cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A002212 Number of restricted hexagonal polyominoes with n cells.

Original entry on oeis.org

1, 1, 3, 10, 36, 137, 543, 2219, 9285, 39587, 171369, 751236, 3328218, 14878455, 67030785, 304036170, 1387247580, 6363044315, 29323149825, 135700543190, 630375241380, 2938391049395, 13739779184085, 64430797069375, 302934667061301, 1427763630578197
Offset: 0

Views

Author

N. J. A. Sloane, Ronald C. Read

Keywords

Comments

Number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0) with no peaks at odd level. Example: a(2)=3 because we have UUDD, UHD and HH. - Emeric Deutsch, Dec 06 2003
Number of 3-Motzkin paths of length n-1 (i.e., lattice paths from (0,0) to (n-1,0) that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and three types of steps H=(1,0)). Example: a(4)=36 because we have 27 HHH paths, 3 HUD paths, 3 UHD paths and 3 UDH paths. - Emeric Deutsch, Jan 22 2004
Number of rooted, planar trees having edges weighted by strictly positive integers (multi-trees) with weight-sum n. - Roland Bacher, Feb 28 2005
Number of skew Dyck paths of semilength n. A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. - Emeric Deutsch, May 10 2007
Equivalently, number of self-avoiding paths of semilength n in the first quadrant beginning at the origin, staying weakly above the diagonal, ending on the diagonal, and consisting of steps r=(+1,0) (right), U=(0,+1) (up), and D=(0,-1) (down). Self-avoidance implies that factors UD and DU and steps D reaching the diagonal before the end are forbidden. The a(3) = 10 such paths are UrUrUr, UrUUrD, UrUUrr, UUrrUr, UUrUrD, UUrUrr, UUUDrD, UUUrDD, UUUrrD, and UUUrrr. - Joerg Arndt, Jan 15 2024
Hankel transform of [1,3,10,36,137,543,...] is A000012 = [1,1,1,1,...]. - Philippe Deléham, Oct 24 2007
From Gary W. Adamson, May 17 2009: (Start)
Convolved with A026375, (1, 3, 11, 45, 195, ...) = A026378: (1, 4, 17, 75, ...)
(1, 3, 10, 36, 137, ...) convolved with A026375 = A026376: (1, 6, 30, 144, ...).
Starting (1, 3, 10, 36, ...) = INVERT transform of A007317: (1, 2, 5, 15, 51, ...). (End)
Binomial transform of A032357. - Philippe Deléham, Sep 17 2009
a(n) = number of rooted trees with n vertices in which each vertex has at most 2 children and in case a vertex has exactly one child, it is labeled left, middle or right. These are the hex trees of the Deutsch, Munarini, Rinaldi link. This interpretation yields the second MATHEMATICA recurrence below. - David Callan, Oct 14 2012
The left shift (1,3,10,36,...) of this sequence is the binomial transform of the left-shifted Catalan numbers (1,2,5,14,...). Example: 36 =1*14 + 3*5 + 3*2 + 1*1. - David Callan, Feb 01 2014
Number of Schroeder paths from (0,0) to (2n,0) with no level steps H=(2,0) at even level. Example: a(2)=3 because we have UUDD, UHD and UDUD. - José Luis Ramírez Ramírez, Apr 27 2015
This is the Riordan transform with the Riordan matrix A097805 (of the associated type) of the Catalan sequence A000108. See a Feb 17 2017 comment in A097805. - Wolfdieter Lang, Feb 17 2017
a(n) is the number of parking functions of size n avoiding the patterns 132 and 231. - Lara Pudwell, Apr 10 2023

Examples

			G.f. = 1 + x + 3*x^2 + 10*x^3 + 36*x^4 + 137*x^5 + 543*x^6 + 2219*x^7 + 9285*x^8 + ...
		

References

  • J. Brunvoll, B. N. Cyvin, and S. J. Cyvin, Studies of some chemically relevant polygonal systems: mono-q-polyhexes, ACH Models in Chem., 133 (3) (1996), 277-298, Eq 14.
  • S. J. Cyvin, J. Brunvoll, G. Xiaofeng, and Z. Fuji, Number of perifusenes with one internal vertex, Rev. Roumaine Chem., 38(1) (1993), 65-78.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences of A007317.
Row sums of triangle A104259.

Programs

  • Magma
    I:= [1,3]; [1] cat [n le 2 select I[n]  else ((6*n-3)*Self(n-1)-5*(n-2)*Self(n-2)) div (n+1): n in [1..30]]; // Vincenzo Librandi, Jun 15 2015
  • Maple
    t1 := series(1+ (1-3*x-(1-x)^(1/2)*(1-5*x)^(1/2))/(2*x), x, 50):
    A002212_list := len -> seq(coeff(t1,x,n),n=0..len): A002212_list(40);
    a[0] := 1: a[1] := 1: for n from 2 to 50 do a[n] := (3*(2*n-1)*a[n-1]-5*(n-2)*a[n-2])/(n+1) od: print(convert(a,list)); # Zerinvary Lajos, Jan 01 2007
    a := n -> `if`(n=0,1,simplify(GegenbauerC(n-1, -n, -3/2)/n)):
    seq(a(n), n=0..23); # Peter Luschny, May 09 2016
  • Mathematica
    InverseSeries[Series[(y)/(1+3*y+y^2), {y, 0, 24}], x] (* then A(x)=1+y(x) *) (* Len Smiley, Apr 14 2000 *)
    (* faster *)
    a[0]=1;a[1]=1;
    a[n_]/;n>=2 := a[n] = a[n-1] +  Sum[a[i]a[n-1-i],{i,0,n-1}];
    Table[a[n],{n,0,14}] (* See COMMENTS above, [David Callan, Oct 14 2012] *)
    (* fastest *)
    s[0]=s[1]=1;
    s[n_]/;n>=2 := s[n] = (3(2n-1)s[n-1]-5(n-2)s[n-2])/(n+1);
    Table[s[n],{n,0,14 }] (* See Deutsch, Munarini, Rinaldi link, [David Callan, Oct 14 2012] *)
    (* 2nd fastest *)
    a[n_] := Hypergeometric2F1[3/2, 1-n, 3, -4]; a[0]=1; Table[a[n], {n, 0, 14}]  (* Jean-François Alcover, May 16 2013 *)
    CoefficientList[Series[(1 - x - Sqrt[1 - 6x + 5x^2])/(2x), {x, 0, 20}], x] (* Nikolaos Pantelidis, Jan 30 2023 *)
  • Maxima
    makelist(sum(binomial(n,k)*binomial(n-k,k)*3^(n-2*k)/(k+1),k,0,n/2),n,0,24); /* for a(n+1) */ /* Emanuele Munarini, May 18 2011 */
    
  • PARI
    {a(n) = polcoeff( (1 - x - sqrt(1 - 6*x + 5*x^2 + x^2 * O(x^n))) / 2, n+1)};
    
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( serreverse( x / (1 + 3*x + x^2) + x * O(x^n)), n))}; /* Michael Somos */
    
  • PARI
    my(N=66,x='x+O('x^N)); Vec((1 - x - sqrt(1-6*x+5*x^2))/(2*x)) \\ Joerg Arndt, Jan 13 2024
    
  • Sage
    def A002212():
        x, y, n = 1, 1, 1
        while True:
            yield x
            n += 1
            x, y = y, ((6*n - 3)*y - (5*n - 10)*x) / (n + 1)
    a = A002212()
    [next(a) for i in range(24)]  # Peter Luschny, Oct 12 2013
    

Formula

a(0)=1, for n > 0: a(n) = Sum_{j=0..n-1} Sum_{i=0..j} a(i)*a(j-i). G.f.: A(x) = 1 + x*A(x)^2/(1-x). - Mario Catalani (mario.catalani(AT)unito.it), Jun 19 2003
a(n) = Sum_{i=ceiling((n-1)/2)..n-1} (3^(2i+1-n)*binomial(n, i)*binomial(i, n-i-1))/n. - Emeric Deutsch, Jul 23 2002
a(n) = Sum_{k=1..n} binomial(2k, k)*binomial(n-1, k-1)/(k+1), i.e., binomial transform of the Catalan numbers 1, 2, 5, 14, 42, ... (A000108). a(n) = Sum_{k=0..floor((n-1)/2)} 3^(n-1-2*k)*binomial(2k, k)*binomial(n-1, 2k)/(k+1). - Emeric Deutsch, Aug 05 2002
D-finite with recurrence: a(1)=1, a(n) = (3(2n-1)*a(n-1)-5(n-2)*a(n-2))/(n+1) for n > 1. - Emeric Deutsch, Dec 18 2002
a(n) is asymptotic to c*5^n/n^(3/2) with c=0.63.... - Benoit Cloitre, Jun 23 2003
In closed form, c = (1/2)*sqrt(5/Pi) = 0.63078313050504... - Vaclav Kotesovec, Oct 04 2012
Reversion of Sum_{n>0} a(n)x^n = -Sum_{n>0} A001906(n)(-x)^n.
G.f. A(x) satisfies xA(x)^2 + (1-x)(1-A(x)) = 0.
G.f.: (1 - x - sqrt(1 - 6x + 5x^2))/(2x). For n > 1, a(n) = 3*a(n-1) + Sum_{k=1..n-2} a(k)*a(n-k-1). - John W. Layman, Feb 22 2001
The Hankel transform of this sequence gives A001519 = 1, 2, 5, 13, 34, 89, ... E.g., Det([1, 1, 3, 10, 36; 1, 3, 10, 36, 137; 3, 10, 36, 137, 543; 10, 36, 137, 543, 2219; 36, 137, 543, 2219, 9285 ])= 34. - Philippe Deléham, Jan 25 2004
a(m+n+1) = Sum_{k>=0} A091965(m, k)*A091965(n, k) = A091965(m+n, 0). - Philippe Deléham, Sep 14 2005
a(n+1) = Sum_{k=0..n} 2^(n-k)*M(k)*binomial(n,k), where M(k) = A001006(k) is the k-th Motzkin number (from here it follows that a(n+1) and M(n) have the same parity). - Emeric Deutsch, May 10 2007
a(n+1) = Sum_{k=0..n} A097610(n,k)*3^k. - Philippe Deléham, Oct 02 2007
G.f.: 1/(1-x/(1-x-x/(1-x/(1-x-x/(1-x/(1-x-x/(1-... (continued fraction). - Paul Barry, May 16 2009
G.f.: (1-x)/(1-2x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-.... (continued fraction). - Paul Barry, Oct 17 2009
G.f.: 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1-x) (continued fraction); more generally g.f. C(x/(1-x)) where C(x) is the g.f. for the Catalan numbers (A000108). - Joerg Arndt, Mar 18 2011
a(n) = -5^(1/2)/(10*(n+1)) * (5*hypergeom([1/2, n], [1], 4/5) -3*hypergeom([1/2, n+1], [1], 4/5)) (for n>0). - Mark van Hoeij, Nov 12 2009
For n >= 1, a(n) = (1/(2*Pi))*Integral_{x=1..5} x^(n-1)*sqrt((x-1)*(5-x)) dx. - Groux Roland, Mar 16 2011
a(n+1) = [x^n](1-x^2)(1+3*x+x^2)^n. - Emanuele Munarini, May 18 2011
From Gary W. Adamson, Jul 21 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows (with 3,2,2,2,... as the main diagonal):
3, 1, 0, 0, 0, 0, ...
1, 2, 1, 0, 0, 0, ...
1, 1, 2, 1, 0, 0, ...
1, 1, 1, 2, 1, 0, ...
1, 1, 1, 1, 2, 0, ...
...
Alternatively, let M = the previous matrix but change the 3 to a 2. Then a(n) = sum of top row terms of M^(n-1). (End)
a(n) = hypergeometric([1-n,3/2],[3],-4), for n>0. - Peter Luschny, Aug 15 2012
a(n) = GegenbauerC(n-1, -n, -3/2)/n for n >= 1. - Peter Luschny, May 09 2016
E.g.f.: 1 + Integral (exp(3*x) * BesselI(1,2*x) / x) dx. - Ilya Gutkovskiy, Jun 01 2020
G.f.: 1 + x/G(0) with G(k) = (1 - 3*x - x^2/G(k+1)) (continued fraction). - Nikolaos Pantelidis, Dec 12 2022
From Peter Bala, Feb 03 2024: (Start)
G.f.: 1 + x/(1 - x) * c(x/(1 - x))^2 = 1 + x/(1 - 5*x) * c(-x/(1 - 5*x))^2, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
a(n+1) = Sum_{k = 0..n} binomial(n, k)*Catalan(k+1).
a(n+1) = hypergeom([-n, 3/2], [3], -4).
a(n+1) = 5^n * Sum_{k = 0..n} (-5)^(-k)*binomial(n, k)*Catalan(k+1).
a(n+1) = 5^n * hypergeom([-n, 3/2], [3], 4/5). (End)

A005572 Number of walks on cubic lattice starting and finishing on the xy plane and never going below it.

Original entry on oeis.org

1, 4, 17, 76, 354, 1704, 8421, 42508, 218318, 1137400, 5996938, 31940792, 171605956, 928931280, 5061593709, 27739833228, 152809506582, 845646470616, 4699126915422, 26209721959656, 146681521121244, 823429928805936
Offset: 0

Views

Author

Keywords

Comments

Also number of paths from (0,0) to (n,0) in an n X n grid using only Northeast, East and Southeast steps and the East steps come in four colors. - Emeric Deutsch, Nov 03 2002
Number of skew Dyck paths of semilength n+1 with the left steps coming in two colors. - David Scambler, Jun 21 2013
Number of 2-colored Schroeder paths from (0,0) to (2n+2,0) with no level steps H=(2,0) at an even level. There are two ways to color an H-step at an odd level. Example: a(1)=4 because we have UUDD, UHD (2 choices) and UDUD. - José Luis Ramírez Ramírez, Apr 27 2015

Examples

			a(3) = 76 = sum of top row terms of M^3; i.e., (37 + 29 + 9 + 1).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Binomial transform of A002212. Sequence shifted right twice is A025228.

Programs

  • Maple
    a := n -> simplify(2^n*hypergeom([3/2, -n], [3], -2)):
    seq(a(n), n=0..21); # Peter Luschny, Feb 03 2015
    a := n -> simplify(GegenbauerC(n, -n-1, -2))/(n+1):
    seq(a(n), n=0..21); # Peter Luschny, May 09 2016
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==4,a[n]==((2n+1)a[n-1]-3(n-1)a[n-2]) 4/(n+2)}, a[n],{n,30}] (* Harvey P. Dale, Oct 04 2011 *)
    a[n_]:=If[n==0,1,Coefficient[(1+4x+x^2)^(n+1),x^n]/(n+1)]
    Table[a[n],{n,0,40}] (* Emanuele Munarini, Apr 06 2012 *)
  • Maxima
    a(n):=coeff(expand((1+4*x+x^2)^(n+1)),x^n)/(n+1); makelist(a(n),n,0,12); /* Emanuele Munarini, Apr 06 2012 */
    
  • PARI
    a(n)=polcoeff((1-4*x-sqrt(1-8*x+12*x^2+x^3*O(x^n)))/2,n+2)
    
  • PARI
    { A005572(n) = sum(k=0,n\2, binomial(n,2*k) * binomial(2*k,k) * 4^(n-2*k) / (k+1) ) } /* Max Alekseyev, Feb 02 2015 */
    
  • PARI
    {a(n)=sum(k=0,n, binomial(n,k) * 2^(n-k) * binomial(2*k+2, k)/(k+1) )}
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Feb 02 2015
    
  • Sage
    def A005572(n):
        A108198 = lambda n,k: (-1)^k*catalan_number(k+1)*rising_factorial(-n,k)/factorial(k)
        return sum(A108198(n,k)*2^(n-k) for k in (0..n))
    [A005572(n) for n in range(22)] # Peter Luschny, Feb 05 2015

Formula

Generating function A(x) satisfies 1 + (xA)^2 = A - 4xA.
a(0) = 1 and, for n > 0, a(n) = 4a(n-1) + Sum_{i=1..n-1} a(i-1)*a(n-i-1). - John W. Layman, Jan 07 2000
G.f.: (1 - 4*x - sqrt(1 - 8*x + 12*x^2))/(2*x^2).
D-finite with recurrence: a(n) = ((2*n+1)*a(n-1) - 3*(n-1)*a(n-2))*4/(n+2), n > 0.
a(m+n) = Sum_{k>=0} A052179(m, k)*A052179(n, k) = A052179(m+n, 0). - Philippe Deléham, Sep 15 2005
a(n) = 4*a(n-1) + A052177(n-1) = A052179(n, 0) = 6*A005573(n)-A005573(n-1) = Sum_{j=0..floor(n/2)} 4^(n-2*j)*C(n, 2*j)*C(2*j, j)/(j+1). - Henry Bottomley, Aug 23 2001
a(n) = Sum_{k=0..n} A097610(n,k)*4^k. - Philippe Deléham, Dec 03 2009
Let A(x) be the g.f., then B(x) = 1 + x*A(x) = 1 + 1*x + 4*x^2 + 17*x^3 + ... = 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1-2*x) (continued fraction); more generally B(x) = C(x/(1-2*x)) where C(x) is the g.f. for the Catalan numbers (A000108). - Joerg Arndt, Mar 18 2011
From Gary W. Adamson, Jul 21 2011: (Start)
a(n) = sum of top row terms of M^n, M = an infinite square production matrix as follows:
3, 1, 0, 0, ...
1, 3, 1, 0, ...
1, 1, 3, 1, ...
1, 1, 1, 3, ...
... (End)
a(n) ~ 3*6^(n+1/2)/(n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Oct 05 2012
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * binomial(2k,k) * 4^(n-2k) / (k+1). - Max Alekseyev, Feb 02 2015
From Paul D. Hanna, Feb 02 2015: (Start)
a(n) = Sum_{k=0..n} binomial(n,k) * 2^(n-k) * binomial(2*k+2, k)/(k+1).
a(n) = Sum_{k=0..n} binomial(n,k) * 2^(n-k) * A000108(k+1).
a(n) = [x^n] (1 + 4*x + x^2)^(n+1) / (n+1).
G.f.: (1/x) * Series_Reversion( x/(1 + 4*x + x^2) ). (End)
a(n) = 2^n*hypergeom([3/2, -n], [3], -2). - Peter Luschny, Feb 03 2015
a(n) = 4^n*hypergeom([-n/2, (1-n)/2], [2], 1/4). - Robert Israel, Feb 04 2015
a(n) = Sum_{k=0..n} A108198(n,k)*2^(n-k). - Peter Luschny, Feb 05 2015
a(n) = 2*(12^(n/2))*(n!/(n+2)!)*GegenbauerC(n, 3/2,2/sqrt(3)), where GegenbauerC are Gegenbauer polynomials in Maple notation. This is a consequence of Robert Israel's formula. - Karol A. Penson, Feb 20 2015
a(n) = (2^(n+1)*3^((n+1)/2)*P(n+1,1,2/sqrt(3)))/((n+1)*(n+2)) where P(n,u,x) are the associated Legendre polynomials of the first kind. - Peter Luschny, Feb 24 2015
a(n) = -6^(n+1)*sqrt(3)*Integral{t=0..Pi}(cos(t)*(2+cos(t))^(-n-2))/(Pi*(n+2)). - Peter Luschny, Feb 24 2015
From Karol A. Penson and Wojciech Mlotkowski, Mar 16 2015: (Start)
Integral representation as the n-th moment of a positive function defined on a segment x=[2, 6]. This function is the Wigner's semicircle distribution shifted to the right by 4. This representation is unique. In Maple notation,
a(n) = int(x^n*sqrt(4-(x-4)^2)/(2*Pi), x=2..6),
a(n) = 2*6^n*Pochhammer(3/2, n)*hypergeom([-n, 3/2], [-n-1/2], 1/3)/(n+2)!
(End)
a(n) = GegenbauerC(n, -n-1, -2)/(n+1). - Peter Luschny, May 09 2016
E.g.f.: exp(4*x) * BesselI(1,2*x) / x. - Ilya Gutkovskiy, Jun 01 2020
From Peter Bala, Aug 18 2021: (Start)
G.f. A(x) = 1/(1 - 2*x)*c(x/(1 - 2*x))^2, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. Cf. A129400.
Conjecture: a(n) is even except for n of the form 2*(2^k - 1). [added Feb 03: the conjecture follows from the formula a(n) = Sum_{k = 0..n} 2^(n-k)*binomial(n, k)*Catalan(k+1) given above.] (End)
From Peter Bala, Feb 03 2024: (Start)
G.f.: 1/(1 - 2*x) * c(x/(1 - 2*x))^2 = 1/(1 - 6*x) * c(-x/(1 - 6*x))^2, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
a(n) = 6^n * Sum_{k = 0..n} (-6)^(-k)*binomial(n, k)*Catalan(k+1).
a(n) = 6^n * hypergeom([-n, 3/2], [3], 2/3). (End)

Extensions

Additional comments from Michael Somos, Jun 10 2000

A125906 Riordan array (1/(1 + 5*x + x^2), x/(1 + 5*x + x^2))^(-1); inverse of Riordan array A123967.

Original entry on oeis.org

1, 5, 1, 26, 10, 1, 140, 77, 15, 1, 777, 540, 153, 20, 1, 4425, 3630, 1325, 254, 25, 1, 25755, 23900, 10509, 2620, 380, 30, 1, 152675, 155764, 79065, 23989, 4550, 531, 35, 1, 919139, 1010560, 575078, 203560, 47270, 7240, 707, 40, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 04 2007

Keywords

Comments

T(0)=A053121, T(1)=A064189, T(2)=A039598, T(3)=A091965, T(4)=A052179.
Triangle read by rows: T(n,k) = number of lattice paths from (0,0) to (n,k) that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and five types of steps H=(1,0); example: T(3,1)=77 because we have UDU, UUD, 25 HHU paths, 25 HUH paths and 25 UHH paths. - Philippe Deléham, Sep 25 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
7^n = (n-th row terms) dot (first n+1 terms in 1,2,3,...). Example: 7^3 = 343 = (140, 77, 15, 1) dot (1, 2, 3, 4) = (140 + 154 + 45 + 4) = 343. - Gary W. Adamson, Jun 17 2011
A subset of the "family of triangles" (Deleham comment of Sep 25 2007) is the succession of binomial transforms beginning with triangle A053121, (0,0); giving -> A064189, (1,1); -> A039598, (2,2); -> A091965, (3,3); -> A052179, (4,4); -> A125906, (5,5) ->, etc; generally the binomial transform of the triangle generated from (n,n) = that generated from ((n+1),(n+1)). - Gary W. Adamson, Aug 03 2011
Riordan array (f(x), x*f(x)) where f(x) is the o.g.f. of A182401. - Philippe Deléham, Mar 04 2013

Examples

			Triangle begins
       1;
       5,       1;
      26,      10,      1;
     140,      77,     15,      1;
     777,     540,    153,     20,     1;
    4425,    3630,   1325,    254,    25,    1;
   25755,   23900,  10509,   2620,   380,   30,   1;
  152675,  155764,  79065,  23989,  4550,  531,  35,  1;
  919139, 1010560, 575078, 203560, 47270, 7240, 707, 40, 1;
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins
  5, 1;
  1, 5, 1,;
  0, 1, 5, 1;
  0, 0, 1, 5, 1;
  0, 0, 0, 1, 5, 1;
  0, 0, 0, 0, 1, 5, 1;
  0, 0, 0, 0, 0, 1, 5, 1;
  0, 0, 0, 0, 0, 0, 1, 5, 1;
  0, 0, 0, 0, 0, 0, 0, 1, 5, 1; (End)
		

Crossrefs

Cf. A182401.

Programs

  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,  T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 5, 5], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)

Formula

Triangle T(5) where T(x) is defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,k) = T(n-1,k-1) + x*T(n-1,k) + T(n-1,k+1). Sum_{k=0..n} T(m,k)*T(n,k) = T(m+n,0). Sum_{k=0..n} T(n,k) = A122898(n).
Sum_{k=0..n} T(n,k)*(k+1) = 7^n. - Philippe Deléham, Mar 26 2007
T(n,0) = A182401(n). - Philippe Deléham, Mar 04 2013
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x^2)*(1 + 5*x + x^2)^n expanded about the point x = 0. - Peter Bala, Sep 06 2022

A025230 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 3, with initial terms 3,1.

Original entry on oeis.org

3, 1, 6, 37, 234, 1514, 9996, 67181, 458562, 3172478, 22206420, 157027938, 1120292388, 8055001716, 58314533400, 424740506109, 3110401363122, 22888001498102, 169155516667524, 1255072594261142, 9345400450314924, 69812926066668044, 523072984217339304
Offset: 1

Views

Author

Keywords

Crossrefs

For Sum_{k = 0..n} m^(n-k)*binomial(n, k)*Catalan(k+1) see A126120 (m = -2), A001006 (m = -1), A000108 (m = 0), A002212 (m = 1), A005572 (m = 2), A182401 (m = 3), A025230 (m = 4).

Programs

  • Maple
    h := n -> simplify(4^n*hypergeom([3/2, -n], [3], -1)):
    a := n -> `if`(n=1, 3, h(n-2)):
    seq(a(n), n=1..21); # Peter Luschny, Feb 03 2015
  • Mathematica
    Rest[CoefficientList[Series[(1-Sqrt[1-12x+32x^2])/2,{x,0,30}],x]]  (* Harvey P. Dale, Feb 22 2011 *)
  • PARI
    a(n)=polcoeff((1-sqrt(1-12*x+32*x^2+x*O(x^n)))/2,n)
    
  • PARI
    {a(n)=if(n<2, 3*(n==1), n--; polcoeff( serreverse( x/(1+6*x+x^2) +x*O(x^n) ), n))} /* Michael Somos, Oct 14 2006 */

Formula

G.f.: (1-sqrt(1-12*x+32*x^2))/2. - Michael Somos, Jun 08 2000
D-finite with recurrence n*a(n) = (12*n-18)*a(n-1) - 32*(n-3)*a(n-2) - Richard Choulet, Dec 17 2009
a(n) ~ 2^(3*n-5/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 11 2013
a(n) = 4^(n-2)*hypergeom([3/2, -n+2], [3], -1) for n>1. - Peter Luschny, Feb 03 2015
a(n+1) = GegenbauerC(n-1, -n, -3)/n for n>=1. - Peter Luschny, May 09 2016
From Peter Bala, Feb 03 2024: (Start)
G.f.: 3*x + x^2/(1 - 4*x) * c(x/(1 - 4*x))^2, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
a(n+2) = Sum_{k = 0..n} 4^(n-k)*binomial(n, k)*Catalan(k+1).
G.f.: 3*x + x^2/(1 - 8*x) * c(-x/(1 - 8*x))^2.
a(n+2) = 8^n * Sum_{k = 0..n} (-8)^(-k)*binomial(n, k)*Catalan(k+1).
a(n+2) = 8^n * hypergeom([-n, 3/2], [3], 1/2).
a(n) is odd iff n is a power of 2. (End)

Extensions

Name clarified by Robert C. Lyons, Feb 06 2025

A098409 Expansion of 1/(sqrt(1-3*x)*sqrt(1-7*x)).

Original entry on oeis.org

1, 5, 27, 155, 931, 5775, 36645, 236325, 1542195, 10153775, 67313377, 448691985, 3004182349, 20188647185, 136094684907, 919884469275, 6232016686995, 42305974804575, 287706424085745, 1959685788407025, 13367193276457881, 91295551930615005, 624255065007468207
Offset: 0

Views

Author

Paul Barry, Sep 07 2004

Keywords

Comments

Binomial transform of A081671. 3rd binomial transform of A000984. Binomial transform is A098410.
Largest coefficient of (1+5*x+x^2)^n; row sums of triangle in A126331. - Philippe Deléham, Oct 02 2007
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps come in five colors. - N-E. Fahssi, Feb 05 2008
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps can have five colors. - N-E. Fahssi, Mar 31 2008
Diagonal of rational function 1/(1 - (x^2 + 5*x*y + y^2)). - Gheorghe Coserea, Aug 01 2018

Crossrefs

Column 5 of A292627. Cf. A182401.

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(Sqrt[1-3*x]*Sqrt[1-7*x]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *)
    CoefficientList[Series[1/(Sqrt[1-3x] Sqrt[1-7x]),{x,0,30}],x] (* Harvey P. Dale, Jun 20 2015 *)
  • Maxima
    a(n):=coeff(expand((1+5*x+x^2)^n),x^n);
    makelist(a(n),n,0,30); /* Emanuele Munarini, Apr 27 2012 */
    
  • PARI
    x='x+O('x^66); Vec(1/(sqrt(1-3*x)*sqrt(1-7*x))) \\ Joerg Arndt, May 11 2013
    
  • PARI
    {a(n) = sum(k=0, n, 7^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, Apr 22 2019
    
  • PARI
    {a(n) = sum(k=0, n\2, 5^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019

Formula

G.f.: 1/sqrt(1-10*x+21*x^2).
E.g.f.: exp(5x)*BesselI(0, 2x).
a(n) = Sum_{k=0..n} 3^(n-k)*binomial(n,k)*binomial(2k,k). - Paul Barry, Mar 08 2005
a(n) = [x^n] (1+5*x+x^2)^n. - Emanuele Munarini, Apr 27 2012
D-finite with recurrence: n*a(n) = 5*(2*n-1)*a(n-1) - 21*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012
a(n) ~ 7^(n+1/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
a(n) = Sum_{k=0..n} 7^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). - Seiichi Manyama, Apr 22 2019
a(n) = Sum_{k=0..floor(n/2)} 5^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, May 04 2019
From Peter Bala, Jan 10 2022: (Start)
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + 5*x + 26*x^2 + 140*x^3 + 777*x^4 + ... is the o.g.f. of A182401.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k.
a(n) = (1/Pi) * Integral_{x = -1..1} (3 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (7 - 4*x^2)^n/sqrt(1 - x^2) dx. (End)
a(n) = (1/4)^n * Sum_{k=0..n} 3^k * 7^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

A247495 Generalized Motzkin numbers: Square array read by descending antidiagonals, T(n, k) = k!*[x^k](exp(n*x)* BesselI_{1}(2*x)/x), n>=0, k>=0.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 2, 2, 1, 2, 4, 5, 3, 1, 0, 9, 14, 10, 4, 1, 5, 21, 42, 36, 17, 5, 1, 0, 51, 132, 137, 76, 26, 6, 1, 14, 127, 429, 543, 354, 140, 37, 7, 1, 0, 323, 1430, 2219, 1704, 777, 234, 50, 8, 1, 42, 835, 4862, 9285, 8421, 4425, 1514, 364, 65, 9, 1
Offset: 0

Views

Author

Peter Luschny, Dec 11 2014

Keywords

Comments

This two-dimensional array of numbers can be seen as a generalization of the Motzkin numbers A001006 for two reasons: The case n=1 reduces to the Motzkin numbers and the columns are the values of the Motzkin polynomials M_{k}(x) = sum_{j=0..k} A097610(k,j)*x^j evaluated at the nonnegative integers.

Examples

			Square array starts:
[n\k][0][1] [2]  [3]   [4]   [5]    [6]     [7]      [8]
[0]   1, 0,  1,   0,    2,    0,     5,      0,      14, ...  A126120
[1]   1, 1,  2,   4,    9,   21,    51,    127,     323, ...  A001006
[2]   1, 2,  5,  14,   42,  132,   429,   1430,    4862, ...  A000108
[3]   1, 3, 10,  36,  137,  543,  2219,   9285,   39587, ...  A002212
[4]   1, 4, 17,  76,  354, 1704,  8421,  42508,  218318, ...  A005572
[5]   1, 5, 26, 140,  777, 4425, 25755, 152675,  919139, ...  A182401
[6]   1, 6, 37, 234, 1514, 9996, 67181, 458562, 3172478, ...  A025230
A000012,A001477,A002522,A079908, ...
.
Triangular array starts:
              1,
             0, 1,
           1, 1, 1,
          0, 2, 2, 1,
        2, 4, 5, 3, 1,
      0, 9, 14, 10, 4, 1,
   5, 21, 42, 36, 17, 5, 1,
0, 51, 132, 137, 76, 26, 6, 1.
		

Crossrefs

Programs

  • Maple
    # RECURRENCE
    T := proc(n,k) option remember; if k=0 then 1 elif k=1 then n else
    (n*(2*k+1)*T(n,k-1)-(n-2)*(n+2)*(k-1)*T(n,k-2))/(k+2) fi end:
    seq(print(seq(T(n,k),k=0..9)),n=0..6);
    # OGF (row)
    ogf := n -> (1-n*x-sqrt(((n-2)*x-1)*((n+2)*x-1)))/(2*x^2):
    seq(print(seq(coeff(series(ogf(n),x,12),x,k),k=0..9)),n=0..6);
    # EGF (row)
    egf := n -> exp(n*x)*hypergeom([],[2],x^2):
    seq(print(seq(k!*coeff(series(egf(n),x,k+2),x,k),k=0..9)),n=0..6);
    # MOTZKIN polynomial (column)
    A097610 := proc(n,k) if type(n-k,odd) then 0 else n!/(k!*((n-k)/2)!^2* ((n-k)/2+1)) fi end: M := (k,x) -> add(A097610(k,j)*x^j,j=0..k):
    seq(print(seq(M(k,n),n=0..9)),k=0..6);
    # OGF (column)
    col := proc(n, len) local G; G := A247497_row(n); (-1)^(n+1)* add(G[k+1]/(x-1)^(k+1), k=0..n); seq(coeff(series(%, x, len+1),x,j), j=0..len) end: seq(print(col(n,8)), n=0..6); # Peter Luschny, Dec 14 2014
  • Mathematica
    T[0, k_] := If[EvenQ[k], CatalanNumber[k/2], 0];
    T[n_, k_] := n^k*Hypergeometric2F1[(1 - k)/2, -k/2, 2, 4/n^2];
    Table[T[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)
  • Sage
    def A247495(n,k):
        if n==0: return(k//2+1)*factorial(k)/factorial(k//2+1)^2 if is_even(k) else 0
        return n^k*hypergeometric([(1-k)/2,-k/2],[2],4/n^2).simplify()
    for n in (0..7): print([A247495(n,k) for k in range(11)])

Formula

T(n,k) = (n*(2*k+1)*T(n,k-1)-(n-2)*(n+2)*(k-1)*T(n,k-2))/(k+2) for k>=2.
T(n,k) = Sum_{j=0..floor(k/2)} n^(k-2*j)*binomial(k,2*j)*binomial(2*j,j)/(j+1).
T(n,k) = n^k*hypergeom([(1-k)/2,-k/2], [2], 4/n^2) for n>0.
T(n,n) = A247496(n).
O.g.f. for row n: (1-n*x-sqrt(((n-2)*x-1)*((n+2)*x-1)))/(2*x^2).
O.g.f. for row n: R(x)/x where R(x) is series reversion of x/(1+n*x+x^2).
E.g.f. for row n: exp(n*x)*hypergeom([],[2],x^2).
O.g.f. for column k: the k-th column consists of the values of the k-th Motzkin polynomial M_{k}(x) evaluated at x = 0,1,2,...; M_{k}(x) = sum_{j=0..k} A097610(k,j)*x^j = sum_{j=0..k} (-1)^j*binomial(k,j)*A001006(j)*(x+1)^(k-j).
O.g.f. for column k: sum_{j=0..k} (-1)^(k+1)*A247497(k,j)/(x-1)^(j+1). - Peter Luschny, Dec 14 2014
O.g.f. for row n: 1/(1 - n*x - x^2/(1 - n*x - x^2/(1 - n*x - x^2/(1 - n*x - x^2/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Sep 21 2017
T(n,k) is the coefficient of x^k in the expansion of 1/(k+1) * (1 + n*x + x^2)^(k+1). - Seiichi Manyama, May 07 2019

A385813 Expansion of 1/((1-3*x) * (1-7*x))^(3/2).

Original entry on oeis.org

1, 15, 156, 1400, 11655, 92925, 721140, 5496300, 41361255, 308344025, 2282167272, 16795140180, 123030071437, 897791417775, 6530377362480, 47370038320800, 342794475282915, 2475479922896925, 17843821672113780, 128412824128709400, 922775179449162501, 6622378039719342615
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/((1-3*x) * (1-7*x))^(3/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 25 2025
  • Mathematica
    CoefficientList[Series[1/((1-3x)*(1-7*x))^(3/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 25 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-3*x)*(1-7*x))^(3/2))
    

Formula

n*a(n) = (10*n+5)*a(n-1) - 21*(n+1)*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 3^k * 7^(n-k) * (2*k+1) * (2*(n-k)+1) * binomial(2*k,k) * binomial(2*(n-k),n-k).
a(n) = Sum_{k=0..n} 3^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(n+2,n-k).
a(n) = Sum_{k=0..n} (-1)^k * 7^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(n+2,n-k).
a(n) = binomial(n+2,2) * A182401(n).
a(n) = ((n+2)/2) * Sum_{k=0..floor(n/2)} 5^(n-2*k) * binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = Sum_{k=0..n} (5/2)^k * (-21/10)^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(k,n-k).

A349531 G.f. A(x) satisfies: A(x) = 1 + x * A(x)^3 / (1 - 3 * x).

Original entry on oeis.org

1, 1, 6, 39, 271, 1986, 15171, 119694, 968589, 7997970, 67132164, 571138362, 4914229293, 42690269053, 373915274505, 3298492524831, 29279961769422, 261348675838758, 2344226713167048, 21119556517672650, 191022983002755162, 1733959471178342088, 15790787266617518790
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; A[] = 0; Do[A[x] = 1 + x A[x]^3/(1 - 3 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = a[1] = 1; a[n_] := a[n] = 3 a[n - 1] + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 22}]
    Table[Sum[Binomial[n - 1, k - 1] Binomial[3 k, k] 3^(n - k)/(2 k + 1), {k, 0, n}], {n, 0, 22}]

Formula

a(0) = a(1) = 1; a(n) = 3 * a(n-1) + Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) = Sum_{k=0..n} binomial(n-1,k-1) * binomial(3*k,k) * 3^(n-k) / (2*k+1).
a(n) = 3^(n-1)*F([4/3, 5/3, 1-n], [2, 5/2], -(3/2)^2), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 21 2021
a(n) ~ 3^(n - 1/2) * 13^(n + 1/2) / (sqrt(Pi) * n^(3/2) * 2^(2*n + 2)). - Vaclav Kotesovec, Nov 25 2021
Showing 1-8 of 8 results.