cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 148 results. Next

A104259 Triangle T read by rows: matrix product of Pascal and Catalan triangle.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 15, 14, 6, 1, 51, 50, 27, 8, 1, 188, 187, 113, 44, 10, 1, 731, 730, 468, 212, 65, 12, 1, 2950, 2949, 1956, 970, 355, 90, 14, 1, 12235, 12234, 8291, 4356, 1785, 550, 119, 16, 1, 51822, 51821, 35643, 19474, 8612, 3021, 805, 152, 18, 1
Offset: 0

Views

Author

Ralf Stephan, Mar 17 2005

Keywords

Comments

Also, Riordan array (G,G), G(t)=(1 - ((1-5*t)/(1-t))^(1/2))/(2*t).
From Emanuele Munarini, May 18 2011: (Start)
Row sums = A002212.
Diagonal sums = A190737.
Central coefficients = A190738. (End)

Examples

			Triangle begins:
1
2, 1
5, 4, 1
15, 14, 6, 1
51, 50, 27, 8, 1
188, 187, 113, 44, 10, 1
731, 730, 468, 212, 65, 12, 1
2950, 2949, 1956, 970, 355, 90, 14, 1
12235, 12234, 8291, 4356, 1785, 550, 119, 16, 1
Production matrix begins
2, 1
1, 2, 1
1, 1, 2, 1
1, 1, 1, 2, 1
1, 1, 1, 1, 2, 1
1, 1, 1, 1, 1, 2, 1
1, 1, 1, 1, 1, 1, 2, 1
... - _Philippe Deléham_, Mar 01 2013
		

Crossrefs

Left-hand columns include A007317, A007317 - 1. Row sums are in A002212.

Programs

  • Maple
    T := (n,k) -> binomial(n,k)*hypergeom([k/2+1/2,k/2+1,k-n],[k+1,k+2],-4); seq(print(seq(round(evalf(T(n,k),99)),k=0..n)),n=0..8); # Peter Luschny, Sep 23 2014
    # Alternative:
    N:= 12:  # to get the first N rows
    P:= Matrix(N,N,(i,j) -> binomial(i-1,j-1), shape=triangular[lower]):
    C:= Matrix(N,N,(i,j) -> binomial(2*i-j-1,i-j)*j/i, shape=triangular[lower]):
    T:= P . C:
    for i from 1 to N do
    seq(T[i,j],j=1..i)
    od;   # Robert Israel, Sep 23 2014
  • Mathematica
    Flatten[Table[Sum[Binomial[n,i]Binomial[2i-k,i-k](k+1)/(i+1),{i,k,n}],{n,0,100},{k,0,n}]] (* Emanuele Munarini, May 18 2011 *)
  • Maxima
    create_list(sum(binomial(n,i)*binomial(2*i-k,i-k)*(k+1)/(i+1),i,k,n),n,0,12,k,0,n); /* Emanuele Munarini, May 18 2011 */

Formula

T(n,k) = sum(binomial(n,i)*binomial(2*i-k,i-k)*(k+1)/(i+1),i=k..n).
T(n+1,k+2) = T(n+1,k+1) + T(n,k+2) - T(n,k+1) - T(n,k). - Emanuele Munarini, May 18 2011
T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + Sum_{i, i>=0} T(n-1,k+1+i). - Philippe Deléham, Feb 23 2012
T(n,k) = C(n,k)*hypergeom([k/2+1/2,k/2+1,k-n],[k+1,k+2],-4). - Peter Luschny, Sep 23 2014

A026106 Number of polyhexes of class PF2 (with one catafusene annealated to pyrene).

Original entry on oeis.org

2, 5, 16, 55, 208, 817, 3336, 13935, 59406, 257079, 1126948, 4992421, 22318048, 100546543, 456055730, 2080872845, 9544572590, 43984730855, 203550840696, 945562887981, 4407586685688, 20609668887723, 96646196091276, 454402001079165
Offset: 5

Views

Author

Keywords

Comments

See reference for precise definition.
From Petros Hadjicostas, Jan 12 2019: (Start)
In Cyvin et al. (1992), sequence (N(m): m >= 1) = (A002212(m): m >= 1) is defined by eq. (1), p. 533. (We may let N(0) := A002212(0) = 1.)
Sequence (M(m): m >= 1) is defined by eq. (13), p. 534. We have M(2*m) = M(2*m-1) = A007317(m) for m >= 1.
Sequences (N(m): m >= 1) and (M(m): m >= 1) appear in Table 1, p. 533.
The current sequence is denoted by 1^Q_(4+n) (with n = 1,2,3,...). Thus, a(n+4) = 1^Q_(4+n) for n >= 1; i.e., a(m) = 1^Q_{m} for m >= 5. We have 1^Q_(4+n) = (1/2)*(3*N(n) + M(n)) for n >= 1. See eq. (33), p. 536.
Sequence (1^Q_(4+n): n >= 1) appears in Table II, p. 537.
We may use the many formulae in the documentations of sequences A002212 and A007317 in order to create complicated formulae and recurrence relations for (a(n): n >= 5). We omit the details.
The first g.f. below is a combination of the g.f. for sequence A002212 by John W. Layman in 2001 and the g.f. for sequence A007317 by Ira M. Gessel and Jang Soo Kim in 2010.
The second g.f. appears in eq. (A1), p. 1180, in Cyvin et al. (1994). It is algebraically equivalent to the first g.f.
(Apparently, the word "annealated" in Cyvin et al. (1992) is spelled "annelated" in Cyvin et al. (1994).)
(End)

Crossrefs

Programs

  • Maple
    bb := proc(x) (1/4)*x^3*(4-8*x-3*sqrt((1-x)*(1-5*x))-(x+1)*sqrt((1-5*x^2)/(1-x^2))) end proc;
    taylor(bb(x), x = 0, 50); # Petros Hadjicostas, Jan 12 2019
  • Mathematica
    (1/4) x^3 (4 - 8x - 3Sqrt[(1-x)(1-5x)] - (x+1) Sqrt[(1-5x^2)/(1-x^2)]) + O[x]^29 // CoefficientList[#, x]& // Drop[#, 5]& (* Jean-François Alcover, Apr 24 2020, from Maple *)

Formula

From Petros Hadjicostas, Jan 12 2019: (Start)
For n >= 1, a(n+4) = (1/2)*(3*A002212(n) + A007317(floor((n+1)/2))).
G.f.: (x^3/4)*(4 - 8*x - 3*sqrt(1 - 6*x + 5*x^2) - (x + 1)*sqrt((1 - 5*x^2)/(1 - x^2))).
G.f.: x^3*(1 - 2*x) - (x^3/4)*(3*(1 - x)^(1/2)*(1 - 5*x)^(1/2) + (1 - x)^(-1)*(1 - x^2)^(1/2)*(1 - 5*x^2)^(1/2)) (see eq. (A1), p. 1180, in Cyvin et al. (1994)).
(End)

Extensions

Name edited by Petros Hadjicostas, Jan 12 2019
Terms a(17)-a(28) computed by Petros Hadjicostas, Jan 12 2019

A026298 Number of polyhexes of class PF2.

Original entry on oeis.org

4, 28, 176, 950, 4908, 24402, 119240, 575348, 2757460, 13157752, 62638788, 297832008, 1415550920, 6728600060, 31998023632, 152271569872, 725231959452, 3457304575812, 16497751608120, 78804354881238, 376806016649964, 1803539487096138, 8641075826669256, 41441524062045660
Offset: 7

Views

Author

Keywords

Comments

See reference for precise definition.
Cyvin et al. has incorrect a(13) = 119204 and a(14) = 575312 due to using incorrect value for A039919(5); cf. A039659. - Sean A. Irvine, Sep 24 2019

Crossrefs

Formula

a(n + 4) = 3 * (N(n+2) - 6*N(n+1) + 8*N(n)) + A039919(floor((n+1)/2)) where N(n) = A002212(n) [from Cyvin]. - Sean A. Irvine, Sep 24 2019

Extensions

Corrected and extended by Sean A. Irvine, Sep 24 2019

A030519 Number of polyhexes of class PF2 with four catafusenes annealated to pyrene.

Original entry on oeis.org

2, 13, 101, 619, 3641, 20028, 106812, 554352, 2828660, 14244878, 71077246, 352184306, 1736118578, 8525182798, 41741378126, 203929434766, 994680883360, 4845761306611, 23586192274443, 114731539477465, 557859497501007, 2711772157178038, 13180227306740726
Offset: 8

Views

Author

Keywords

Comments

See reference for precise definition.

Crossrefs

Programs

  • PARI
    Lp(n)=my(x = 'x + O('x^(n+4))); polcoeff((1+x)*(1-6*x^2+7*x^4-(1-3*x^2)*sqrt(1-6*x^2+5*x^4))/(2*x^4*(1-x)), n); \\ A039660
    M(n)= my(A); if( n<1, 0, n--; A = O(x); for( k = 0, n\2, A = 1 / (1 - x - x^2 / (1 + x - x^2 * A))); polcoeff( A, n)); \\ A055879
    N(n) = polcoeff( (1 - x - sqrt(1 - 6*x + 5*x^2 + x^2 * O(x^n))) / 2, n+1); \\ A002212
    b(n) = N(n+3) - 9*N(n+2) + 25*N(n+1) - 21*N(n) + (M(n+3) - M(n+2) - 3*M(n+1) + 3*M(n) + Lp(n))/2;
    a(n) = b(n-4); \\ Michel Marcus, Apr 03 2020

Formula

a(n+4) = N(n+3) - 9*N(n+2) + 25*N(n+1) - 21*N(n) + (M(n+3) - M(n+2) - 3*M(n+1) + 3*M(n) + L'(n))/2 where N(n)=A002212(n), M(n)=A055879(n), and L'(n)=A039660(n) for n >= 4. - Sean A. Irvine, Apr 02 2020

Extensions

More terms and title improved by Sean A. Irvine, Apr 02 2020

A182401 Number of paths from (0,0) to (n,0), never going below the x-axis, using steps U=(1,1), H=(1,0) and D=(1,-1), where the H steps come in five colors.

Original entry on oeis.org

1, 5, 26, 140, 777, 4425, 25755, 152675, 919139, 5606255, 34578292, 215322310, 1351978807, 8550394455, 54419811354, 348309105300, 2240486766555, 14476490777175, 93914850905862, 611489638708140, 3994697746533171, 26175407271617955, 171991872078871311
Offset: 0

Views

Author

Emanuele Munarini, Apr 27 2012

Keywords

Comments

Number of 3-colored Schroeder paths from (0,0) to (2n+2,0) with no level steps H=(2,0) at even level. H-steps at odd levels are colored with one of the three colors. Example: a(2)=5 because we have UUDD, UHD (3 choices) and UDUD. - José Luis Ramírez Ramírez, Apr 27 2015

Examples

			seq(3^n * simplify(hypergeom([3/2, -n], [3], -4/3)), n = 0..20); # _Peter Bala_, Feb 04 2024
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-5*x-Sqrt[1-10*x+21*x^2])/(2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
    a[n_] := 5^n*Hypergeometric2F1[(1-n)/2, -n/2, 2, 4/25]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 22 2013, after 2nd formula *)
  • Maxima
    a(n):=coeff(expand((1+5*x+x^2)^(n+1)),x^n)/(n+1);
    makelist(a(n),n,0,30);
    
  • PARI
    x='x+O('x^66); Vec((1-5*x-sqrt(1-10*x+21*x^2))/(2*x^2)) \\ Joerg Arndt, Jun 02 2013

Formula

a(n) = [x^n] (1+5*x+x^2)^(n+1)/(n+1).
a(n) = Sum_{k=0..floor(n/2)} (binomial(n,2*k)*binomial(2*k,k)/(k+1))*5^(n-2*k).
G.f.: (1-5*x-sqrt(1-10*x+21*x^2))/(2*x^2).
Conjecture: (n+2)*a(n) +5*(-2*n-1)*a(n-1) +21*(n-1)*a(n-2)=0. - R. J. Mathar, Jul 24 2012
a(n) ~ 7^(n+3/2)/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
a(n) = A125906(n,0). - Philippe Deléham, Mar 04 2013
G.f.: 1/(1 - 5*x - x^2/(1 - 5*x - x^2/(1 - 5*x - x^2/(1 - 5*x - x^2/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Sep 21 2017
From Seiichi Manyama, Jan 15 2024: (Start)
G.f.: (1/x) * Series_Reversion( x / (1+5*x+x^2) ).
a(n) = (1/(n+1)) * Sum_{k=0..n} 3^(n-k) * binomial(n+1,n-k) * binomial(2*k+2,k). (End)
From Peter Bala, Feb 03 2024: (Start)
G.f: 1/(1 - 3*x)*c(x/(1 - 3*x))^2 = 1/(1 - 7*x)*c(-x/(1 - 7*x))^2, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
a(n) = Sum_{k = 0..n} 3^(n-k)*binomial(n, k)*Catalan(k+1).
a(n) = 3^n * hypergeom([3/2, -n], [3], -4/3).
a(n) = 7^n * Sum_{k = 0..n} (-7)^(-k)*binomial(n, k)*Catalan(k+1).
a(n) = 7^n * hypergeom([3/2, -n], [3], 4/7). (End)

A349335 G.f. A(x) satisfies A(x) = 1 + x * A(x)^8 / (1 - x).

Original entry on oeis.org

1, 1, 9, 109, 1541, 23823, 390135, 6651051, 116798643, 2098313686, 38382509118, 712447023590, 13385500614902, 254065657922154, 4864482597112186, 93840443376075810, 1822169236520766546, 35586928273002974487, 698572561837366684479, 13775697096997873764647
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2021

Keywords

Comments

In general, for m > 1, Sum_{k=0..n} binomial(n-1,k-1) * binomial(m*k,k) / ((m-1)*k+1) ~ (m-1)^(m/2 - 2) * (1 + m^m/(m-1)^(m-1))^(n + 1/2) / (sqrt(2*Pi) * m^((m-1)/2) * n^(3/2)). - Vaclav Kotesovec, Nov 15 2021

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(1+x*A^8/(1-x)-A, A), x, n+1), x, n):
    seq(a(n), n=0..19);  # Alois P. Heinz, Nov 15 2021
  • Mathematica
    nmax = 19; A[] = 0; Do[A[x] = 1 + x A[x]^8/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n - 1, k - 1] Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 19}]
  • PARI
    {a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0);
    A[#A] = 1 + sum(k=1, m-1, (polcoeff(Ser(A)^8, k)) )); A[n+1]}
    for(n=0, 30, print1(a(n), ", ")) \\ Vaclav Kotesovec, Nov 23 2024, after Paul D. Hanna

Formula

a(n) = Sum_{k=0..n} binomial(n-1,k-1) * binomial(8*k,k) / (7*k+1).
a(n) ~ 17600759^(n + 1/2) / (2048 * sqrt(Pi) * n^(3/2) * 7^(7*n + 3/2)). - Vaclav Kotesovec, Nov 15 2021

A055450 Path-counting array T; each step of a path is (1 right) or (1 up) to a point below line y=x, else (1 right and 1 up) or (1 up) to a point on the line y=x, else (1 left) or (1 up) to a point above line y=x. T(i,j)=number of paths to point (i-j,j), for 1<=j<=i, i >= 1.

Original entry on oeis.org

1, 1, 3, 1, 2, 10, 1, 3, 7, 36, 1, 4, 5, 26, 137, 1, 5, 9, 19, 101, 543, 1, 6, 14, 14, 75, 406, 2219, 1, 7, 20, 28, 56, 305, 1676, 9285, 1, 8, 27, 48, 42, 230, 1270, 7066, 39587, 1, 9, 35, 75, 90, 174, 965, 5390, 30302, 171369, 1, 10, 44, 110, 165, 132, 735, 4120, 23236, 131782, 751236
Offset: 0

Views

Author

Clark Kimberling, May 18 2000

Keywords

Examples

			Triangle begins as:
  1;
  1, 3;
  1, 2, 10;
  1, 3,  7, 36;
  1, 4,  5, 26, 137;
  1, 5,  9, 19, 101, 543;
  1, 6, 14, 14,  75, 406, 2219;
  1, 7, 20, 28,  56, 305, 1676, 9285;
  1, 8, 27, 48,  42, 230, 1270, 7066, 39587;
  ...
T(4,4) defined as T(5,4)+T(3,3) when k=4, T(5,4) already defined when k=3.
		

Crossrefs

Programs

  • Magma
    B:=Binomial; G:=Gamma; F:=Factorial;
    p:= func< n,k,j | B(n-2*k+j-1, j)*G(n-k+j+3/2)/(F(j)*G(n-k+3/2)*B(n-k+j+2, j)) >;
    A030237:= func< n,k | (n-k+1)*Binomial(n+k, k)/(n+1) >;
    function T(n,k) // T = A055450
      if k lt n/2 then return A030237(n-k+1, k);
      else return Round(Catalan(n-k+1)*(&+[p(n,k,j)*(-4)^j: j in [0..n]]));
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 29 2024
    
  • Mathematica
    T[n_, 0]:= 1; T[n_, k_]:= T[n, k]= If[1<=kG. C. Greubel, Jan 29 2024 *)
    T[n_, k_]:= If[kG. C. Greubel, Jan 29 2024 *)
  • SageMath
    def A030237(n,k): return (n-k+1)*binomial(n+k, k)/(n+1)
    def T(n,k): # T = A055450
        if kA030237(n-k+1,k)
        else: return round(catalan_number(n-k+1)*hypergeometric([n-2*k, (3+2*(n-k))/2], [3+n-k], -4))
    flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 29 2024

Formula

Initial values: T(i, 0)=1 for i >= 0. Recurrence: if 1 <= j < i/2, then T(i, j) = T(i-1, j-1) + T(i-1, j), if j = i/2 then T(2j, j) = T(2j-2, j-1) + T(2j-1, j-1), otherwise T(2j-k, j) = T(2j-k+1, j) + T(2j-k-1, j-1) for j=k, k+1, k+2, ..., for k=1, 2, 3, ...
T(2n, n) = A000108(n) for n >= 0 (Catalan numbers).
T(n, n) = A002212(n+1).
T(n, n-1) = A045868(n).
T(n, k) = A030237(n-k+1, k) for n >= 1, 0 <= k < n/2.
From G. C. Greubel, Jan 29 2024: (Start)
T(n, k) = (n-2*k+2)*binomial(n+1, k)/(n-k+2) for 0 <= k < n/2, otherwise Catalan(n-k +1)*Hypergeometric2F1([n-2*k, (3+2*(n-k))/2], [3+n-k], -4).
Sum_{k=0..n} T(n, k) = A055451(n). (End)

A349334 G.f. A(x) satisfies A(x) = 1 + x * A(x)^7 / (1 - x).

Original entry on oeis.org

1, 1, 8, 85, 1051, 14197, 203064, 3022909, 46347534, 726894786, 11606936525, 188060979332, 3084087347910, 51094209834068, 853859480938095, 14376597494941454, 243649099741045190, 4153091242153905838, 71152973167920086796, 1224593757045581062444
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(1+x*A^7/(1-x)-A, A), x, n+1), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 15 2021
  • Mathematica
    nmax = 19; A[] = 0; Do[A[x] = 1 + x A[x]^7/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n - 1, k - 1] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 19}]
  • PARI
    {a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0);
    A[#A] = 1 + sum(k=1, m-1, (polcoeff(Ser(A)^7, k)) )); A[n+1]}
    for(n=0, 30, print1(a(n), ", ")) \\ Vaclav Kotesovec, Nov 23 2024, after Paul D. Hanna

Formula

a(n) = Sum_{k=0..n} binomial(n-1,k-1) * binomial(7*k,k) / (6*k+1).
a(n) ~ 870199^(n + 1/2) / (343 * sqrt(Pi) * n^(3/2) * 2^(6*n + 2) * 3^(6*n + 3/2)). - Vaclav Kotesovec, Nov 15 2021

A360100 a(n) = Sum_{k=0..n} binomial(n+2*k-1,n-k) * Catalan(k).

Original entry on oeis.org

1, 1, 5, 23, 111, 562, 2952, 15948, 88076, 495077, 2823293, 16295020, 95007654, 558765743, 3310999269, 19748462718, 118471172054, 714355994997, 4327148812557, 26319195869861, 160677354596769, 984236344800234, 6047526697800992, 37262944840704171
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2023

Keywords

Crossrefs

Partial sums are A360102.
Cf. A000108.

Programs

  • Maple
    A360100 := proc(n)
        add(binomial(n+2*k-1,n-k)*A000108(k),k=0..n) ;
    end proc:
    seq(A360100(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • Mathematica
    m = 24;
    A[_] = 0;
    Do[A[x_] = 1 + x A[x]^2/(1 - x)^3 + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Aug 16 2023 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+2*k-1, n-k)*binomial(2*k, k)/(k+1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(2/(1+sqrt(1-4*x/(1-x)^3)))

Formula

G.f. A(x) satisfies A(x) = 1 + x * A(x)^2 / (1-x)^3.
G.f.: c(x/(1-x)^3), where c(x) is the g.f. of A000108.
a(n) ~ sqrt(-2 + (35 - 3*sqrt(129))^(1/3) + (35 + 3*sqrt(129))^(1/3)) * (((7 + (262 - 6*sqrt(129))^(1/3) + (2*(131 + 3*sqrt(129)))^(1/3))/3)^n / (sqrt(2*Pi) * n^(3/2))). - Vaclav Kotesovec, Feb 18 2023
D-finite with recurrence (n+1)*a(n) +(-8*n+5)*a(n-1) +(10*n-27)*a(n-2) +(-4*n+17)*a(n-3) +(n-6)*a(n-4)=0. - R. J. Mathar, Mar 12 2023

A039919 Related to enumeration of edge-rooted catafusenes.

Original entry on oeis.org

0, 1, 5, 21, 86, 355, 1488, 6335, 27352, 119547, 528045, 2353791, 10575810, 47849685, 217824285, 996999525, 4585548680, 21182609875, 98236853415, 457211008415, 2134851575050, 9997848660345, 46949087361550, 221022160284101, 1042916456739696, 4931673470809525, 23367060132453323
Offset: 1

Views

Author

Keywords

Comments

Binomial transform of the first differences of the Catalan numbers (see A000245). - Paul Barry, Feb 16 2006
Starting (1, 5, 21, ...) = A002212, (1, 3, 10, 36, 137, ...) convolved with A007317, (1, 2, 5, 15, 51, ...). - Gary W. Adamson, May 19 2009
From Petros Hadjicostas, Jan 15 2019: (Start)
In Cyvin et al. (1992), sequence (N(m): m >= 1) = (A002212(m): m >= 1) is defined by eq. (1), p. 533. (We may let N(0) := A002212(0) = 1.)
In the same reference, sequence (M(m): m >= 1) is defined by eq. (13), p. 534. We have M(2*m) = M(2*m-1) = A007317(m) for m >= 1.
In the same reference, the sequence (M'(m): m >= 3) is defined by eq. (26), p. 535; see also Cyvin et al. (1994, Monatshefte fur Chemie), eq. 5, p. 1329. We have M'(m) = Sum_{1 <= i <= floor((m-1)/2)} N(i)*M(m-2*i) for m >= 3.
It turns out that M'(m) = a(floor((m + 1)/2)) for m >= 3, where (a(n): n >= 1) is the current sequence.
If 1 + U(x) = Sum_{n >= 0} N(n)*x^n = Sum_{n >= 0} A002212(n)*x^n, then the g.f. of the sequence (M(m): m >= 1) is V(x) = x*(1-x)^(-1)*(1 + U(x^2)). See eqs. 3 and 4, p. 1329, in Cyvin et al. (1994, Monatshefte fur Chemie).
Eq. 6 in the latter reference (pp. 1329-1330) states that the g.f. of the sequence (M'(m): m >= 3) is U(x^2)*V(x) = U(x^2)*x*(1-x)^(-1)*(1 + U(x^2)).
Since M'(m) = a(floor((m + 1)/2)) for m >= 3, the latter g.f. also equals (1 + x)*A(x^2)/x, where A(x) = Sum_{n >= 1} a(n)*x^n is the g.f. of the current sequence (given below by Emeric Deutsch).
Equating the two forms of the g.f. of the (M'(m): m >= 3), we get that A(x) = x*U(x)*(1 + U(x))/(1-x), where 1 + U(x) is the g.f. of A002212 (with U(0) = 0).
The sequence (M'(m): m >= 3) = (a(floor((m + 1)/2)): m >= 3) is used in the calculation of A026298 (= numbers of polyhexes of the class PF2 with three catafusenes annelated to pyrene).
(End)

Crossrefs

Cf. A007317. - Gary W. Adamson, May 19 2009

Programs

  • Mathematica
    Table[SeriesCoefficient[8x^2*(1-x)/(1-x+Sqrt[1-6x+5x^2])^3,{x,0,n}],{n,1,23}] (* Vaclav Kotesovec, Oct 08 2012 *)
  • PARI
    x='x+O('x^66); concat([0],Vec(8*x^2*(1-x)/(1-x+sqrt(1-6*x+5*x^2))^3)) \\ Joerg Arndt, May 04 2013

Formula

G.f.: 8*x^2*(1-x)/(1 - x + sqrt(1 - 6*x + 5*x^2))^3. - Emeric Deutsch, Oct 24 2002
a(n) = A002212(n) - Sum_{j=0..n-1} A002212(j). Example: a(5) = 137 - (1 + 1 + 3 + 10 + 36) = 86. - Emeric Deutsch, Jan 23 2004
a(n+1) = Sum_{k=0..n} C(n,k)*(C(k+1) - C(k)) for n >= 0, where C(k) = A000108(k). - Paul Barry, Feb 16 2006 [edited by Petros Hadjicostas, Jan 18 2019]
Recurrence: (n-2)*(n+1)*a(n) = 2*(n-1)*(3*n-4)*a(n-1) - 5*(n-2)*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 3*5^(n+1/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012
G.f.: x*U(x)*(1 + U(x))/(1-x), where 1 + U(x) is the g.f. of A002212 (using the notation in the two papers by Cyvin et al. published in 1994).

Extensions

More terms from Emeric Deutsch, Oct 24 2002
Previous Showing 31-40 of 148 results. Next