cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 163 results. Next

A378974 Decimal expansion of the volume of a triakis icosahedron with unit shorter edge length.

Original entry on oeis.org

1, 2, 0, 1, 7, 2, 2, 0, 9, 2, 6, 8, 7, 4, 3, 1, 6, 5, 1, 3, 3, 2, 9, 8, 1, 4, 4, 2, 3, 3, 7, 6, 6, 4, 7, 7, 6, 5, 1, 8, 2, 0, 0, 9, 6, 6, 8, 7, 3, 7, 4, 5, 8, 6, 0, 3, 8, 8, 0, 4, 1, 6, 0, 4, 7, 5, 8, 4, 1, 9, 3, 0, 0, 8, 3, 2, 2, 8, 6, 5, 9, 2, 3, 0, 9, 6, 8, 4, 6, 8
Offset: 2

Views

Author

Paolo Xausa, Dec 14 2024

Keywords

Comments

The triakis icosahedron is the dual polyhedron of the truncated dodecahedron.

Examples

			12.017220926874316513329814423376647765182009668737...
		

Crossrefs

Cf. A378973 (surface area), A378975 (inradius), A378976 (midradius), A378977 (dihedral angle).
Cf. A377695 (volume of a truncated dodecahedron with unit edge length).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[(19 + 13*Sqrt[5])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TriakisIcosahedron", "Volume"], 10, 100]]

Formula

Equals (19 + 13*sqrt(5))/4 = (19 + 13*A002163)/4.

A379385 Decimal expansion of the surface area of a deltoidal hexecontahedron with unit shorter edge length.

Original entry on oeis.org

9, 2, 2, 3, 1, 9, 1, 2, 9, 0, 6, 4, 0, 4, 6, 4, 0, 7, 1, 0, 4, 0, 6, 1, 6, 9, 3, 1, 9, 0, 9, 8, 3, 8, 4, 4, 0, 7, 2, 0, 7, 0, 5, 2, 5, 4, 5, 1, 8, 4, 1, 2, 3, 2, 0, 8, 3, 1, 7, 4, 5, 7, 0, 5, 9, 8, 0, 0, 6, 1, 7, 7, 3, 7, 2, 3, 1, 8, 3, 8, 0, 9, 6, 2, 4, 3, 3, 7, 0, 8
Offset: 2

Views

Author

Paolo Xausa, Dec 22 2024

Keywords

Comments

The deltoidal hexecontahedron is the dual polyhedron of the (small) rhombicosidodecahedron.

Examples

			92.231912906404640710406169319098384407207052545184...
		

Crossrefs

Cf. A379386 (volume), A379387 (inradius), A379388 (midradius), A379389 (dihedral angle).
Cf. A344149 (surface area of a (small) rhombicosidodecahedron with unit edge length).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[Sqrt[4370 + 1850*Sqrt[5]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["DeltoidalHexecontahedron", "SurfaceArea"], 10, 100]]

Formula

Equals sqrt(4370 + 1850*sqrt(5)) = sqrt(4370 + 1850*A002163).

A379386 Decimal expansion of the volume of a deltoidal hexecontahedron with unit shorter edge length.

Original entry on oeis.org

8, 1, 0, 0, 4, 1, 4, 3, 6, 3, 5, 3, 7, 7, 0, 8, 9, 0, 9, 9, 4, 5, 6, 6, 6, 5, 3, 4, 1, 6, 1, 6, 2, 8, 2, 2, 4, 6, 8, 0, 4, 3, 9, 3, 4, 5, 6, 8, 0, 3, 4, 5, 0, 0, 6, 2, 5, 4, 2, 8, 6, 0, 3, 6, 7, 4, 5, 7, 7, 4, 5, 7, 5, 9, 4, 9, 7, 9, 0, 1, 9, 0, 9, 9, 9, 5, 1, 5, 6, 8
Offset: 2

Views

Author

Paolo Xausa, Dec 23 2024

Keywords

Comments

The deltoidal hexecontahedron is the dual polyhedron of the (small) rhombicosidodecahedron.

Examples

			81.004143635377089099456665341616282246804393456803...
		

Crossrefs

Cf. A379385 (surface area), A379387 (inradius), A379388 (midradius), A379389 (dihedral angle).
Cf. A185093 (volume of a (small) rhombicosidodecahedron with unit edge length).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[Sqrt[(29530 + 13204*Sqrt[5])/9], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["DeltoidalHexecontahedron","Volume"], 10, 100]]

Formula

Equals sqrt((29530 + 13204*sqrt(5))/9) = sqrt((29530 + 13204*A002163)/9).

A379710 Decimal expansion of the inradius of a disdyakis triacontahedron with unit shorter edge length.

Original entry on oeis.org

2, 6, 7, 9, 9, 6, 9, 3, 4, 0, 2, 0, 4, 8, 3, 5, 5, 7, 8, 5, 7, 9, 5, 5, 3, 3, 2, 7, 4, 5, 9, 8, 0, 6, 7, 6, 7, 0, 8, 5, 4, 2, 3, 0, 3, 8, 1, 6, 8, 2, 7, 7, 3, 3, 2, 1, 5, 2, 6, 8, 9, 0, 3, 6, 3, 3, 7, 1, 5, 1, 7, 6, 3, 8, 1, 7, 0, 2, 0, 9, 1, 9, 7, 1, 5, 0, 0, 0, 0, 6
Offset: 1

Views

Author

Paolo Xausa, Dec 31 2024

Keywords

Comments

The disdyakis triacontahedron is the dual polyhedron of the truncated icosidodecahedron (great rhombicosidodecahedron).

Examples

			2.679969340204835578579553327459806767085423038168...
		

Crossrefs

Cf. A379708 (surface area), A379709 (volume), A379388 (midradius), A379711 (dihedral angle).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[Sqrt[3477/964 + 7707/(964*Sqrt[5])], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["DisdyakisTriacontahedron", "Inradius"], 10, 100]]

Formula

Equals sqrt(3477/964 + 7707/(964*sqrt(5))) = sqrt(3477/964 + 7707/(964*A002163)).

A379711 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a disdyakis triacontahedron.

Original entry on oeis.org

2, 8, 7, 7, 8, 3, 6, 6, 1, 0, 4, 6, 1, 2, 2, 4, 2, 8, 0, 9, 4, 3, 4, 5, 0, 4, 5, 4, 8, 1, 7, 9, 9, 1, 7, 7, 5, 4, 7, 4, 9, 4, 2, 8, 6, 6, 5, 4, 0, 6, 4, 7, 0, 3, 4, 5, 6, 8, 2, 6, 3, 2, 1, 6, 9, 8, 3, 8, 3, 1, 7, 6, 7, 0, 9, 4, 3, 8, 4, 5, 9, 9, 1, 5, 6, 6, 8, 4, 9, 7
Offset: 1

Views

Author

Paolo Xausa, Dec 31 2024

Keywords

Comments

The disdyakis triacontahedron is the dual polyhedron of the truncated icosidodecahedron (great rhombicosidodecahedron).

Examples

			2.8778366104612242809434504548179917754749428665406...
		

Crossrefs

Cf. A379708 (surface area), A379709 (volume), A379710 (inradius), A379388 (midradius).
Cf. A344075, A377995 and A377996 (dihedral angles of a truncated icosidodecahedron (great rhombicosidodecahedron)).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[ArcCos[(-179 - 24*Sqrt[5])/241], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["DisdyakisTriacontahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos((-179 - 24*sqrt(5))/241) = arccos((-179 - 24*A002163)/241).

A384284 Decimal expansion of the surface area of a gyroelongated pentagonal cupola with unit edge.

Original entry on oeis.org

2, 5, 2, 4, 0, 0, 0, 3, 7, 9, 0, 8, 3, 2, 5, 8, 3, 5, 1, 3, 7, 3, 1, 2, 7, 8, 0, 5, 1, 8, 9, 2, 5, 8, 6, 4, 5, 2, 8, 1, 6, 6, 6, 2, 3, 6, 5, 1, 6, 9, 5, 5, 8, 3, 2, 2, 1, 5, 3, 7, 7, 8, 9, 5, 4, 5, 3, 5, 6, 0, 8, 5, 6, 9, 1, 2, 6, 6, 9, 3, 7, 5, 9, 2, 2, 6, 0, 8, 9, 2
Offset: 2

Views

Author

Paolo Xausa, May 27 2025

Keywords

Comments

The gyroelongated pentagonal cupola is Johnson solid J_24.

Examples

			25.240003790832583513731278051892586452816662365...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[(20 + 25*Sqrt[3] + Sqrt[725 + 310*Sqrt[5]])/4, 10, 100]]
    First[RealDigits[PolyhedronData["J24", "SurfaceArea"], 10, 100]]
  • PARI
    (20 + 25*sqrt(3) + sqrt(725 + 310*sqrt(5)))/4 \\ Charles R Greathouse IV, Aug 19 2025

Formula

Equals (20 + 25*sqrt(3) + sqrt(725 + 310*sqrt(5)))/4 = (20 + 25*A002194 + sqrt(725 + 310*A002163))/4.
Equals the largest root of 256*x^8 - 10240*x^7 + 12800*x^6 + 3200000*x^5 - 22476000*x^4 - 203280000*x^3 + 1412362500*x^2 + 3080375000*x - 17984046875.

A134945 Decimal expansion of 1 + sqrt(5).

Original entry on oeis.org

3, 2, 3, 6, 0, 6, 7, 9, 7, 7, 4, 9, 9, 7, 8, 9, 6, 9, 6, 4, 0, 9, 1, 7, 3, 6, 6, 8, 7, 3, 1, 2, 7, 6, 2, 3, 5, 4, 4, 0, 6, 1, 8, 3, 5, 9, 6, 1, 1, 5, 2, 5, 7, 2, 4, 2, 7, 0, 8, 9, 7, 2, 4, 5, 4, 1, 0, 5, 2, 0, 9, 2, 5, 6, 3, 7, 8, 0, 4, 8, 9, 9, 4, 1, 4, 4, 1, 4
Offset: 1

Views

Author

Omar E. Pol, Nov 15 2007

Keywords

Comments

If "index" equals (0,2) then this sequence is the decimal expansion of (golden ratio divided by 5 = phi/5 = (1 + sqrt(5))/10). Example: 0.323606797...
Apart from the leading digit the same as A134972, A098317 and A002163. - R. J. Mathar, Aug 06 2013
Length of the longest diagonal in a regular 10-gon with unit side. - Mohammed Yaseen, Nov 12 2020
Abscissa of the first superstable point of the logistic map (see Finch). - Stefano Spezia, Nov 23 2024

Examples

			3.2360679774997896964...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.9, p. 66.

Crossrefs

Programs

Formula

From Christian Katzmann, Mar 19 2018: (Start)
Equals Sum_{n>=0} (15*(2*n)!+8*n!^2)/(n!^2*3^(2*n+2)).
Equals 1 + Sum_{n>=0} 5*(2*n)!/(n!^2*3^(2*n+1)). (End)
Equals 1/A019827. - R. J. Mathar, Jan 17 2021
Equals Product_{k>=1} (1 + 1/Fibonacci(2*k)). - Amiram Eldar, May 27 2021

Extensions

More terms from Jinyuan Wang, Mar 30 2020

A176015 Decimal expansion of (5 + 3*sqrt(5))/10.

Original entry on oeis.org

1, 1, 7, 0, 8, 2, 0, 3, 9, 3, 2, 4, 9, 9, 3, 6, 9, 0, 8, 9, 2, 2, 7, 5, 2, 1, 0, 0, 6, 1, 9, 3, 8, 2, 8, 7, 0, 6, 3, 2, 1, 8, 5, 5, 0, 7, 8, 8, 3, 4, 5, 7, 7, 1, 7, 2, 8, 1, 2, 6, 9, 1, 7, 3, 6, 2, 3, 1, 5, 6, 2, 7, 7, 6, 9, 1, 3, 4, 1, 4, 6, 9, 8, 2, 4, 3, 2, 4, 3, 2, 2, 5, 1, 3, 6, 3, 4, 6, 8, 2, 4, 9, 0, 8, 5
Offset: 1

Views

Author

Klaus Brockhaus, Apr 06 2010

Keywords

Comments

Continued fraction expansion of (5 + 3*sqrt(5))/10 is A010686.
The horizontal distance between the accumulation point and the outermost point of a golden spiral inscribed inside a golden rectangle with dimensions phi and 1 along the x and y axes, respectively (the vertical distance is A244847). - Amiram Eldar, May 18 2021

Examples

			(5 + 3*sqrt(5))/10 = 1.17082039324993690892...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.2 The Golden Mean, phi, p. 7.

Crossrefs

Cf. A000032, A000045, A001622, A002163 (decimal expansion of sqrt(5)), A010686 (repeat 1, 5), A090550, A134976.
Cf. A010499 (decimal expansion of 3*sqrt(5)).

Programs

  • Magma
    SetDefaultRealField(RealField(105)); n:=(5+3*Sqrt(5))/10; Reverse(Intseq(Floor(10^104*n))); // Arkadiusz Wesolowski, Jan 07 2018
    
  • Maple
    Digits := 1000:  (5+3*sqrt(5.0))/10; # Muniru A Asiru, Jan 22 2018
  • Mathematica
    RealDigits[(5 + 3 Sqrt[5])/10, 10, 1001][[1]] (* Georg Fischer, Apr 02 2020 *)
  • PARI
    (5 + 3*sqrt(5))/10 \\ Michel Marcus, Apr 20 2020

Formula

Equals (A134976 + 8)/10. - R. J. Mathar, Apr 12 2010
From Arkadiusz Wesolowski, Jan 07 2018: (Start)
Equals A001622^2 / sqrt(5).
Equals lim_{n -> infinity} A000045(n+2) / A001622^n. (End)
Equals 1/A090550 + 1. - Michel Marcus, Apr 20 2020
Minimal polynomial is 5x^2 - 5x - 1 (this number is an algebraic number but not an algebraic integer). - Alonso del Arte, Apr 20 2020
Equals lim_{k->oo} Fibonacci(k+2)/Lucas(k). - Amiram Eldar, Feb 06 2022

A176055 Decimal expansion of (2+sqrt(5))/2.

Original entry on oeis.org

2, 1, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9, 0, 2, 4, 4, 9, 7, 0, 7, 2, 0, 7, 2, 0, 4, 1, 8, 9, 3, 9, 1, 1, 3, 7, 4, 8, 4, 7, 5
Offset: 1

Views

Author

Klaus Brockhaus, Apr 07 2010

Keywords

Comments

Continued fraction expansion of (2+sqrt(5))/2 is A010698.
a(n) = A020837(n-1) for n > 1; a(1) = 2.

Examples

			2.11803398874989484820...
		

Crossrefs

Cf. A002163 (sqrt(5)), A020837 (1/sqrt(80)), A010698 (repeat 2, 8).

Programs

  • Mathematica
    RealDigits[GoldenRatio + 1/2, 10, 100][[1]] (* Amiram Eldar, Jun 06 2021 *)

Formula

Equals 1/2 + phi, with phi = A001622.
From Amiram Eldar, Jun 06 2021: (Start)
Equals 1 + Sum{k>=0} 1/(Fibonacci(2*k+1)+1).
Equals 1 + Sum{k>=0} binomial(2*k,k)/20^k. (End)

A377695 Decimal expansion of the volume of a truncated dodecahedron with unit edge length.

Original entry on oeis.org

8, 5, 0, 3, 9, 6, 6, 4, 5, 5, 9, 3, 7, 0, 8, 8, 1, 5, 5, 4, 6, 7, 9, 6, 5, 1, 0, 1, 2, 6, 5, 4, 1, 5, 9, 6, 1, 0, 7, 1, 2, 1, 0, 9, 5, 4, 2, 3, 9, 2, 3, 7, 8, 7, 6, 6, 9, 7, 1, 7, 3, 7, 7, 2, 2, 6, 2, 2, 7, 0, 1, 4, 6, 0, 4, 0, 7, 0, 1, 2, 6, 1, 3, 5, 3, 2, 2, 8, 2, 1
Offset: 2

Views

Author

Paolo Xausa, Nov 04 2024

Keywords

Examples

			85.039664559370881554679651012654159610712109542...
		

Crossrefs

Cf. A377694 (surface area), A377696 (circumradius), A377697 (midradius), A377698 (Dehn invariant, negated).
Cf. A102769 (analogous for a regular dodecahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[5/12*(99 + 47*Sqrt[5]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedDodecahedron", "Volume"], 10, 100]]

Formula

Equals (5/12)*(99 + 47*sqrt(5)) = (5/12)*(99 + 47*A002163).
Previous Showing 21-30 of 163 results. Next