cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A268659 Numbers n such that 3*2^n + 1 is a prime factor of a generalized Fermat number 10^(2^m) + 1 for some m.

Original entry on oeis.org

209, 44685, 157169, 303093, 362765, 916773, 2145353
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 10 2016

Keywords

References

  • Wilfrid Keller, private communication, 2008.

Crossrefs

A066466 Numbers having just one anti-divisor.

Original entry on oeis.org

3, 4, 6, 96, 393216
Offset: 1

Views

Author

Robert G. Wilson v, Jan 02 2002

Keywords

Comments

See A066272 for definition of anti-divisor.
Jon Perry calls these anti-primes.
A066272(a(n)) = 1.
From Max Alekseyev, Jul 23 2007; updated Jun 25 2025: (Start)
Except for a(2) = 4, the terms of A066466 have form 2^k*p where p is odd prime and both 2^(k+1)*p-1, 2^(k+1)*p+1 are prime (i.e., twin primes). In other words, this sequence, omitting 4, is a subsequence of A040040 containing elements of the form 2^k*p with prime p.
Furthermore, since 2^(k+1)*p-1, 2^(k+1)*p+1 must equal -1 and +1 modulo 3, the number 2^(k+1)*p must be 0 modulo 3, implying that p=3. Therefore every term, except 4, must be of the form 3*2^k such that 3*2^(k+1)-1, 3*2^(k+1)+1 are twin primes. In other words, k+1 belongs to the intersection of A002253 and A002235.
According to Ballinger and Keller's lists, there are no other such k up to 22*10^6. Therefore a(6) (if it exists) is greater than 3*2^(22*10^6) ~= 10^6622660. (End)
From Daniel Forgues, Nov 23 2009: (Start)
The 2 last known anti-primes seem to relate to the Fermat primes (coincidence?):
96 = 3 * 2^5 = 3 * 2^F_1 = 3 * 2^[2^(2^1) + 1] and
393216 = 3 * 2^17 = 3 * 2^F_2 = 3 * 2^[2^(2^2) + 1],
where F_k is the k-th Fermat prime. (End)

Crossrefs

Programs

  • Mathematica
    antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 & ], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2n], OddQ[ # ] && # != 1 &]]], # < n & ]; Select[ Range[10^5], Length[ antid[ # ]] == 1 & ]

Extensions

Edited by Max Alekseyev, Oct 13 2009

A175172 Primes p such that 3*2^p+1 is also prime.

Original entry on oeis.org

2, 5, 41, 353
Offset: 1

Views

Author

Vincenzo Librandi, Mar 09 2010

Keywords

Comments

If it exists, a(5) > 250000. - Hugo Pfoertner, Apr 12 2025

Examples

			For p=2, 3*2^2+1=13; p=5. 3*2^5+1=97; p=41, 3*2^41+1=6597069766657.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(4000) | IsPrime(3*2^p+1)];
  • Maple
    select(p->isprime(p) and isprime(3*2^p+1),[$0..5000]); # Muniru A Asiru, Dec 19 2018
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[3 2^# + 1] &] (* Vincenzo Librandi, Dec 19 2018 *)

Formula

A000040 INTERSECT A002253. - R. J. Mathar, Jan 04 2011

A112245 Numbers k such that 65537*2^k+1 is prime.

Original entry on oeis.org

287, 1695, 81359, 512895
Offset: 1

Views

Author

T. D. Noe, Aug 30 2005, Aug 26 2007

Keywords

Comments

Note that 65537=2^16+1 is the largest known Fermat prime. These n yield provable primes. The primes are the smallest numbers in classes 303, 1711 and 81375 of the phi iteration (see A007755).
Jacques Molne found 512895. The corresponding provable prime is the smallest number in class 512911 of the Phi iteration.

Crossrefs

Cf. A002253, A002254, A002259, A053345 (F*2^n+1 is prime, where F is a Fermat prime).

Programs

A263046 Smallest number k>2 such that k*2^n + 1 is a prime number.

Original entry on oeis.org

4, 3, 3, 5, 6, 3, 3, 5, 3, 15, 12, 6, 3, 5, 4, 5, 12, 6, 3, 11, 7, 11, 25, 20, 10, 5, 7, 15, 12, 6, 3, 35, 18, 9, 12, 6, 3, 15, 10, 5, 6, 3, 9, 9, 15, 35, 19, 27, 15, 14, 7, 14, 7, 20, 10, 5, 27, 29, 54, 27, 31, 36, 18, 9, 12, 6, 3, 9, 31, 23, 39, 39, 40, 20, 10, 5, 58
Offset: 0

Views

Author

Pierre CAMI, Oct 08 2015

Keywords

Comments

If k = 2^j then 2^(n+j) + 1 is a Fermat prime.
a(n) = 3 if and only if 3*2^n + 1 is a prime; that is, n belongs to A002253. - Altug Alkan, Oct 08 2015
a(n+1) >= ceiling(a(n)/2). If a(n) is even then a(n+1) = a(n)/2. - Robert Israel, Oct 08 2015

Examples

			3*2^1 + 1 = 7 (prime), so a(1)=3:
3*2^2 + 1 = 13 (prime), so a(2)=3;
3*2^3 + 1 = 25 (composite), 4*2^3 + 1 = 33 (composite), 5*2^3 - 1 = 41 (prime), so a(3)=5.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
        for k from 3 do if isprime(k*2^n+1) then return k fi od
      end proc:
    seq(f(n),n=1..100); # Robert Israel, Oct 08 2015
  • Mathematica
    Table[k = 3; While[! PrimeQ[k 2^n + 1], k++]; k, {n, 76}] (* Michael De Vlieger, Oct 08 2015 *)
  • PARI
    a(n) = {k=3; while (! isprime(k*2^n+1), k++); k;} \\ Michel Marcus, Oct 08 2015

A282943 Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 7^(2^m) + 1 for some m.

Original entry on oeis.org

8, 12, 36, 276, 408, 2208, 2816, 3168, 3912, 42665, 44685, 59973, 709968, 916773, 1832496
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 25 2017

Keywords

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(400)); IsInteger := func; [n: n in [2..408] | IsPrime(k) and IsInteger(Log(2, Modorder(7, k))) where k is 3*2^n+1];
  • Mathematica
    lst = {}; Do[p = 3*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[7, p]], AppendTo[lst, n]], {n, 3912}]; lst

A282944 Numbers k such that 3*2^k + 1 is a prime factor of a generalized Fermat number 11^(2^m) + 1 for some m.

Original entry on oeis.org

6, 30, 36, 66, 276, 353, 2816, 3189, 34350, 48150, 80190, 1832496, 2291610, 5082306, 10829346
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 25 2017

Keywords

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(350)); IsInteger := func; [n: n in [2..353] | IsPrime(k) and IsInteger(Log(2, Modorder(11, k))) where k is 3*2^n+1];
  • Mathematica
    lst = {}; Do[p = 3*2^n + 1; If[PrimeQ[p] && IntegerQ@Log[2, MultiplicativeOrder[11, p]], AppendTo[lst, n]], {n, 3189}]; lst

A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 10, 3, 1, 2, 1, 1, 4, 1, 29, 14, 1, 1, 14, 2, 1, 2, 4, 1, 2, 4, 5, 12, 2, 1, 2, 2, 9, 16, 1, 2, 80, 1, 2, 4, 2, 3, 16, 2, 2, 2, 1, 15, 960, 15, 1, 4, 3, 1, 14, 1, 6, 20, 1, 3, 946, 6, 1, 18, 10, 1, 4, 1, 5, 42, 4, 1, 828, 1, 1, 2, 1, 12, 2, 6, 4, 30, 3, 3022, 2, 1, 1
Offset: 2

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

a(prime(j)) + 1 = A087139(j).
a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
a(251) > 73000, see A087139.

Crossrefs

For the numbers k such that these forms are prime:
a1(b): numbers k such that (b-1)*b^k-1 is prime
a2(b): numbers k such that (b-1)*b^k+1 is prime
a3(b): numbers k such that (b+1)*b^k-1 is prime
a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
a5(b): numbers k such that b^k-(b-1) is prime
a6(b): numbers k such that b^k+(b-1) is prime
a7(b): numbers k such that b^k-(b+1) is prime
a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
.
b a1(b) a2(b) a3(b) a4(b) a5(b) a6(b) a7(b) a8(b)
--------------------------------------------------------------------
4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
11 A046867 A057462 ------- ------- ------- ------- ------- -------
12 A079907 A251259 ------- ------- ------- A137654 ------- -------
13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
14 A273523 ------- ------- ------- ------- ------- ------- -------
15 ------- ------- ------- ------- ------- ------- ------- -------
16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).

Programs

  • PARI
    a(n)=for(k=1,2^16,if(ispseudoprime((n-1)*n^k+1),return(k)))

A238739 Numbers n such that 2^n + 3 and 3*2^n + 1 are both prime.

Original entry on oeis.org

1, 2, 6, 12, 18, 30
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 04 2014

Keywords

Comments

Intersection of A057732 and A002253. - Joerg Arndt, Mar 04 2014
By checking primality of 2^n+3 for values n in A002253, it follows a(7) > 7033641. - Giovanni Resta, Mar 08 2014
Exponents of second Fermat prime pairs. - Juri-Stepan Gerasimov, Mar 08 2014
From Juri-Stepan Gerasimov, Mar 04 2014: (Start)
If prime pair {2^n + (2k+1), (2k+1)*2^n + 1} is called a Fermat prime pair, then numbers n such that 2^n + (2k + 1) and (2k + 1)*2^n + 1 are both prime:
for k = 0: 0, 1, 2, 4, 8, 16, ... the exponents first Fermat prime pairs;
for k = 1: 1, 2, 6, 12, 18, 30, ... the exponents second Fermat prime pairs;
for k = 2: 1, 3, ... the exponents third Fermat prime pairs;
for k = 3: 2, 4, 6, 20, 174, ... the exponents fourth Fermat prime pairs;
for k = 4: 1, 2, 3, 6, 7, ... the exponents fifth Fermat prime pairs;
for k = 5: 1, 3, 5, 7, ... the exponents sixth Fermat prime pairs;
for k = 6: 2, 8, 20, ... the exponents seventh Fermat prime pairs;
for k = 7: 1, 2, 4, 10, 12, ... the exponents eighth Fermat prime pairs;
for k = 8:
for k = 9: 6, ... the exponents tenth Fermat prime pairs;
for k = 10: 1, 4, 5, 7, 16, ... the exponents eleventh Fermat prime pairs;
for k = 11:
for k = 12: 2, 4, 6, 10, 20, 22, ...the exponents thirteenth Fermat prime pairs;
for k = 13: 2, 4, 16, 40, 44, ... the exponents fourteenth Fermat prime pairs;
for k = 14: 1, 3, 5, 27, 43, ... the exponents fifteenth Fermat prime pairs.
Semiprimes of the form (2^m+2k+1)*((2k+1)*2^m+1): 4, 9, 25, 35, 77, 91, 209, 289, 319, 481, 527, 533, 901, 989, ...
(End)

Examples

			a(1) = 1 because 2^1 + 3 = 5 and 3*2^1 + 1 = 7 are both prime,
a(2) = 2 because 2^2 + 3 = 7 and 3^2^2 + 1 = 13 are both prime,
a(3) = 6 because 2^6 + 3 = 67 and 3*2^6 + 1 = 193 are both prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..30] | IsPrime(2^n+3) and IsPrime(3*2^n+1)]; // Arkadiusz Wesolowski, Jan 23 2016
  • Mathematica
    Select[Range[30],AllTrue[{2^#+3,3*2^#+1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 08 2015 *)
  • PARI
    isok(n) = isprime(2^n + 3) && isprime(3*2^n + 1); \\ Michel Marcus, Mar 04 2014
    

A281483 Numbers k such that 32771*2^k + 1 is prime.

Original entry on oeis.org

1, 13, 19, 29, 37, 45, 51, 61, 63, 65, 69, 117, 171, 181, 199, 201, 217, 221, 265, 337, 627, 631, 881, 1035, 1507, 1525, 1627, 1641, 2037, 3175, 4639, 6445, 21537, 29801, 30521, 30917, 37877, 49725, 50877, 57537, 61337, 118141, 125169, 200961, 204117, 283445, 395125, 829489
Offset: 1

Views

Author

Pierre CAMI, Jan 22 2017

Keywords

Comments

a(48) = 829489, 1438879 is such that 32771*2^1438879 + 1 is prime with 433151 digits, 829489 < a(49) <= 1438879.

Crossrefs

Cf. A002253.

Programs

  • Mathematica
    Select[Range@ 3000, PrimeQ[32771*2^# + 1] &] (* Michael De Vlieger, Jan 23 2017 *)
  • PARI
    list(limit)=my(i=1); while(iAnders Hellström, Feb 04 2017
  • PFGW
    32771*2^$a+1
    $a: from 1 to 1000001 step 2
    
Previous Showing 11-20 of 24 results. Next