A104259
Triangle T read by rows: matrix product of Pascal and Catalan triangle.
Original entry on oeis.org
1, 2, 1, 5, 4, 1, 15, 14, 6, 1, 51, 50, 27, 8, 1, 188, 187, 113, 44, 10, 1, 731, 730, 468, 212, 65, 12, 1, 2950, 2949, 1956, 970, 355, 90, 14, 1, 12235, 12234, 8291, 4356, 1785, 550, 119, 16, 1, 51822, 51821, 35643, 19474, 8612, 3021, 805, 152, 18, 1
Offset: 0
Triangle begins:
1
2, 1
5, 4, 1
15, 14, 6, 1
51, 50, 27, 8, 1
188, 187, 113, 44, 10, 1
731, 730, 468, 212, 65, 12, 1
2950, 2949, 1956, 970, 355, 90, 14, 1
12235, 12234, 8291, 4356, 1785, 550, 119, 16, 1
Production matrix begins
2, 1
1, 2, 1
1, 1, 2, 1
1, 1, 1, 2, 1
1, 1, 1, 1, 2, 1
1, 1, 1, 1, 1, 2, 1
1, 1, 1, 1, 1, 1, 2, 1
... - _Philippe Deléham_, Mar 01 2013
- Robert Israel, Table of n, a(n) for n = 0..5049
- D. Merlini, R. Sprugnoli and M. C. Verri, An algebra for proper generating trees, Mathematics and Computer Science, Part of the series Trends in Mathematics pp 127-139, 2000. [alternative link]
- D. Merlini, R. Sprugnoli and M. C. Verri, An algebra for proper generating trees, Colloquium on Mathematics and Computer Science, Versailles, September 2000.
-
T := (n,k) -> binomial(n,k)*hypergeom([k/2+1/2,k/2+1,k-n],[k+1,k+2],-4); seq(print(seq(round(evalf(T(n,k),99)),k=0..n)),n=0..8); # Peter Luschny, Sep 23 2014
# Alternative:
N:= 12: # to get the first N rows
P:= Matrix(N,N,(i,j) -> binomial(i-1,j-1), shape=triangular[lower]):
C:= Matrix(N,N,(i,j) -> binomial(2*i-j-1,i-j)*j/i, shape=triangular[lower]):
T:= P . C:
for i from 1 to N do
seq(T[i,j],j=1..i)
od; # Robert Israel, Sep 23 2014
-
Flatten[Table[Sum[Binomial[n,i]Binomial[2i-k,i-k](k+1)/(i+1),{i,k,n}],{n,0,100},{k,0,n}]] (* Emanuele Munarini, May 18 2011 *)
-
create_list(sum(binomial(n,i)*binomial(2*i-k,i-k)*(k+1)/(i+1),i,k,n),n,0,12,k,0,n); /* Emanuele Munarini, May 18 2011 */
A026106
Number of polyhexes of class PF2 (with one catafusene annealated to pyrene).
Original entry on oeis.org
2, 5, 16, 55, 208, 817, 3336, 13935, 59406, 257079, 1126948, 4992421, 22318048, 100546543, 456055730, 2080872845, 9544572590, 43984730855, 203550840696, 945562887981, 4407586685688, 20609668887723, 96646196091276, 454402001079165
Offset: 5
- S. J. Cyvin, Zhang Fuji, B. N. Cyvin, Guo Xiaofeng, and J. Brunvoll, Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540.
- S. J. Cyvin, B. N. Cyvin, J. Brunvoll, and E. Brendsdal, Enumeration and classification of certain polygonal systems representing polycyclic conjugated hydrocarbons: annelated catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.
- Eric Weisstein's World of Mathematics, Fusenes.
- Eric Weisstein's World of Mathematics, Polyhex.
Cf.
A002212,
A007317,
A026106,
A026118,
A026298,
A030519,
A030520,
A030525,
A030529,
A030532,
A030534,
A039658.
-
bb := proc(x) (1/4)*x^3*(4-8*x-3*sqrt((1-x)*(1-5*x))-(x+1)*sqrt((1-5*x^2)/(1-x^2))) end proc;
taylor(bb(x), x = 0, 50); # Petros Hadjicostas, Jan 12 2019
-
(1/4) x^3 (4 - 8x - 3Sqrt[(1-x)(1-5x)] - (x+1) Sqrt[(1-5x^2)/(1-x^2)]) + O[x]^29 // CoefficientList[#, x]& // Drop[#, 5]& (* Jean-François Alcover, Apr 24 2020, from Maple *)
A026298
Number of polyhexes of class PF2.
Original entry on oeis.org
4, 28, 176, 950, 4908, 24402, 119240, 575348, 2757460, 13157752, 62638788, 297832008, 1415550920, 6728600060, 31998023632, 152271569872, 725231959452, 3457304575812, 16497751608120, 78804354881238, 376806016649964, 1803539487096138, 8641075826669256, 41441524062045660
Offset: 7
A030519
Number of polyhexes of class PF2 with four catafusenes annealated to pyrene.
Original entry on oeis.org
2, 13, 101, 619, 3641, 20028, 106812, 554352, 2828660, 14244878, 71077246, 352184306, 1736118578, 8525182798, 41741378126, 203929434766, 994680883360, 4845761306611, 23586192274443, 114731539477465, 557859497501007, 2711772157178038, 13180227306740726
Offset: 8
-
Lp(n)=my(x = 'x + O('x^(n+4))); polcoeff((1+x)*(1-6*x^2+7*x^4-(1-3*x^2)*sqrt(1-6*x^2+5*x^4))/(2*x^4*(1-x)), n); \\ A039660
M(n)= my(A); if( n<1, 0, n--; A = O(x); for( k = 0, n\2, A = 1 / (1 - x - x^2 / (1 + x - x^2 * A))); polcoeff( A, n)); \\ A055879
N(n) = polcoeff( (1 - x - sqrt(1 - 6*x + 5*x^2 + x^2 * O(x^n))) / 2, n+1); \\ A002212
b(n) = N(n+3) - 9*N(n+2) + 25*N(n+1) - 21*N(n) + (M(n+3) - M(n+2) - 3*M(n+1) + 3*M(n) + Lp(n))/2;
a(n) = b(n-4); \\ Michel Marcus, Apr 03 2020
A182401
Number of paths from (0,0) to (n,0), never going below the x-axis, using steps U=(1,1), H=(1,0) and D=(1,-1), where the H steps come in five colors.
Original entry on oeis.org
1, 5, 26, 140, 777, 4425, 25755, 152675, 919139, 5606255, 34578292, 215322310, 1351978807, 8550394455, 54419811354, 348309105300, 2240486766555, 14476490777175, 93914850905862, 611489638708140, 3994697746533171, 26175407271617955, 171991872078871311
Offset: 0
seq(3^n * simplify(hypergeom([3/2, -n], [3], -4/3)), n = 0..20); # _Peter Bala_, Feb 04 2024
-
CoefficientList[Series[(1-5*x-Sqrt[1-10*x+21*x^2])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
a[n_] := 5^n*Hypergeometric2F1[(1-n)/2, -n/2, 2, 4/25]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 22 2013, after 2nd formula *)
-
a(n):=coeff(expand((1+5*x+x^2)^(n+1)),x^n)/(n+1);
makelist(a(n),n,0,30);
-
x='x+O('x^66); Vec((1-5*x-sqrt(1-10*x+21*x^2))/(2*x^2)) \\ Joerg Arndt, Jun 02 2013
A349335
G.f. A(x) satisfies A(x) = 1 + x * A(x)^8 / (1 - x).
Original entry on oeis.org
1, 1, 9, 109, 1541, 23823, 390135, 6651051, 116798643, 2098313686, 38382509118, 712447023590, 13385500614902, 254065657922154, 4864482597112186, 93840443376075810, 1822169236520766546, 35586928273002974487, 698572561837366684479, 13775697096997873764647
Offset: 0
-
a:= n-> coeff(series(RootOf(1+x*A^8/(1-x)-A, A), x, n+1), x, n):
seq(a(n), n=0..19); # Alois P. Heinz, Nov 15 2021
-
nmax = 19; A[] = 0; Do[A[x] = 1 + x A[x]^8/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n - 1, k - 1] Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 19}]
-
{a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0);
A[#A] = 1 + sum(k=1, m-1, (polcoeff(Ser(A)^8, k)) )); A[n+1]}
for(n=0, 30, print1(a(n), ", ")) \\ Vaclav Kotesovec, Nov 23 2024, after Paul D. Hanna
A055450
Path-counting array T; each step of a path is (1 right) or (1 up) to a point below line y=x, else (1 right and 1 up) or (1 up) to a point on the line y=x, else (1 left) or (1 up) to a point above line y=x. T(i,j)=number of paths to point (i-j,j), for 1<=j<=i, i >= 1.
Original entry on oeis.org
1, 1, 3, 1, 2, 10, 1, 3, 7, 36, 1, 4, 5, 26, 137, 1, 5, 9, 19, 101, 543, 1, 6, 14, 14, 75, 406, 2219, 1, 7, 20, 28, 56, 305, 1676, 9285, 1, 8, 27, 48, 42, 230, 1270, 7066, 39587, 1, 9, 35, 75, 90, 174, 965, 5390, 30302, 171369, 1, 10, 44, 110, 165, 132, 735, 4120, 23236, 131782, 751236
Offset: 0
Triangle begins as:
1;
1, 3;
1, 2, 10;
1, 3, 7, 36;
1, 4, 5, 26, 137;
1, 5, 9, 19, 101, 543;
1, 6, 14, 14, 75, 406, 2219;
1, 7, 20, 28, 56, 305, 1676, 9285;
1, 8, 27, 48, 42, 230, 1270, 7066, 39587;
...
T(4,4) defined as T(5,4)+T(3,3) when k=4, T(5,4) already defined when k=3.
-
B:=Binomial; G:=Gamma; F:=Factorial;
p:= func< n,k,j | B(n-2*k+j-1, j)*G(n-k+j+3/2)/(F(j)*G(n-k+3/2)*B(n-k+j+2, j)) >;
A030237:= func< n,k | (n-k+1)*Binomial(n+k, k)/(n+1) >;
function T(n,k) // T = A055450
if k lt n/2 then return A030237(n-k+1, k);
else return Round(Catalan(n-k+1)*(&+[p(n,k,j)*(-4)^j: j in [0..n]]));
end if;
end function;
[T(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 29 2024
-
T[n_, 0]:= 1; T[n_, k_]:= T[n, k]= If[1<=kG. C. Greubel, Jan 29 2024 *)
T[n_, k_]:= If[kG. C. Greubel, Jan 29 2024 *)
-
def A030237(n,k): return (n-k+1)*binomial(n+k, k)/(n+1)
def T(n,k): # T = A055450
if kA030237(n-k+1,k)
else: return round(catalan_number(n-k+1)*hypergeometric([n-2*k, (3+2*(n-k))/2], [3+n-k], -4))
flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 29 2024
A349334
G.f. A(x) satisfies A(x) = 1 + x * A(x)^7 / (1 - x).
Original entry on oeis.org
1, 1, 8, 85, 1051, 14197, 203064, 3022909, 46347534, 726894786, 11606936525, 188060979332, 3084087347910, 51094209834068, 853859480938095, 14376597494941454, 243649099741045190, 4153091242153905838, 71152973167920086796, 1224593757045581062444
Offset: 0
-
a:= n-> coeff(series(RootOf(1+x*A^7/(1-x)-A, A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 15 2021
-
nmax = 19; A[] = 0; Do[A[x] = 1 + x A[x]^7/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n - 1, k - 1] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 19}]
-
{a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0);
A[#A] = 1 + sum(k=1, m-1, (polcoeff(Ser(A)^7, k)) )); A[n+1]}
for(n=0, 30, print1(a(n), ", ")) \\ Vaclav Kotesovec, Nov 23 2024, after Paul D. Hanna
A360100
a(n) = Sum_{k=0..n} binomial(n+2*k-1,n-k) * Catalan(k).
Original entry on oeis.org
1, 1, 5, 23, 111, 562, 2952, 15948, 88076, 495077, 2823293, 16295020, 95007654, 558765743, 3310999269, 19748462718, 118471172054, 714355994997, 4327148812557, 26319195869861, 160677354596769, 984236344800234, 6047526697800992, 37262944840704171
Offset: 0
-
A360100 := proc(n)
add(binomial(n+2*k-1,n-k)*A000108(k),k=0..n) ;
end proc:
seq(A360100(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
-
m = 24;
A[_] = 0;
Do[A[x_] = 1 + x A[x]^2/(1 - x)^3 + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Aug 16 2023 *)
-
a(n) = sum(k=0, n, binomial(n+2*k-1, n-k)*binomial(2*k, k)/(k+1));
-
my(N=30, x='x+O('x^N)); Vec(2/(1+sqrt(1-4*x/(1-x)^3)))
A039919
Related to enumeration of edge-rooted catafusenes.
Original entry on oeis.org
0, 1, 5, 21, 86, 355, 1488, 6335, 27352, 119547, 528045, 2353791, 10575810, 47849685, 217824285, 996999525, 4585548680, 21182609875, 98236853415, 457211008415, 2134851575050, 9997848660345, 46949087361550, 221022160284101, 1042916456739696, 4931673470809525, 23367060132453323
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- B. N. Cyvin, E. Brendsdal, J. Brunvoll, and S. J. Cyvin, A class of polygonal systems representing polycyclic conjugated hydrocarbons: Catacondensed monoheptafusenes, Monat. f. Chemie, 125 (1994), 1327-1337 (see Eq. 6 for the g.f. of the sequence (M'(n): n >= 3) = (a(floor((m + 1)/2)): m >= 3)).
- S. J. Cyvin, Zhang Fuji, B. N. Cyvin, Guo Xiaofeng, and J. Brunvoll, Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540.
- S. J. Cyvin, B. N. Cyvin, J. Brunvoll, and E. Brendsdal, Enumeration and Classification of Certain Polygonal Systems Representing Polycyclic Conjugated Hydrocarbons: Annelated Catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.
-
Table[SeriesCoefficient[8x^2*(1-x)/(1-x+Sqrt[1-6x+5x^2])^3,{x,0,n}],{n,1,23}] (* Vaclav Kotesovec, Oct 08 2012 *)
-
x='x+O('x^66); concat([0],Vec(8*x^2*(1-x)/(1-x+sqrt(1-6*x+5*x^2))^3)) \\ Joerg Arndt, May 04 2013
Comments