1, 1, 1, 3, 1, 0, 1, 19, 6, 1, 0, 0, 1, 47, 98, 29, 1, 84, 280, 0, 1, 141, 650, 600, 120, 1, 0, 0, 0, 0, 1, 1135, 16734, 28063, 5922, 756, 1, 130, 130, 13, 0, 0, 1, 1779, 43757, 161700, 161700, 52920, 5040, 1, 6183, 263386, 1401900, 1401400, 0, 0, 1, 9919, 438582, 2634549, 4381246, 2587326, 577612, 40913, 1, 0, 0, 0, 0, 0, 0, 0, 1, 75433
Offset: 2
The triangle T(n,k) starts (omitting terms with k > n/2, which are zero):
-----------------------------------------------------------------------------------------
n\k: 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
-----------------------------------------------------------------------------------------
2 | 1;
3 | 1;
4 | 1, 3;
5 | 1, 0;
6 | 1, 19, 6;
7 | 1, 0, 0;
8 | 1, 47, 98, 29;
9 | 1, 84, 280, 0;
10 | 1, 141, 650, 600, 120;
11 | 1, 0, 0, 0, 0;
12 | 1, 1135, 16734, 28063, 5922, 756;
13 | 1, 130, 130, 13, 0, 0;
14 | 1, 1779, 43757, 161700, 161700, 52920, 5040;
15 | 1, 6183, 263386, 1401900, 1401400, 0, 0;
16 | 1, 9919, 438582, 2634549, 4381246, 2587326, 577612, 40913;
17 | 1, 0, 0, 0, 0, 0, 0, 0;
18 | 1, 75433, 10808037, 140403209, 391178517, 290493433, 39663279, 6540609, 362880;
19 | 1, 0, 0, 0, 0, 0, 0, 0, 0;
20 | 1, 124467, 26825456, 514583021, ...
... (for more terms, see the A-file).
T(6,3) = 6 because among the {n,k} = 90 possible triples of nonzero binary vectors of length 6 there are exactly 6 with a common divisor > 1:
{100001, 010010, 001100}: GCD(100001, 10010, 1100) = 11;
{100001, 011000, 000110}: GCD(100001, 11000, 110) = 11;
{100100, 010010, 001001}: GCD(100100, 10010, 1001) = 1001;
{100100, 011000, 000011}: GCD(100100, 11000, 11) = 11;
{110000, 001001, 000110}: GCD(110000, 1001, 110) = 11;
{110000, 001100, 000011}: GCD(110000, 1100, 11) = 11.
The quadruple of binary vectors {1100000001000, 0010001100000, 0001100000001, 0000010010110} counts toward T(13,4) because in base 10, GCD(1100000001000, 10001100000, 1100000001, 10010110) = 53. In total, there are 13 such quadruples of length 13. This exemplifies the smallest prime n with nontrivial T(n,k).
T(17,k) = 0 for k >= 2 since A378511(17) = 1 (though 17 isn't a term in A004023).
T(317,k) = 0 for k >= 2 since 317 is a term in A004023.
Comments