cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 218 results. Next

A256127 Decimal expansion of the second Malmsten integral: Integer_{x >= 1} log(log(x))/(1 + x + x^2) dx, negated.

Original entry on oeis.org

1, 2, 6, 3, 2, 1, 4, 8, 1, 7, 0, 6, 2, 0, 9, 0, 3, 6, 3, 6, 5, 2, 2, 6, 7, 5, 3, 2, 5, 3, 2, 0, 2, 3, 9, 1, 8, 4, 4, 2, 4, 4, 3, 0, 9, 4, 6, 5, 2, 8, 3, 5, 1, 6, 3, 7, 8, 9, 9, 7, 4, 3, 0, 4, 2, 9, 0, 8, 6, 7, 4, 0, 0, 8, 5, 1, 2, 5, 4, 3, 7, 1, 7, 8, 0, 5, 2, 9, 7, 4, 1, 9, 8, 2, 9, 7, 0, 0, 2, 2, 4, 8, 7, 6
Offset: 0

Views

Author

Keywords

Examples

			-0.12632148170620903636522675325320239184424430946528...
		

Crossrefs

Cf. A115252 (first Malmsten integral), A256128 (third Malmsten integral) , A256129 (fourth Malmsten integral), A073005 (Gamma(1/3)), A256165 (log(Gamma(1/3))), A061444 (log(2*Pi)), A002391 (log 3), A002194 (sqrt 3).

Programs

  • Maple
    evalf(Pi*(8*log(2*Pi) - 3*log(3) - 12*log(GAMMA(1/3)))/(6*sqrt(3)),120); # Vaclav Kotesovec, Mar 17 2015
  • Mathematica
    RealDigits[Integrate[Log[Log[1/x]]/(1 + x + x^2), {x, 0, 1}], 10, 100][[1]] (* Alonso del Arte, Mar 16 2015 *)
    RealDigits[Pi*(8*Log[2*Pi] - 3*Log[3] - 12*Log[Gamma[1/3]])/(6*Sqrt[3]),10,105][[1]] (* Vaclav Kotesovec, Mar 17 2015 *)
  • PARI
    Pi*(8*log(2*Pi) - 3*log(3) - 12*log(gamma(1/3)))/(6*sqrt(3)) \\ Michel Marcus, Mar 18 2015
    
  • PARI
    intnum(x=0, 1, log(log(1/x))/(1 + x + x^2))
    
  • PARI
    intnum(x=1, oo, log(log(x))/(1 + x + x^2))
    
  • PARI
    intnum(x=0, [oo, 1], log(x)/(1 + 2*cosh(x))) \\ Gheorghe Coserea, Sep 26 2018

Formula

Equals Integral_{x=0..1} log(log(1/x))/(1 + x + x^2) dx.
Equals Integral_{x>=0} log(x)/(1 + 2*cosh(x)) dx.
Equals Pi*(8*log(2*Pi) - 3*log(3) - 12*log(Gamma(1/3)))/(6*sqrt(3)).

A256128 Decimal expansion of the third Malmsten integral: int_{x=1..infinity} log(log(x))/(1 - x + x^2) dx, negated.

Original entry on oeis.org

6, 7, 1, 7, 1, 9, 6, 0, 1, 8, 8, 5, 8, 7, 4, 5, 4, 2, 3, 5, 4, 4, 0, 5, 0, 6, 9, 2, 8, 8, 7, 7, 9, 8, 8, 4, 0, 0, 8, 8, 0, 2, 0, 6, 6, 2, 1, 9, 3, 5, 6, 3, 3, 2, 0, 5, 3, 6, 1, 6, 7, 3, 3, 7, 5, 1, 2, 5, 1, 2, 1, 7, 1, 7, 5, 8, 6, 1, 9, 0, 2, 1, 8, 3, 2, 6, 7, 1, 2, 6, 8, 6, 2, 9, 3, 2, 3, 7, 2, 3, 5, 5, 0, 3, 6
Offset: 0

Views

Author

Keywords

Examples

			-0.671719601885874542354405069288779884008802066219356...
		

Crossrefs

Cf. A115252 (first Malmsten integral), A256127 (second Malmsten integral), A256129 (fourth Malmsten integral), A073005 (Gamma(1/3)), A002162 (log 2), A002391 (log 3), A053510 (log Pi), A002194 (sqrt 3).

Programs

  • Maple
    evalf(Pi*(7*log(2)+8*log(Pi)-3*log(3)-12*log(GAMMA(1/3)))/(3*sqrt(3)),120); # Vaclav Kotesovec, Mar 17 2015
  • Mathematica
    RealDigits[Pi*(7*Log[2]+8*Log[Pi]-3*Log[3]-12*Log[Gamma[1/3]])/(3*Sqrt[3]),10,105][[1]] (* Vaclav Kotesovec, Mar 17 2015 *)
  • PARI
    Pi*(7*log(2)+8*log(Pi)-3*log(3)-12*log(gamma(1/3)))/(3*sqrt(3)) \\ Michel Marcus, Mar 18 2015

Formula

Equals integral_{x=0..1} log(log(1/x))/(1 - x + x^2) dx.
Equals integral_{x=0..infinity} log(x)/(1 - 2*cosh(x)) dx.
Equals Pi*(7*log(2) + 8*log(Pi) - 3*log(3) - 12*log(Gamma(1/3)))/(3*sqrt(3)).

A381671 Decimal expansion of the isoperimetric quotient of a regular tetrahedron.

Original entry on oeis.org

3, 0, 2, 2, 9, 9, 8, 9, 4, 0, 3, 9, 0, 3, 6, 3, 0, 8, 4, 3, 2, 3, 4, 6, 3, 7, 6, 2, 7, 3, 6, 9, 2, 6, 2, 2, 0, 4, 7, 3, 4, 4, 3, 7, 4, 6, 8, 2, 1, 2, 3, 4, 2, 9, 2, 6, 1, 6, 4, 7, 4, 8, 9, 2, 3, 1, 3, 5, 3, 8, 6, 3, 5, 2, 1, 0, 5, 8, 9, 8, 0, 6, 1, 4, 0, 2, 0, 8, 3, 1
Offset: 0

Views

Author

Paolo Xausa, Mar 03 2025

Keywords

Comments

Polya (1954) defines the isoperimetric quotient of a solid as 36*Pi*V^2/(S^3), where V and S are the volume and surface area of the solid, respectively.
The isoperimetric quotient of a sphere is 1.

Examples

			0.30229989403903630843234637627369262204734437468212...
		

References

  • George Polya, Mathematics and Plausible Reasoning, Vol. 1: Induction and Analogy in Mathematics, Princeton University Press, Princeton, New Jersey, 1954. See pp. 188-189, exercise 43.

Crossrefs

Cf. A273633 (sphericity).
Cf. isoperimetric quotient of other Platonic solids: A019673 (cube), A073010 (octahedron), A374772 (dodecahedron), A381672 (icosahedron).

Programs

  • Mathematica
    First[RealDigits[Pi/(6*Sqrt[3]), 10, 100]]

Formula

Equals Pi/(6*sqrt(3)) = A019673/A002194.

A384141 Decimal expansion of the surface area of an elongated pentagonal bipyramid with unit edge.

Original entry on oeis.org

9, 3, 3, 0, 1, 2, 7, 0, 1, 8, 9, 2, 2, 1, 9, 3, 2, 3, 3, 8, 1, 8, 6, 1, 5, 8, 5, 3, 7, 6, 4, 6, 8, 0, 9, 1, 7, 3, 5, 7, 0, 1, 3, 1, 3, 4, 5, 2, 5, 9, 5, 1, 5, 7, 0, 1, 3, 9, 5, 1, 7, 4, 4, 8, 6, 2, 9, 8, 3, 2, 5, 4, 2, 2, 7, 2, 0, 0, 0, 0, 9, 2, 7, 0, 2, 8, 6, 5, 4, 6
Offset: 1

Views

Author

Paolo Xausa, May 20 2025

Keywords

Comments

The elongated pentagonal bipyramid is Johnson solid J_16.

Examples

			9.3301270189221932338186158537646809173570131345...
		

Crossrefs

Cf. A384140 (volume).
Cf. A002163.
Essentially the same as A120011.

Programs

  • Mathematica
    First[RealDigits[5*(2 + Sqrt[3])/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J16", "SurfaceArea"], 10, 100]]

Formula

Equals 5*(2 + sqrt(3))/2 = 5*(2 + A002194)/2.
Equals the largest root of 4*x^2 - 40*x + 25.
Equals 10*A019884^2. - R. J. Mathar, Sep 05 2025

A384473 Decimal expansion of the middle interior angle (in degrees) in Albrecht Dürer's approximate construction of the regular pentagon.

Original entry on oeis.org

1, 0, 8, 3, 6, 6, 1, 2, 0, 1, 6, 2, 5, 6, 1, 4, 6, 7, 0, 0, 8, 0, 4, 6, 9, 3, 5, 2, 7, 7, 1, 6, 4, 4, 2, 9, 8, 9, 6, 1, 3, 3, 4, 3, 1, 0, 0, 3, 4, 2, 3, 5, 2, 3, 9, 7, 3, 8, 8, 0, 2, 8, 4, 3, 2, 0, 7, 0, 3, 4, 6, 2, 9, 1, 5, 7, 9, 8, 0, 4, 9, 4, 1, 5, 2, 1, 2, 4, 6, 8, 8, 1, 2, 1, 0, 1, 3, 3, 1, 8
Offset: 3

Views

Author

Stefano Spezia, May 30 2025

Keywords

Examples

			108.366120162561467008046935277164429896133431...
		

References

  • Alfred S. Posamentier and Herbert A. Hauptman, 101 great ideas for introducing key concepts in mathematics: a resource for secondary school teachers, Corwin Press, Inc., 2001. See pages 144-145.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 181-182.

Crossrefs

Programs

  • Mathematica
    RealDigits[(3Pi/4-ArcSin[Sqrt[3]Sin[Pi/12]])180/Pi,10,100][[1]] (* or *)
    RealDigits[(Pi+ArcTan[(3-Sqrt[3]+Sqrt[6Sqrt[3]-4])/(3-Sqrt[3]-Sqrt[6Sqrt[3]-4])])180/Pi,10,100][[1]]

Formula

Equals 135 - 180*arcsin(sqrt(3)*sin(Pi/12))/Pi.
Equals (Pi + arctan((3 - sqrt(3) + sqrt(6*sqrt(3) - 4))/(3 - sqrt(3) - sqrt(6*sqrt(3) - 4))))*180/Pi.
Equals (540 - 2*A384475 - A384477)/2.
A384475 < this constant < A384477.

A384474 Decimal expansion of the middle interior angle (in radians) in Albrecht Dürer's approximate construction of the regular pentagon.

Original entry on oeis.org

1, 8, 9, 1, 3, 4, 5, 5, 9, 4, 4, 4, 8, 5, 1, 0, 4, 1, 8, 6, 8, 7, 1, 7, 3, 4, 7, 8, 9, 5, 2, 7, 3, 9, 1, 9, 9, 0, 2, 4, 7, 7, 9, 2, 2, 5, 3, 0, 7, 7, 4, 6, 9, 6, 6, 9, 2, 7, 7, 4, 8, 7, 7, 0, 3, 7, 2, 8, 8, 7, 5, 9, 6, 9, 4, 5, 8, 5, 4, 4, 4, 3, 1, 4, 7, 8, 6, 3, 2, 3, 2, 3, 2, 2, 6, 8, 1, 0, 3, 1
Offset: 1

Views

Author

Stefano Spezia, May 30 2025

Keywords

Examples

			1.891345594448510418687173478952739199024779225...
		

References

  • Alfred S. Posamentier and Herbert A. Hauptman, 101 great ideas for introducing key concepts in mathematics: a resource for secondary school teachers, Corwin Press, Inc., 2001. See pages 144-145.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 181-182.

Crossrefs

Cf. A228719, A384473 (in degrees).

Programs

  • Mathematica
    RealDigits[3Pi/4-ArcSin[Sqrt[3]Sin[Pi/12]],10,100][[1]] (* or *)
    RealDigits[Pi+ArcTan[(3-Sqrt[3]+Sqrt[6Sqrt[3]-4])/(3-Sqrt[3]-Sqrt[6Sqrt[3]-4])],10,100][[1]]

Formula

Equals 3*Pi/4 - arcsin(sqrt(3)*sin(Pi/12)).
Equals Pi + arctan((3 - sqrt(3) + sqrt(6*sqrt(3) - 4))/(3 - sqrt(3) - sqrt(6*sqrt(3) - 4))).
Equals (3*Pi - 2*A384476 - A384478)/2.
A384476 < this constant < A384478.

A010504 Decimal expansion of square root of 51.

Original entry on oeis.org

7, 1, 4, 1, 4, 2, 8, 4, 2, 8, 5, 4, 2, 8, 4, 9, 9, 9, 7, 9, 9, 9, 3, 9, 9, 8, 1, 1, 3, 6, 7, 2, 6, 5, 2, 7, 8, 7, 6, 6, 1, 7, 1, 1, 5, 9, 9, 0, 2, 7, 3, 3, 8, 3, 3, 2, 0, 8, 4, 3, 0, 8, 8, 2, 7, 6, 5, 8, 2, 0, 4, 0, 6, 4, 4, 0, 0, 2, 1, 8, 8, 6, 2, 5, 8, 9, 8, 8, 2, 1, 3, 5, 3, 2, 8, 2, 0, 4, 1
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 7 followed by {7, 14} repeated. - Harry J. Smith, Jun 06 2009

Examples

			7.141428428542849997999399811367265278766171159902733833208430882765820...
		

Crossrefs

Cf. A040043 (continued fraction).

Programs

  • Maple
    Digits:=100; evalf(sqrt(51)); # Wesley Ivan Hurt, Mar 04 2014
  • Mathematica
    RealDigits[N[Sqrt[51],200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 24 2011 *)
  • PARI
    { default(realprecision, 20080); x=sqrt(51); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010504.txt", n, " ", d)); } \\ Harry J. Smith, Jun 06 2009

Formula

Equals A002194*A010473. - R. J. Mathar, Jun 08 2025

A165922 Decimal expansion of 2*sqrt(3)/(9*Pi).

Original entry on oeis.org

1, 2, 2, 5, 1, 7, 5, 3, 2, 3, 1, 5, 9, 5, 3, 7, 8, 8, 7, 8, 0, 2, 9, 4, 7, 7, 7, 4, 0, 2, 8, 8, 2, 0, 9, 8, 0, 8, 8, 3, 0, 8, 1, 0, 6, 7, 4, 8, 1, 4, 2, 3, 6, 7, 2, 8, 8, 7, 4, 8, 0, 0, 4, 5, 0, 9, 1, 1, 7, 8, 4, 5, 2, 1, 5, 3, 9, 3, 2, 8, 7, 7, 4, 2, 3, 0, 6, 6, 7, 3, 0, 7, 1, 8, 1, 5, 7, 5, 3, 1, 5, 7, 2, 6, 6
Offset: 0

Views

Author

Rick L. Shepherd, Sep 30 2009

Keywords

Comments

The ratio of the volume of a regular tetrahedron to the volume of the circumscribed sphere. (The MathWorld link shows that the circumradius for a tetrahedron with side length a is a*sqrt(6)/4.)

Examples

			0.122517532315953788780294777402882098...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2Sqrt[3])/(9Pi),10,120][[1]] (* Harvey P. Dale, Nov 17 2013 *)
  • PARI
    2*3^(-3/2)/Pi

Formula

2*sqrt(3)/(9*Pi) = A010469/(9*A000796) = (2/9)*A002194/A000796 = (2/9)*A002194*A049541 = 2*A020784/A000796 = 2*3^(-3/2)/Pi.

A176394 Decimal expansion of 3+2*sqrt(3).

Original entry on oeis.org

6, 4, 6, 4, 1, 0, 1, 6, 1, 5, 1, 3, 7, 7, 5, 4, 5, 8, 7, 0, 5, 4, 8, 9, 2, 6, 8, 3, 0, 1, 1, 7, 4, 4, 7, 3, 3, 8, 8, 5, 6, 1, 0, 5, 0, 7, 6, 2, 0, 7, 6, 1, 2, 5, 6, 1, 1, 1, 6, 1, 3, 9, 5, 8, 9, 0, 3, 8, 6, 6, 0, 3, 3, 8, 1, 7, 6, 0, 0, 0, 7, 4, 1, 6, 2, 2, 9, 2, 3, 7, 3, 5, 1, 4, 4, 9, 7, 1, 5, 1, 3, 5, 1, 2, 5
Offset: 1

Views

Author

Klaus Brockhaus, Apr 16 2010

Keywords

Comments

Continued fraction expansion of 3+2*sqrt(3) is A010696 preceded by 6.
a(n) = A010469(n) for n > 1.
Largest radius of three circles tangent to a circle of radius 1. - Charles R Greathouse IV, Jan 14 2013
For a spinning black hole the phase transition to positive specific heat happens at a point governed by 2*sqrt(3)-3 (according to a discussion on John Baez's blog), and not at the golden ratio as claimed by Paul Davis. - Peter Luschny, Mar 02 2013
In particular: a black hole with J > (2*sqrt(3)-3) Gm^2/c has positive specific heat, and negative specific heat if J is less, where J is its angular momentum, m is its mass, G is the gravitational constant, and c is the speed of light. For a solar mass black hole, this is 4.08 * 10^41 joule-seconds or a rotation every 1.61 days with the sun's inertia. - Charles R Greathouse IV, Sep 20 2013

Examples

			3+2*sqrt(3) = 6.46410161513775458705...
		

Crossrefs

Cf. A002194 (decimal expansion of sqrt(3)), A010469 (decimal expansion of sqrt(12)), A010696 (repeat 2, 6).

Programs

  • Mathematica
    Circs[n_] := With[{r = Sin[Pi/n]/(1 - Sin[Pi/n])}, Graphics[Append[Table[Circle[(r + 1) {Sin[2 Pi k/n], Cos[2 Pi k/n]}, r], {k, n}], {Blue, Circle[{0, 0}, 1]}]]]; Circs[3] (* Charles R Greathouse IV, Jan 14 2013 *)
  • PARI
    3+2*sqrt(3) \\ Charles R Greathouse IV, Jan 14 2013

Formula

Equals Sum_{n>=1} (sqrt(3)/2)^n = (sqrt(3)/2)/(1 - (sqrt(3)/2)). - Fred Daniel Kline, Mar 03 2014

A194415 Numbers m such that Sum_{k=1..m} (<1/3 + k*r> - ) < 0, where r=sqrt(3) and < > denotes fractional part.

Original entry on oeis.org

1, 2, 4, 5, 8, 16, 17, 19, 20, 23, 31, 32, 34, 35, 38, 46, 47, 49, 50, 53, 56, 57, 58, 59, 60, 61, 62, 64, 65, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 109, 110, 112, 113, 114, 115, 116
Offset: 1

Views

Author

Clark Kimberling, Aug 24 2011

Keywords

Comments

See A194368.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[3]; c = 1/3;
    x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
    y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
    t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 150}];
    Flatten[Position[t1, 1]]           (* A194415 *)
    t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 300}];
    Flatten[Position[t2, 1]]           (* A194416 *)
    %/3                                (* A194417 *)
    t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 500}];
    Flatten[Position[t3, 1]]           (* A194418 *)
Previous Showing 51-60 of 218 results. Next