerg Arndt, Feb 04 2011
Dirichlet convolution of phi(n) and tau(n), i.e., a(n) = sum_{d|n} phi(n/d)*tau(d), cf. A000010, A000005.
a(n) is odd iff n is a square or twice a square. - Robert G. Wilson v, Oct 03 2001
a(n) = a(n*prime(n)) - prime(n)*a(n). - Labos Elemer, Aug 14 2003 (Clarified by Omar E. Pol, Apr 27 2016)
a(n) = n*A000041(n) - Sum_{i=1..n-1} a(i)*A000041(n-i). - Jon Perry, Sep 11 2003
a(n) = -A010815(n)*n - Sum_{k=1..n-1} A010815(k)*a(n-k). - Reinhard Zumkeller, Nov 30 2003
a(n) = f(n, 1, 1, 1), where f(n, i, x, s) = if n = 1 then s*x else if p(i)|n then f(n/p(i), i, 1+p(i)*x, s) else f(n, i+1, 1, s*x) with p(i) = i-th prime (A000040). - Reinhard Zumkeller, Nov 17 2004
Recurrence: n^2*(n-1)*a(n) = 12*Sum_{k=1..n-1} (5*k*(n-k) - n^2)*a(k)*a(n-k), if n>1. - Dominique Giard (dominique.giard(AT)gmail.com), Jan 11 2005
G.f.: Sum_{k>0} k * x^k / (1 - x^k) = Sum_{k>0} x^k / (1 - x^k)^2. Dirichlet g.f.: zeta(s)*zeta(s-1). - Michael Somos, Apr 05 2003. See the Hardy-Wright reference, p. 312. first equation, and p. 250, Theorem 290. - Wolfdieter Lang, Dec 09 2016
For odd n, a(n) = A000593(n). For even n, a(n) = A000593(n) + A074400(n/2). - Jonathan Vos Post, Mar 26 2006
Equals the inverse Moebius transform of the natural numbers. Equals row sums of A127093. - Gary W. Adamson, May 20 2007
A127093 * [1/1, 1/2, 1/3, ...] = [1/1, 3/2, 4/3, 7/4, 6/5, 12/6, 8/7, ...]. Row sums of triangle A135539. - Gary W. Adamson, Oct 31 2007
a(n) = A054785(2*n) - A000593(2*n). - Reinhard Zumkeller, Apr 23 2008
a(n) = n*Sum_{k=1..n} A060642(n,k)/k*(-1)^(k+1). - Vladimir Kruchinin, Aug 10 2010
Dirichlet convolution of A037213 and A034448. - R. J. Mathar, Apr 13 2011
G.f.: A(x) = x/(1-x)*(1 - 2*x*(1-x)/(G(0) - 2*x^2 + 2*x)); G(k) = -2*x - 1 - (1+x)*k + (2*k+3)*(x^(k+2)) - x*(k+1)*(k+3)*((-1 + (x^(k+2)))^2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2011
a(n) = A001065(n) + n. - Mats Granvik, May 20 2012
a(n) = A006128(n) - A220477(n). - Omar E. Pol, Jan 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A196020(n,k). - conjectured by Omar E. Pol, Feb 02 2013, and proved by Max Alekseyev, Nov 17 2013
a(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*A000330(k)*A000716(n-A000217(k)). - Mircea Merca, Mar 05 2014
a(n) = A240698(n, A000005(n)). - Reinhard Zumkeller, Apr 10 2014
a(n) = Sum_{d^2|n} A001615(n/d^2) = Sum_{d^3|n} A254981(n/d^3). - Álvar Ibeas, Mar 06 2015
a(3*n) = A144613(n). a(3*n + 1) = A144614(n). a(3*n + 2) = A144615(n). - Michael Somos, Jul 19 2015
a(n) = Sum{i=1..n} Sum{j=1..i} cos((2*Pi*n*j)/i). - Michel Lagneau, Oct 14 2015
a(n) = A000593(n) + A146076(n). - Omar E. Pol, Apr 05 2016
a(n) = A065475(n) + A048050(n). - Omar E. Pol, Nov 28 2016
a(n) = (Pi^2*n/6)*Sum_{q>=1} c_q(n)/q^2, with the Ramanujan sums c_q(n) given in A054533 as a c_n(k) table. See the Hardy reference, p. 141, or Hardy-Wright, Theorem 293, p. 251. - Wolfdieter Lang, Jan 06 2017
G.f. also (1 - E_2(q))/24, with the g.f. E_2 of A006352. See e.g., Hardy, p. 166, eq. (10.5.5). - Wolfdieter Lang, Jan 31 2017
From Antti Karttunen, Nov 25 2017: (Start)
a(n) = A048250(n) + A162296(n).
a(n) = A092261(n) * A295294(n). [This can be further expanded, see comment in A291750.] (End)
a(n) = A000593(n) * A038712(n). - Ivan N. Ianakiev and Omar E. Pol, Nov 26 2017
a(n) = Sum_{q=1..n} c_q(n) * floor(n/q), where c_q(n) is the Ramanujan's sum function given in A054533. - Daniel Suteu, Jun 14 2018
a(n) = Sum_{k=1..n} gcd(n, k) / phi(n / gcd(n, k)), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 21 2018
a(n) = (2^(1 + (A000005(n) - A001227(n))/(A000005(n) - A183063(n))) - 1)*A000593(n) = (2^(1 + (A183063(n)/A001227(n))) - 1)*A000593(n). - Omar E. Pol, Nov 03 2018
a(n) = Sum_{i=1..n} tau(gcd(n, i)). - Ridouane Oudra, Oct 15 2019
From Peter Bala, Jan 19 2021: (Start)
G.f.: A(x) = Sum_{n >= 1} x^(n^2)*(x^n + n*(1 - x^(2*n)))/(1 - x^n)^2 - differentiate equation 5 in Arndt w.r.t. x, and set x = 1.
A(x) = F(x) + G(x), where F(x) is the g.f. of A079667 and G(x) is the g.f. of A117004. (End)
a(n) = Sum_{k=1..n} tau(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
With the convention that a(n) = 0 for n <= 0 we have the recurrence a(n) = t(n) + Sum_{k >= 1} (-1)^(k+1)*(2*k + 1)*a(n - k*(k + 1)/2), where t(n) = (-1)^(m+1)*(2*m+1)*n/3 if n = m*(m + 1)/2, with m positive, is a triangular number else t(n) = 0. For example, n = 10 = (4*5)/2 is a triangular number, t(10) = -30, and so a(10) = -30 + 3*a(9) - 5*a(7) + 7*a(4) = -30 + 39 - 40 + 49 = 18. - Peter Bala, Apr 06 2022
Recurrence: a(p^x) = p*a(p^(x-1)) + 1, if p is prime and for any integer x. E.g., a(5^3) = 5*a(5^2) + 1 = 5*31 + 1 = 156. - Jules Beauchamp, Nov 11 2022
Sum_{n>=1} a(n)/exp(2*Pi*n) = 1/24 - 1/(8*Pi) = A319462. - Vaclav Kotesovec, May 07 2023
a(n) < (7n*A001221(n) + 10*n)/6 [Duncan, 1961] (see Duncan and Tattersall). - Stefano Spezia, Jul 13 2025

A002093 Highly abundant numbers: numbers k such that sigma(k) > sigma(m) for all m < k.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 42, 48, 60, 72, 84, 90, 96, 108, 120, 144, 168, 180, 210, 216, 240, 288, 300, 336, 360, 420, 480, 504, 540, 600, 630, 660, 720, 840, 960, 1008, 1080, 1200, 1260, 1440, 1560, 1620, 1680, 1800, 1920, 1980, 2100
Offset: 1

Views

Author

Keywords

Comments

Where record values of sigma(n) occur.
Also record values of A070172: A070172(i) < a(n) for 1 <= i < A085443(n), a(n) = A070172(A085443(n)). - Reinhard Zumkeller, Jun 30 2003
Numbers k such that sum of the even divisors of 2*k is a record. - Arkadiusz Wesolowski, Jul 12 2012
Conjecture: (a) Every highly abundant number > 10 is practical (A005153). (b) For every integer k there exists A such that k divides a(n) for all n > A. Daniel Fischer proved that every highly abundant number greater than 3, 20, 630 is divisible by 2, 6, 12 respectively. The first conjecture has been verified for the first 10000 terms. - Jaycob Coleman, Oct 16 2013
Conjecture: For each term k: (1) Let p be the largest prime less than k (if one exists) and let q be the smallest prime greater than k; then k-p is either 1 or a prime, and q-k is either 1 or a prime. (2) The closest prime number p < k located to a distance d = k-p > 1 is also always at a prime distance. These would mean that the even highly abundant numbers greater than 2 always have at least a Goldbach pair of primes. h=p+d. Both observations verified for the first 10000 terms. - David Morales Marciel, Jan 04 2016
Pillai used the term "highly abundant numbers of the r-th order" for numbers with record values of the sum of the reciprocals of the r-th powers of their divisors. Thus highly abundant numbers of the 1st order are actually the superabundant numbers (A004394). - Amiram Eldar, Jun 30 2019

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The record values are in A034885.
Cf. A193988, A193989 (records for sigma_2 and sigma_3).

Programs

  • Maple
    N:= 100: # to get a(1) to a(N)
    best:= 0: count:= 0:
    for n from 1 while count < N do
      s:= numtheory:-sigma(n);
      if s > best then
        best:= s;
        count:= count+1;
        A[count]:= n;
      fi
    od:
    seq(A[i],i=1..N);# Robert Israel, Jan 20 2016
  • Mathematica
    a={}; k=0; Do[s=DivisorSigma[1,n]; If[s>k, AppendTo[a,n]; k=s], {n,3000}]; a (* Vladimir Joseph Stephan Orlovsky, Jul 25 2008 *)
    DeleteDuplicates[Table[{n,DivisorSigma[1,n]},{n,100}],GreaterEqual[#1[[2]],#2[[2]]]&][[All,1]] (* Harvey P. Dale, May 14 2022 *)
  • PARI
    for(n=1,1000,if(sum(i=1,n-1,sign(sigma(n)-sigma(i))) == n-1,print1(n,",")))

Extensions

Better description from N. J. A. Sloane, Apr 15 1997
More terms from Jud McCranie, Jul 04 2000

A062700 Terms of A000203 that are prime.

Original entry on oeis.org

3, 7, 13, 31, 31, 127, 307, 1093, 1723, 2801, 3541, 8191, 5113, 8011, 10303, 19531, 17293, 28057, 30941, 30103, 131071, 88741, 86143, 147073, 524287, 292561, 459007, 492103, 797161, 552793, 579883, 598303, 684757, 704761, 732541, 735307
Offset: 1

Views

Author

Jason Earls, Jul 11 2001

Keywords

Comments

Sorted and duplicates removed, this gives A023195.

Examples

			sigma(2) = 3, sigma(4) = 7, sigma(9) = 13 are the first three prime terms of A000203. Hence the sequence starts 3, 7, 13.
		

Crossrefs

Cf. A000203 (sigma(n), sum of divisors of n), A023194, A034885 (record values of sigma(n)), A023195 (prime numbers that are the sum of the divisors of some n), A100382 (record values of A062700).

Programs

  • Magma
    [ c: n in [1..1000000] | IsPrime(c) where c:=SumOfDivisors(n) ]; // Klaus Brockhaus, Oct 21 2009
    
  • Mathematica
    Select[DivisorSigma[1,Range[1000000]],PrimeQ] (* Harvey P. Dale, Nov 09 2012 *)
  • PARI
    je=[]; for(n=1,1000000, if(isprime(sigma(n)),je=concat(je, sigma(n)))); je
    
  • PARI
    { n=0; for (m=1, 10^9, if(isprime(a=sigma(m)), write("b062700.txt", n++, " ", a); if (n==100, break)) ) } \\ Harry J. Smith, Aug 09 2009
    
  • Python
    from sympy import isprime, divisor_sigma
    A062700_list = [3]+[n for n in (divisor_sigma(d**2) for d in range(1,10**4)) if isprime(n)] # Chai Wah Wu, Jul 23 2016

Formula

a(n) = A000203(A023194(n)). - Michel Marcus, Oct 19 2019

Extensions

Edited by Klaus Brockhaus, Oct 21 2009

A007626 Sum of divisors of superabundant numbers (A004394).

Original entry on oeis.org

1, 3, 7, 12, 28, 60, 91, 124, 168, 360, 546, 744, 1170, 2418, 2880, 4368, 5952, 9360, 19344, 39312, 59520, 99944, 112320, 232128, 471744, 714240, 1199328, 1451520, 2437344, 2926080, 3249792, 6604416, 9999360
Offset: 1

Views

Author

Keywords

Comments

Local maxima of sigma(n), the sum of divisors function A000203.
Same as A063072 for the first 19 terms. - T. D. Noe, Jul 01 2008

Crossrefs

See A034885 and A002093 for another version.

Programs

  • Mathematica
    Reap[ For[ n=1; a=0, n <= 3*10^6, n++, s = DivisorSigma[1, n]; b = s/n; If[ b>a, a=b; Print[s]; Sow[s]]]][[2, 1]] (* Jean-François Alcover, Apr 02 2013 *)
    Join[{1},DeleteDuplicates[Select[{#[[1]],#[[2]],#[[2]]/#[[1]]}&/@Table[ {n,DivisorSigma[1,n]}, {n,10^6}],#[[3]]>1&],GreaterEqual[#1[[3]],#2[[3]]]&][[All,2]]] (* The program generates the first 31 terms of the sequence. *) (* Harvey P. Dale, Oct 04 2022 *)

Formula

a(n) = A000203(A004394(n)). - Amiram Eldar, Sep 25 2021

A263025 n is the a(n)-th positive integer having its sum of divisors.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 1, 1, 1, 2, 3, 1, 1, 1, 3, 1, 2, 1, 4, 2, 1, 2, 3, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 2, 5, 1, 1, 1, 2, 1, 4, 2, 2, 1, 1, 2, 3, 1, 1, 1, 3
Offset: 1

Views

Author

Paul Tek, Oct 09 2015

Keywords

Comments

Sum of divisors is given by A000203.
This can also be described as the ordinal transform of A000203. - Franklin T. Adams-Watters, Oct 09 2015
a(n) > 1 iff n is in A069822.

Examples

			The numbers with sum of divisors 72 are: 30, 46, 51, 55, 71.
Hence: a(30)=1, a(46)=2, a(51)=3, a(55)=4, a(71)=5.
More generally: the terms of each row of A085790 (say of length i) map to 1, 2, ..., i.
Also: for any n>0, the n terms of the n-th row of A201915 map to 1, 2, ..., n.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N)
    Sigmas:= [seq(numtheory:-sigma(i),i=1..N)]:
    seq(numboccur(Sigmas[n], Sigmas[1..n]),n=1..N); # Robert Israel, Oct 09 2015
  • Mathematica
    t = DivisorSigma[1, #] & /@ Range@ 10000; s = Position[t, #] & /@ Range@ Max@ t; Flatten[Position[s, #, {3}]][[2]] & /@ Range@ 87 (* Michael De Vlieger, Oct 09 2015 *)
  • PARI
    cnt = vector(224); for (n=1, 87, s=sigma(n); cnt[s] = cnt[s]+1; print1(cnt[s] ", "))

Formula

a(A034885(k))=1 for k>0.

A070172 Smallest k such that sigma(k) >= n.

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 4, 6, 6, 6, 6, 6, 8, 8, 8, 10, 10, 10, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 16, 16, 16, 18, 18, 18, 18, 18, 18, 18, 18, 20, 20, 20, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 36, 36
Offset: 1

Views

Author

Benoit Cloitre, May 06 2002

Keywords

Comments

Also smallest m to partition n into distinct divisors of m; highly abundant numbers are record values: a(i) < A002093(n) for 1<=i < A085443(n), A002093(n) = a(A085443(n)). - Reinhard Zumkeller, Jun 30 2003
1 followed by A002093(k) appearing A034885(k+1)-A034885(k) times, for k >= 2. - Amiram Eldar, Apr 04 2025

Crossrefs

Programs

  • Mathematica
    nn=80;With[{s=Table[{n,DivisorSigma[1,n]},{n,nn}]},Transpose[ Flatten[ Table[ Select[s,#[[2]]>=i&,1],{i,nn}],1]][[1]]] (* Harvey P. Dale, Dec 28 2013 *)
    seq[lim_] := Module[{han = Cases[Import["https://oeis.org/A002093/b002093.txt", "Table"], {, }][[;; , 2]], hmax, sigma, d}, hmax = han[[-1]]; If[lim > hmax, Print["Error: lim is too large"]; {}, han = Select[han, # <= lim &]; sigma = DivisorSigma[1, han]; d = Join[{1}, Differences[sigma]]; Flatten[Table[han[[i]], {i, 1, Length[han]}, {d[[i]]}]]]]; seq[100] (* Amiram Eldar, Apr 04 2025 *)
  • PARI
    for(n=1,150,s=1; while(sigma(s)
    				

Formula

It seems that lim_{n -> oo} a(n)*log(log(n))/n = C = 0.6...

A085443 Where records in A070172 occur.

Original entry on oeis.org

1, 2, 4, 5, 8, 13, 16, 19, 29, 32, 40, 43, 61, 73, 92, 97, 125, 169, 196, 225, 235, 253, 281, 361, 404, 481, 547, 577, 601, 745, 820, 869, 993, 1171, 1345, 1513, 1561, 1681, 1861, 1873, 2017, 2419, 2881, 3049, 3225, 3601, 3845, 4369, 4915, 5041, 5083, 5953, 6046
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 30 2003

Keywords

Crossrefs

Formula

A070172(i) < A002093(n) for 1 <= i < a(n).
A002093(n) = A070172(a(n)).
a(n) = A034885(n-1) + 1 for n >= 2. - Amiram Eldar, Apr 04 2025

Extensions

More terms from Amiram Eldar, Apr 04 2025

A070324 a(n) = Max( sigma(k) : k=1,2,3,...,n ).

Original entry on oeis.org

1, 3, 4, 7, 7, 12, 12, 15, 15, 18, 18, 28, 28, 28, 28, 31, 31, 39, 39, 42, 42, 42, 42, 60, 60, 60, 60, 60, 60, 72, 72, 72, 72, 72, 72, 91, 91, 91, 91, 91, 91, 96, 96, 96, 96, 96, 96, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 124, 168, 168, 168, 168, 168, 168
Offset: 1

Views

Author

Benoit Cloitre, May 11 2002

Keywords

Comments

Records give A034885. Where records occur gives A002093. - Omar E. Pol, Apr 23 2020

Crossrefs

Programs

  • Mathematica
    FoldList[Max, DivisorSigma[1, Range[100]]] (* Amiram Eldar, Dec 27 2024 *)
  • PARI
    a(n)=vecmax(vector(n,k, sigma(k)))

Formula

Limit_{n -> infinity} (1/n^2) * Sum_{i=1..n} a(i) = C = 1.2... . [This formula is wrong. See the graph. - Amiram Eldar, Dec 27 2024]

A100382 Record values of A062700.

Original entry on oeis.org

3, 7, 13, 31, 127, 307, 1093, 1723, 2801, 3541, 8191, 10303, 19531, 28057, 30941, 131071, 147073, 524287, 797161, 830833, 1191373, 1204507, 1353733, 1395943, 1424443, 1482307, 1886503, 2037757, 2212657, 2432041, 2507473, 2922391
Offset: 1

Views

Author

Jorge Coveiro, Dec 30 2004

Keywords

Comments

Take sequence A062700: 3, 7, 13, 31, 31, 127, 307, 1093, 1723, 2801, 3541, 8191, 5113, 8011, 10303, .... Then eliminate terms so that each term of the sequence is larger than the preceding one: 3, 7, 13, 31, 127, 307, 1093, 1723, 2801, 3541, 8191, 10303, ....

Crossrefs

Cf. A062700 (terms of A000203 that are prime), A000203 (sigma(n), sum of divisors of n), A034885 (record values of sigma(n)).

Programs

  • Magma
    S:=[]; a:=0; for n in [1..3000000] do c:=SumOfDivisors(n); if IsPrime(c) and a lt c then Append(~S,c); a:=c; end if; end for; S; // Klaus Brockhaus, Oct 21 2009

Extensions

More terms from Ryan Propper, Jul 13 2005
Edited, corrected and extended by Klaus Brockhaus, Oct 21 2009

A349608 a(n) is the number of divisors of the n-th highly abundant number (A002093).

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 4, 6, 5, 6, 6, 8, 8, 9, 8, 10, 12, 12, 12, 12, 12, 12, 16, 15, 16, 18, 16, 16, 20, 18, 18, 20, 24, 24, 24, 24, 24, 24, 24, 24, 30, 32, 28, 30, 32, 30, 36, 36, 32, 30, 40, 36, 32, 36, 36, 40, 36, 36, 48, 42, 40, 40, 40, 48, 45, 48, 48, 48, 48
Offset: 1

Views

Author

Amiram Eldar, Nov 23 2021

Keywords

Examples

			a(1) = A000005(A002093(1)) = A000005(1) = 1.
a(10) = A000005(A002093(10)) = A000005(18) = 6.
		

Crossrefs

Programs

  • Mathematica
    seq = {}; sm = 0; Do[s = DivisorSigma[1, n]; If[s > sm, sm = s; AppendTo[seq, DivisorSigma[0, n]]], {n, 1, 10^4}]; seq

Formula

a(n) = A000005(A002093(n)).
Showing 1-10 of 10 results.