A190737
Diagonal sums of the Riordan matrix A104259.
Original entry on oeis.org
1, 2, 6, 19, 66, 244, 946, 3801, 15697, 66234, 284339, 1237983, 5453611, 24263355, 108865901, 492051006, 2238220336, 10238568080, 47070014643, 217363784060, 1007794226777, 4689545704246, 21893712581740, 102520882301832, 481393173378979
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-x-2*x^2-Sqrt(1-6*x+5*x^2))/(2*x*(1-2*x+x^2+x^3)))); // G. C. Greubel, Apr 23 2018
-
CoefficientList[Series[(1-x-2x^2-Sqrt[1-6x+5x^2])/(2x(1-2x+x^2+x^3)),{x,0,24}],x]
-
x='x+O('x^30); Vec((1-x-2*x^2-sqrt(1-6*x+5*x^2))/(2*x*(1-2*x +x^2 +x^3))) \\ G. C. Greubel, Apr 23 2018
A190738
Central coefficients of the Riordan matrix A104259.
Original entry on oeis.org
1, 4, 27, 212, 1785, 15630, 140287, 1280592, 11833389, 110360150, 1036670272, 9794291556, 92972640761, 886023463122, 8471878678545, 81236546627920, 780898417097733, 7522708492892214, 72607180401922894, 701969331508141900, 6796919869909393140
Offset: 0
-
Table[Sum[Binomial[2n,n+k]Binomial[n+2k,k](n+1)/(n+k+1),{k,0,n}],{n,0,20}]
-
makelist(sum(binomial(2*n,n+k)*binomial(n+2*k,k)*(n+1)/(n+k+1),k,0,n),n,0,20);
A002212
Number of restricted hexagonal polyominoes with n cells.
Original entry on oeis.org
1, 1, 3, 10, 36, 137, 543, 2219, 9285, 39587, 171369, 751236, 3328218, 14878455, 67030785, 304036170, 1387247580, 6363044315, 29323149825, 135700543190, 630375241380, 2938391049395, 13739779184085, 64430797069375, 302934667061301, 1427763630578197
Offset: 0
G.f. = 1 + x + 3*x^2 + 10*x^3 + 36*x^4 + 137*x^5 + 543*x^6 + 2219*x^7 + 9285*x^8 + ...
- J. Brunvoll, B. N. Cyvin, and S. J. Cyvin, Studies of some chemically relevant polygonal systems: mono-q-polyhexes, ACH Models in Chem., 133 (3) (1996), 277-298, Eq 14.
- S. J. Cyvin, J. Brunvoll, G. Xiaofeng, and Z. Fuji, Number of perifusenes with one internal vertex, Rev. Roumaine Chem., 38(1) (1993), 65-78.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
- Jean-Luc Baril, José L. Ramírez, and Lina M. Simbaqueba, Counting prefixes of skew Dyck paths, J. Int. Seq., Vol. 24 (2021), Article 21.8.2.
- L. W. Beineke and R. E. Pippert, On the enumeration of planar trees of hexagons, Glasgow Math. J., 15 (1974), 131-147. See V(n).
- L. W. Beineke and R. E. Pippert, On the enumeration of planar trees of hexagons, Glasgow Math. J., 15 (1974), 131-147. [Annotated scanned copy]
- Johann Cigler and Christian Krattenthaler, Hankel determinants of linear combinations of moments of orthogonal polynomials, arXiv:2003.01676 [math.CO], 2020.
- B. N. Cyvin et al., A class of polygonal systems representing polycyclic conjugated hydrocarbons: Catacondensed monoheptafusenes, Monat. f. Chemie, 125 (1994), 1327-1337 (see U(x)).
- S. J. Cyvin, J. Brunvoll, and B. N. Cyvin, Harary-Read numbers for catafusenes: Complete classification according to symmetry, Journal of mathematical chemistry 9.1 (1992): 19-31.
- S. J. Cyvin and J. Brunvoll, Generating functions for the Harary-Read numbers classified according to symmetry, Journal of mathematical chemistry 9.1 (1992): 33-38.
- S. J. Cyvin et al., Graph-theoretical studies on fluoranthenoids and fluorenoids:enumeration of some catacondensed systems, J. Molec. Struct. (Theochem), 285 (1993), 179-185.
- S. J. Cyvin et al., Enumeration and classification of certain polygonal systems representing polycyclic conjugated hydrocarbons: annelated catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.
- D. E. Davenport, L. W. Shapiro, and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From _N. J. A. Sloane_, May 11 2012
- Rodrigo De Castro, Andrés Ramírez, and José L. Ramírez, Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs, arXiv preprint arXiv:1310.2449 [cs.DM], 2013. See also Sci. Annals Comp. Sci. (2014) Vol. XXIV, Issue 1, 137-171. See p. 141.
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Serkan Demiriz, Adem Şahin, and Sezer Erdem, Some topological and geometric properties of novel generalized Motzkin sequence spaces, Rendiconti Circ. Mat. Palermo Ser. 2 (2025) Vol. 74, No. 136. See p. 4.
- Nachum Dershowitz, Touchard's Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
- E. Deutsch, E. Munarini, and S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
- M. Dziemianczuk, Enumerations of plane trees with multiple edges and Raney lattice paths, Discrete Mathematics 337 (2014): 9-24.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 18.
- N. S. S. Gu, N. Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- F. Harary and R. C. Read, The enumeration of tree-like polyhexes, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.
- C. Heuberger, H. Prodinger, and S. Wagner, The height of multiple edge plane trees, arXiv preprint arXiv:1503.04749 [math.CO], 2015.
- P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
- C. Jean-Louis and A. Nkwanta, Some algebraic structure of the Riordan group, Linear Algebra and its Applications, Nov. 27, 2012. - _N. J. A. Sloane_, Jan 03 2013
- Hana Kim and R. P. Stanley, A refined enumeration of hex trees and related polynomials, Preprint 2015.
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Huyile Liang, Jeffrey Remmel, and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see pp. 12-13.
- Lily L. Liu, Positivity of three-term recurrence sequences, Electronic J. Combinatorics, 17 (2010), #R57.
- Rui-Li Liu and Feng-Zhen Zhao, New Sufficient Conditions for Log-Balancedness, With Applications to Combinatorial Sequences, J. Int. Seq., Vol. 21 (2018), Article 18.5.7.
- Toufik Mansour and Jose Luis Ramirez, Enumration of Fuss-skew paths, Ann. Math. Inform. 55 (2022) 125-136, table 1.
- Michal Medek, Möbius function of matrix posets, Bachelor Thesis, Charles Univ. (Prague, Czechia 2023).
- H. D. Nguyen and D. Taggart, Mining the OEIS: Ten Experimental Conjectures, 2013; http://citeseerx.ist.psu.edu/pdf/8f2f36f22878c984775ed04368b8893879b99458. Mentions this sequence. - From _N. J. A. Sloane_, Mar 16 2014
- F. Pakovich and A. K. Zvonkin, Minimum degree of the difference of two polynomials over Q, and weighted plane trees, arXiv:1306.4141 [math.NT], 2013.
- F. Pakovich and A. K. Zvonkin, Minimum degree of the difference of two polynomials over Q, and weighted plane trees, Selecta Mathematica, New Ser. 2014.
- J.-B. Priez, A lattice of combinatorial Hopf algebras, Application to binary trees with multiplicities, arXiv preprint arXiv:1303.5538 [math.CO], 2013.
- J.-B. Priez, A lattice of combinatorial Hopf algebras, Application to binary trees with multiplicities, FPSAC 2013 Paris, France DMTCS Proc. AS, 2013, 1167-1179. See also DOI
- Helmut Prodinger, Weighted unary-binary trees, Hex-trees, and Horton-Strahler numbers revisited, arXiv:2106.14782 [math.CO], 2021.
- Helmut Prodinger, Multi-edge trees and 3-coloured Motzkin paths: bijective issues, arXiv:2105.03350 [math.CO], 2021.
- Helmut Prodinger, Partial skew Dyck paths---a kernel method approach, arXiv:2108.09785 [math.CO], 2021.
- Helmut Prodinger, Prefixes of Stanley's Catalan paths with odd returns to the x-axis -- standard version and skew Catalan-Stanley paths, arXiv:2402.01429 [math.CO], 2023.
- R. C. Read, Letter to N. J. A. Sloane, Feb 12 1971 (includes 40 terms of A002212 and A002216)
- E. Rowland and R. Yassawi, Automatic congruences for diagonals of rational functions, arXiv preprint arXiv:1310.8635 [math.NT], 2013.
- A. Sapounakis and P. Tsikouras, On k-colored Motzkin words, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.5.
- R. A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, Vol. 3 (2000), #00.1.
- Hua Sun and Yi Wang, A Combinatorial Proof of the Log-Convexity of Catalan-Like Numbers, J. Int. Seq. 17 (2014) # 14.5.2.
- Y. Sun and Z. Wang, Consecutive pattern avoidances in non-crossing trees, Graph. Combinat. 26 (2010) 815-832, table 1, {uu,ud}
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 98.
- Y. Wang and Z.-H. Zhang, Combinatorics of Generalized Motzkin Numbers, J. Int. Seq. 18 (2015) # 15.2.4.
- E. X. W. Xia and O. X. M. Yao, A Criterion for the Log-Convexity of Combinatorial Sequences, The Electronic Journal of Combinatorics, 20 (2013), #P3.
- A. K. Zvonkin, Enumeration of Weighted Plane Trees, 2013.
- Index entries for reversions of series
-
I:= [1,3]; [1] cat [n le 2 select I[n] else ((6*n-3)*Self(n-1)-5*(n-2)*Self(n-2)) div (n+1): n in [1..30]]; // Vincenzo Librandi, Jun 15 2015
-
t1 := series(1+ (1-3*x-(1-x)^(1/2)*(1-5*x)^(1/2))/(2*x), x, 50):
A002212_list := len -> seq(coeff(t1,x,n),n=0..len): A002212_list(40);
a[0] := 1: a[1] := 1: for n from 2 to 50 do a[n] := (3*(2*n-1)*a[n-1]-5*(n-2)*a[n-2])/(n+1) od: print(convert(a,list)); # Zerinvary Lajos, Jan 01 2007
a := n -> `if`(n=0,1,simplify(GegenbauerC(n-1, -n, -3/2)/n)):
seq(a(n), n=0..23); # Peter Luschny, May 09 2016
-
InverseSeries[Series[(y)/(1+3*y+y^2), {y, 0, 24}], x] (* then A(x)=1+y(x) *) (* Len Smiley, Apr 14 2000 *)
(* faster *)
a[0]=1;a[1]=1;
a[n_]/;n>=2 := a[n] = a[n-1] + Sum[a[i]a[n-1-i],{i,0,n-1}];
Table[a[n],{n,0,14}] (* See COMMENTS above, [David Callan, Oct 14 2012] *)
(* fastest *)
s[0]=s[1]=1;
s[n_]/;n>=2 := s[n] = (3(2n-1)s[n-1]-5(n-2)s[n-2])/(n+1);
Table[s[n],{n,0,14 }] (* See Deutsch, Munarini, Rinaldi link, [David Callan, Oct 14 2012] *)
(* 2nd fastest *)
a[n_] := Hypergeometric2F1[3/2, 1-n, 3, -4]; a[0]=1; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, May 16 2013 *)
CoefficientList[Series[(1 - x - Sqrt[1 - 6x + 5x^2])/(2x), {x, 0, 20}], x] (* Nikolaos Pantelidis, Jan 30 2023 *)
-
makelist(sum(binomial(n,k)*binomial(n-k,k)*3^(n-2*k)/(k+1),k,0,n/2),n,0,24); /* for a(n+1) */ /* Emanuele Munarini, May 18 2011 */
-
{a(n) = polcoeff( (1 - x - sqrt(1 - 6*x + 5*x^2 + x^2 * O(x^n))) / 2, n+1)};
-
{a(n) = if( n<1, n==0, polcoeff( serreverse( x / (1 + 3*x + x^2) + x * O(x^n)), n))}; /* Michael Somos */
-
my(N=66,x='x+O('x^N)); Vec((1 - x - sqrt(1-6*x+5*x^2))/(2*x)) \\ Joerg Arndt, Jan 13 2024
-
def A002212():
x, y, n = 1, 1, 1
while True:
yield x
n += 1
x, y = y, ((6*n - 3)*y - (5*n - 10)*x) / (n + 1)
a = A002212()
[next(a) for i in range(24)] # Peter Luschny, Oct 12 2013
A007317
Binomial transform of Catalan numbers.
Original entry on oeis.org
1, 2, 5, 15, 51, 188, 731, 2950, 12235, 51822, 223191, 974427, 4302645, 19181100, 86211885, 390248055, 1777495635, 8140539950, 37463689775, 173164232965, 803539474345, 3741930523740, 17481709707825, 81912506777200, 384847173838501, 1812610804416698
Offset: 1
a(3)=5 since {3, (1+2), (1+(1+1)), (2+1), ((1+1)+1)} are the five weighted binary trees of weight 3.
G.f. = x + 2*x^2 + 5*x^3 + 15*x^4 + 51*x^5 + 188*x^6 + 731*x^7 + 2950*x^8 + 12235*x^9 + ... _Michael Somos_, Jan 17 2018
- J. Brunvoll et al., Studies of some chemically relevant polygonal systems: mono-q-polyhexes, ACH Models in Chem., 133 (3) (1996), 277-298, Eq. 15.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=1..200
- Roland Bacher and David Garber, Spindle-configurations of skew lines, arXiv:math/0205245 [math.GT], 2002-2005.
- Christopher Bao, Yunseo Choi, Katelyn Gan, and Owen Zhang, On a Conjecture by Baril, Cerbai, Khalil, and Vajnovszki on Two Restricted Stacks, arXiv:2308.09344 [math.CO], 2023.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
- Paul Barry, On the Central Antecedents of Integer (and Other) Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.3.
- Paul Barry and A. Hennessy, The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences, J. Int. Seq. 13 (2010) # 10.8.2.
- Andrew M. Baxter and Lara K. Pudwell, Ascent sequences avoiding pairs of patterns, 2015.
- Janusz Brzozowski and Marek Szykula, Large Aperiodic Semigroups, arXiv preprint arXiv:1401.0157 [cs.FL], 2013-2014.
- David Callan, Pattern avoidance in "flattened" partitions , arXiv:0802.2275 [math.CO], 2008.
- H. Cambazard and N. Catusse, Fixed-Parameter Algorithms for Rectilinear Steiner tree and Rectilinear Traveling Salesman Problem in the Plane, arXiv preprint arXiv:1512.06649 [cs.DS], 2015-2017.
- Giulio Cerbai, Pattern-avoiding modified ascent sequences, arXiv:2401.10027 [math.CO], 2024. See p. 17.
- Giulio Cerbai, Anders Claesson, Luca Ferrari, and Einar Steingrímsson, Sorting with pattern-avoiding stacks: the 132-machine, arXiv:2006.05692 [math.CO], 2020.
- Xiang-Ke Chang, X.-B. Hu, H. Lei, and Y.-N. Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
- Harry Crane, Left-right arrangements, set partitions, and pattern avoidance, Australasian Journal of Combinatorics, 61(1) (2015), 57-72.
- S. J. Cyvin et al., Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540.
- S. J. Cyvin et al., Graph-theoretical studies on fluoranthenoids and fluorenoids:enumeration of some catacondensed systems, J. Molec. Struct. (Theochem), 285 (1993), 179-185.
- S. J. Cyvin et al., Enumeration and Classification of Certain Polygonal Systems Representing Polycyclic Conjugated Hydrocarbons: Annelated Catafusenes, J. Chem. Inform. Comput. Sci., 34 (1994), 1174-1180.
- Dennis E. Davenport, Louis W. Shapiro, and Leon C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From _N. J. A. Sloane_, May 11 2012
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Rui Duarte and António Guedes de Oliveira, Generating functions of lattice paths, Univ. do Porto (Portugal 2023).
- Paul Duncan and Einar Steingrimsson, Pattern avoidance in ascent sequences, arXiv preprint arXiv:1109.3641 [math.CO], 2011.
- Francesc Fite, Kiran S. Kedlaya, Victor Rotger, and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, arXiv preprint arXiv:1110.6638 [math.NT], 2011-2012.
- S. Forcey, Quotients of the multiplihedron as categorified associahedra,Homotopy, Homology and Applications, vol. 10(2), 227-256, 2008. [From Stefan Forcey (sforcey(AT)gmail.com), Dec 17 2009]
- Ira M. Gessel and Jang Soo Kim, A note on 2-distant noncrossing partitions and weighted Motzkin paths, arXiv:1003.5301 [math.CO], 2010.
- Ira M. Gessel and Jang Soo Kim, A note on 2-distant noncrossing partitions and weighted Motzkin paths, Discrete Math. 310 (2010), no. 23, 3421--3425. MR2721104 (2011j:05350). See Eq. (1). - _N. J. A. Sloane_, Jul 05 2014
- Juan B. Gil and Jordan O. Tirrell, A simple bijection for classical and enhanced k-noncrossing partitions, arXiv:1806.09065 [math.CO], 2018. Also Discrete Mathematics (2019) Article 111705. doi:10.1016/j.disc.2019.111705
- Juan B. Gil and Michael D. Weiner, On pattern-avoiding Fishburn permutations, arXiv:1812.01682 [math.CO], 2018.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See pp. 18-19.
- U. Grude, Java ist eine Sprache: Rekursive Unterprogramme. See page 4.
- Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- Frank Harary and Ronald C. Read, The enumeration of tree-like polyhexes, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 124
- Bradley Robert Jones, On tree hook length formulas, Feynman rules and B-series, Master's thesis, Simon Fraser University, 2014.
- Hana Kim and R. P. Stanley, A refined enumeration of hex trees and related polynomials, Preprint 2015.
- Jang Soo Kim, Bijections on two variations of noncrossing partitions, Discrete Math., 311 (2011), 1057-1063.
- John W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Toufik Mansour and Simone Severini, Enumeration of (k,2)-noncrossing partitions, Discrete Math., 308 (2008), 4570-4577.
- Toufik Mansour and Mark Shattuck, Some enumerative results related to ascent sequences, arXiv preprint arXiv:1207.3755 [math.CO], 2012. - From _N. J. A. Sloane_, Dec 22 2012
- Igor Pak, Partition identities and geometric bijections, Proc. Amer. Math. Soc. 132 (2004), 3457-3462.
- Lara K. Pudwell, Ascent sequences and the binomial convolution of Catalan numbers, arXiv:1408.6823 [math.CO], 2014.
- Lara Pudwell and Andrew Baxter, Ascent sequences avoiding pairs of patterns, 2014.
- Lara Pudwell, Pattern-avoiding ascent sequences, Slides from a talk, 2015.
- Valerie Roitner, The vectorial kernel method for walks with longer steps, arXiv:2008.02240 [math.CO], 2020.
- N. J. A. Sloane, Transforms
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 98.
- Makhin Thitsa and W. Steven Gray, On the Radius of Convergence of Interconnected Analytic Nonlinear Input-Output Systems, SIAM Journal on Control and Optimization, Vol. 50, No. 5, 2012, pp. 2786-2813. - From _N. J. A. Sloane_, Dec 26 2012
- S. H. F. Yan, Schröder paths and Pattern Avoiding Partitions, Int. J. Contemp. Math. Sciences, Vol. 4, no. 20, pp. 979-986, 2009.
First column of triangle
A104259. Row sums of absolute values of
A091699.
Number of vertices of multiplihedron
A121988.
Cf.
A055879,
A033321,
A026376,
A026378,
A059346,
A000045,
A000957,
A057078,
A091867,
A104597,
A249548,
A162326.
-
G := (1-sqrt(1-4*z/(1-z)))*1/2: Gser := series(G, z = 0, 30): seq(coeff(Gser, z, n), n = 1 .. 26); # Emeric Deutsch, Aug 12 2007
seq(round(evalf(JacobiP(n-1,1,-n-1/2,9)/n,99)),n=1..25); # Peter Luschny, Sep 23 2014
-
Rest@ CoefficientList[ InverseSeries[ Series[(y - y^2)/(1 + y - y^2), {y, 0, 26}], x], x] (* then A(x)=y(x); note that InverseSeries[Series[y-y^2, {y, 0, 24}], x] produces A000108(x) *) (* Len Smiley, Apr 10 2000 *)
Range[0, 25]! CoefficientList[ Series[ Exp[ 3x] (BesselI[0, 2x] - BesselI[1, 2x]), {x, 0, 25}], x] (* Robert G. Wilson v, Apr 15 2011 *)
a[n_] := Sum[ Binomial[n, k]*CatalanNumber[k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 07 2012 *)
Rest[CoefficientList[Series[3/2 - (1/2) Sqrt[(1 - 5 x)/(1 - x)], {x, 0, 40}], x]] (* Vincenzo Librandi, Nov 03 2014 *)
Table[Hypergeometric2F1[1/2, -n+1, 2, -4], {n, 1, 30}] (* Vaclav Kotesovec, May 12 2022 *)
-
{a(n) = my(A); if( n<2, n>0, A=vector(n); for(j=1,n, A[j] = 1 + sum(k=1,j-1, A[k]*A[j-k])); A[n])}; /* Michael Somos, May 23 2005 */
-
{a(n) = if( n<1, 0, polcoeff( serreverse( (x - x^2) / (1 + x - x^2) + x * O(x^n)), n))}; /* Michael Somos, May 23 2005 */
-
/* Offset = 0: */ {a(n)=local(A=1+x);for(i=1,n, A=sum(m=0,n, x^m*sum(k=0,m,A^k)+x*O(x^n))); polcoeff(A,n)} \\ Paul D. Hanna
A154930
Inverse of Fibonacci convolution array A154929.
Original entry on oeis.org
1, -2, 1, 5, -4, 1, -15, 14, -6, 1, 51, -50, 27, -8, 1, -188, 187, -113, 44, -10, 1, 731, -730, 468, -212, 65, -12, 1, -2950, 2949, -1956, 970, -355, 90, -14, 1, 12235, -12234, 8291, -4356, 1785, -550, 119, -16, 1, -51822, 51821, -35643, 19474, -8612, 3021
Offset: 0
Triangle begins
1,
-2, 1,
5, -4, 1,
-15, 14, -6, 1,
51, -50, 27, -8, 1,
-188, 187, -113, 44, -10, 1,
731, -730, 468, -212, 65, -12, 1,
-2950, 2949, -1956, 970, -355, 90, -14, 1
Production array is
-2, 1,
1, -2, 1,
-1, 1, -2, 1,
1, -1, 1, -2, 1,
-1, 1, -1, 1, -2, 1,
1, -1, 1, -1, 1, -2, 1,
-1, 1, -1, 1, -1, 1, -2, 1
or ((1-x-x^2)/(1+x),x) beheaded.
A171568
Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A064613.
Original entry on oeis.org
1, 3, 1, 10, 6, 1, 37, 29, 9, 1, 150, 134, 57, 12, 1, 654, 622, 318, 94, 15, 1, 3012, 2948, 1686, 616, 140, 18, 1, 14445, 14317, 8781, 3693, 1055, 195, 21, 1, 71398, 71142, 45625, 21132, 7075, 1662, 259, 24, 1, 361114, 360602, 238170, 118042, 44303, 12345, 2464, 332, 27, 1
Offset: 0
Triangle T(n,k) begins
[0] 1;
[1] 3, 1;
[2] 10, 6, 1;
[3] 37, 29, 9, 1;
[4] 150, 134, 57, 12, 1;
[5] 654, 622, 318, 94, 15, 1;
[6] 3012, 2948, 1686, 616, 140, 18, 1;
[7] 14445, 14317, 8781, 3693, 1055, 195, 21, 1;
[8] 71398, 71142, 45625, 21132, 7075, 1662, 259, 24, 1;
.
Production array begins
3, 1
1, 3, 1
1, 1, 3, 1
1, 1, 1, 3, 1
1, 1, 1, 1, 3, 1
1, 1, 1, 1, 1, 3, 1
- _Philippe Deléham_, Mar 05 2013
-
T := proc(n,k) option remember;
if n < 0 or k < 0 then 0 elif n = k then 1 else
T(n-1, k-1) + 3*T(n-1,k) + add(T(n-1, k+1+i), i=0..n) fi end:
for n from 0 to 8 do seq(T(n,k), k = 0..n) od; # Peter Luschny, Oct 16 2022
-
T[n_, k_] := T[n, k] = If[n < 0 || k < 0, 0, If[n == k, 1, T[n-1, k-1] + 3*T[n-1, k] + Sum[T[n-1, k+1+i], {i, 0, n}]]];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 23 2024, after Peter Luschny *)
A171486
Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A033321.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 6, 5, 3, 1, 21, 16, 9, 4, 1, 79, 58, 31, 14, 5, 1, 311, 224, 117, 52, 20, 6, 1, 1265, 900, 465, 205, 80, 27, 7, 1, 5275, 3720, 1910, 840, 330, 116, 35, 8, 1, 22431, 15713, 8034, 3532, 1396, 501, 161, 44, 9, 1, 96900, 67522, 34419, 15136, 6015, 2190
Offset: 0
Triangle begins :
1
1, 1
2, 2, 1
6, 5, 3, 1
21, 16, 9, 4, 1
79, 58, 31, 14, 5, 1
311, 224, 117, 52, 20, 6, 1
A155887
Riordan array (1, (1/(1-x))c(x/(1-x))), c(x) the g.f. of A000108.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 5, 4, 1, 0, 15, 14, 6, 1, 0, 51, 50, 27, 8, 1, 0, 188, 187, 113, 44, 10, 1, 0, 731, 730, 468, 212, 65, 12, 1, 0, 2950, 2949, 1956, 970, 355, 90, 14, 1, 0, 12235, 12234, 8291, 4356, 1785, 550, 119, 16, 1, 0, 51822, 51821, 35643, 19474, 8612, 3021
Offset: 0
Triangle begins
1;
0, 1;
0, 2, 1;
0, 5, 4, 1;
0, 15, 14, 6, 1;
0, 51, 50, 27, 8, 1;
0, 188, 187, 113, 44, 10, 1;
0, 731, 730, 468, 212, 65, 12, 1;
0, 2950, 2949, 1956, 970, 355, 90, 14, 1;
From _Paul Barry_, Sep 28 2009: (Start)
Production matrix is
0, 1,
0, 2, 1,
0, 1, 2, 1,
0, 1, 1, 2, 1,
0, 1, 1, 1, 2, 1,
0, 1, 1, 1, 1, 2, 1,
0, 1, 1, 1, 1, 1, 2, 1,
0, 1, 1, 1, 1, 1, 1, 2, 1,
0, 1, 1, 1, 1, 1, 1, 1, 2, 1 (End)
A202847
Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A126930.
Original entry on oeis.org
1, -1, 1, 2, -2, 1, -3, 5, -3, 1, 6, -10, 9, -4, 1, -10, 22, -22, 14, -5, 1, 20, -44, 54, -40, 20, -6, 1, -35, 93, -123, 109, -65, 27, -7, 1, 70, -186, 281, -276, 195, -98, 35, -8, 1, -126, 386, -618, 682, -541, 321, -140, 44, -9, 1
Offset: 0
Triangle begins
1
-1, 1
2, -2, 1
-3, 5, -3, 1
6, -10, 9, -4, 1
-10, 22, -22, 14, -5, 1
20, -44, 54, -40, 20, -6, 1
-35, 93, -123, 109, -65, 27, -7, 1
...
Production matrix begins
x, 1
1, x, 1
1, 1, x, 1
1, 1, 1, x, 1
1, 1, 1, 1, x, 1
1, 1, 1, 1, 1, x, 1
1, 1, 1, 1, 1, 1, x, 1
1, 1, 1, 1, 1, 1, 1, x, 1
1, 1, 1, 1, 1, 1, 1, 1, x, 1
1, 1, 1, 1, 1, 1, 1, 1, 1, x, 1
..., with x = -1.
Showing 1-9 of 9 results.
Comments