cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A002275 Repunits: (10^n - 1)/9. Often denoted by R_n.

Original entry on oeis.org

0, 1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111, 1111111111, 11111111111, 111111111111, 1111111111111, 11111111111111, 111111111111111, 1111111111111111, 11111111111111111, 111111111111111111, 1111111111111111111, 11111111111111111111
Offset: 0

Views

Author

Keywords

Comments

R_n is a string of n 1's.
Base-4 representation of Jacobsthal bisection sequence A002450. E.g., a(4)= 1111 because A002450(4)= 85 (in base 10) = 64 + 16 + 4 + 1 = 1*(4^3) + 1*(4^2) + 1*(4^1) + 1. - Paul Barry, Mar 12 2004
Except for the first two terms, these numbers cannot be perfect squares, because x^2 != 11 (mod 100). - Zak Seidov, Dec 05 2008
For n >= 0: a(n) = (A000225(n) written in base 2). - Jaroslav Krizek, Jul 27 2009, edited by M. F. Hasler, Jul 03 2020
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=10, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010
Except 0, 1 and 11, all these integers are Brazilian numbers, A125134. - Bernard Schott, Dec 24 2012
Numbers n such that 11...111 = R_n = (10^n - 1)/9 is prime are in A004023. - Bernard Schott, Dec 24 2012
The terms 0 and 1 are the only squares in this sequence, as a(n) == 3 (mod 4) for n>=2. - Nehul Yadav, Sep 26 2013
For n>=2 the multiplicative order of 10 modulo the a(n) is n. - Robert G. Wilson v, Aug 20 2014
The above is a special case of the statement that the order of z modulo (z^n-1)/(z-1) is n, here for z=10. - Joerg Arndt, Aug 21 2014
From Peter Bala, Sep 20 2015: (Start)
Let d be a divisor of a(n). Let m*d be any multiple of d. Split the decimal expansion of m*d into 2 blocks of contiguous digits a and b, so we have m*d = 10^k*a + b for some k, where 0 <= k < number of decimal digits of m*d. Then d divides a^n - (-b)^n (see McGough). For example, 271 divides a(5) and we find 2^5 + 71^5 = 11*73*271*8291 and 27^5 + 1^5 = 2^2*7*31*61*271 are both divisible by 271. Similarly, 4*271 = 1084 and 10^5 + 84^5 = 2^5*31*47*271*331 while 108^5 + 4^5 = 2^12*7*31*61*271 are again both divisible by 271. (End)
Starting with the second term this sequence is the binary representation of the n-th iteration of the Rule 220 and 252 elementary cellular automaton starting with a single ON (black) cell. - Robert Price, Feb 21 2016
If p > 5 is a prime, then p divides a(p-1). - Thomas Ordowski, Apr 10 2016
0, 1 and 11 are only terms that are of the form x^2 + y^2 + z^2 where x, y, z are integers. In other words, a(n) is a member of A004215 for all n > 2. - Altug Alkan, May 08 2016
Except for the initial terms, the binary representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 737", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Mar 17 2017
The term "repunit" was coined by Albert H. Beiler in 1964. - Amiram Eldar, Nov 13 2020
q-integers for q = 10. - John Keith, Apr 12 2021
Binomial transform of A001019 with leading zero. - Jules Beauchamp, Jan 04 2022

References

  • Albert H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, New York: Dover Publications, 1964, chapter XI, p. 83.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 235-237.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 197-198.
  • Samuel Yates, Peculiar Properties of Repunits, J. Recr. Math. 2, 139-146, 1969.
  • Samuel Yates, Prime Divisors of Repunits, J. Recr. Math. 8, 33-38, 1975.

Crossrefs

Programs

  • Haskell
    a002275 = (`div` 9) . subtract 1 . (10 ^)
    a002275_list = iterate ((+ 1) . (* 10)) 0
    -- Reinhard Zumkeller, Jul 05 2013, Feb 05 2012
    
  • Magma
    [(10^n-1)/9: n in [0..25]]; // Vincenzo Librandi, Nov 06 2014
    
  • Maple
    seq((10^k - 1)/9, k=0..30); # Wesley Ivan Hurt, Sep 28 2013
  • Mathematica
    Table[(10^n - 1)/9, {n, 0, 19}] (* Alonso del Arte, Nov 15 2011 *)
    Join[{0},Table[FromDigits[PadRight[{},n,1]],{n,20}]] (* Harvey P. Dale, Mar 04 2012 *)
  • Maxima
    a[0]:0$
    a[1]:1$
    a[n]:=11*a[n-1]-10*a[n-2]$
    A002275(n):=a[n]$
    makelist(A002275(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=(10^n-1)/9; \\ Michael B. Porter, Oct 26 2009
    
  • PARI
    my(x='x+O('x^30)); concat(0, Vec(x/((1-10*x)*(1-x)))) \\ Altug Alkan, Apr 10 2016
    
  • Python
    print([(10**n-1)//9 for n in range(100)]) # Michael S. Branicky, Apr 30 2022
  • Sage
    [lucas_number1(n, 11, 10) for n in range(21)]  # Zerinvary Lajos, Apr 27 2009
    

Formula

a(n) = 10*a(n-1) + 1, a(0)=0.
a(n) = A000042(n) for n >= 1.
Second binomial transform of Jacobsthal trisection A001045(3n)/3 (A015565). - Paul Barry, Mar 24 2004
G.f.: x/((1-10*x)*(1-x)). Regarded as base b numbers, g.f. x/((1-b*x)*(1-x)). - Franklin T. Adams-Watters, Jun 15 2006
a(n) = 11*a(n-1) - 10*a(n-2), a(0)=0, a(1)=1. - Lekraj Beedassy, Jun 07 2006
a(n) = A125118(n,9) for n>8. - Reinhard Zumkeller, Nov 21 2006
a(n) = A075412(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
a(n) = a(n-1) + 10^(n-1) with a(0)=0. - Vincenzo Librandi, Jul 22 2010
a(n) = A242614(n,A242622(n)). - Reinhard Zumkeller, Jul 17 2014
E.g.f.: (exp(9*x) - 1)*exp(x)/9. - Ilya Gutkovskiy, May 11 2016
a(n) = Sum_{k=0..n-1} 10^k. - Torlach Rush, Nov 03 2020
Sum_{n>=1} 1/a(n) = A065444. - Amiram Eldar, Nov 13 2020
From Elmo R. Oliveira, Aug 02 2025: (Start)
a(n) = A002283(n)/9 = A105279(n)/10.
a(n) = A010785(A017173(n-1)) for n >= 1. (End)

A054683 Numbers whose sum of digits is even.

Original entry on oeis.org

0, 2, 4, 6, 8, 11, 13, 15, 17, 19, 20, 22, 24, 26, 28, 31, 33, 35, 37, 39, 40, 42, 44, 46, 48, 51, 53, 55, 57, 59, 60, 62, 64, 66, 68, 71, 73, 75, 77, 79, 80, 82, 84, 86, 88, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 110, 112, 114, 116, 118, 121, 123, 125, 127, 129, 130
Offset: 1

Views

Author

Odimar Fabeny, Apr 19 2000

Keywords

Comments

Union of A179082 and A179084; A179081(a(n)) = 0. - Reinhard Zumkeller, Jun 28 2010
Integers with an even number of odd digits. - Bernard Schott, Nov 18 2022

Examples

			0, 2, 4, 6, 8, 11 (2), 13 (4), 15 (6), 17 (8), 19 (10), 20 (2), 22 (4) and so on.
		

Crossrefs

Subsequences: A014263, A099814, A179082, A179084.
Similar: A054684 (with an odd number of odd digits), A356929 (with an even number of even digits).

Programs

  • Mathematica
    Select[Range[0,200],EvenQ[Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Jan 04 2015 *)
  • PARI
    is(n)=my(d=digits(n));sum(i=1,#d,d[i])%2==0 \\ Charles R Greathouse IV, Aug 09 2013
    
  • PARI
    a(n) = n--; m = 10*(n\5); s=sumdigits(m); m + (1-(s-1)%2) + 2*(n%5) \\ David A. Corneth, Jun 05 2016
    
  • Python
    A054683_list = [i for i in range(10**3) if not sum(int(d) for d in str(i)) % 2] # Chai Wah Wu, Mar 17 2016

Formula

a(n) = 2*n for the first 5 terms; a(n) = 2*n + 1 for the next 5 terms (recurrence).
I.e., for n > 0, a(n + 10) = a(n) + 20. - David A. Corneth, Jun 05 2016

Extensions

More terms from James Sellers, Apr 19 2000
Example corrected by David A. Corneth, Jun 05 2016

A100706 Bisection of A002275.

Original entry on oeis.org

1, 111, 11111, 1111111, 111111111, 11111111111, 1111111111111, 111111111111111, 11111111111111111, 1111111111111111111, 111111111111111111111, 11111111111111111111111
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Comments

Also the binary representation of the n-th iteration of the elementary cellular automaton starting with a single ON (black) cell for Rules 151, 159, 183, 191, 215, 222, 223, 247, 254 and 255. - Robert Price, Feb 21 2016
The aerated sequence 1, 0, 111, 0, 11111, 0, 1111111, ... is a linear divisibility sequence of order 4. It is the case P1 = 0, P2 = -9^2, Q = -10 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. Cf. A007583, A095372 and A299960. - Peter Bala, Aug 28 2019

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A002275, A099814 (other bisection), A007583, A095372, A299960.

Programs

  • Maple
    seq((10^(2*n+1) - 1)/9,n=0..15); # C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005
  • Mathematica
    Table[(10^(2*n + 1) - 1)/9, {n, 0, 100}] (* Robert Price, Feb 21 2016 *)
  • PARI
    a(n) = (10^(2*n + 1) - 1)/9; \\ Michel Marcus, Mar 12 2023
  • Python
    def A100706(n): return (10**((n<<1)+1)-1)//9 # Chai Wah Wu, Nov 04 2022
    

Formula

Numbers composed entirely of 2*n+1 concatenated 1's for n >= 0.
O.g.f.: (1+10*x)/((-1+x)*(-1+100*x)). - R. J. Mathar, Apr 03 2008
From Klaus Purath, Sep 23 2020: (Start)
a(n) = Sum_{i = 0..2*n} 10^i.
a(n) = 101*a(n-1) - 100*a(n-2).
a(n) = 110*10^(2*n-2) + a(n-1).
a(n) = 100*a(n-1) + 11.
a(n) = (a(n-1)^2 - 1210*10^(2*n-4))/a(n-2). (End)

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005

A132355 Numbers of the form 9*h^2 + 2*h, for h an integer.

Original entry on oeis.org

0, 7, 11, 32, 40, 75, 87, 136, 152, 215, 235, 312, 336, 427, 455, 560, 592, 711, 747, 880, 920, 1067, 1111, 1272, 1320, 1495, 1547, 1736, 1792, 1995, 2055, 2272, 2336, 2567, 2635, 2880, 2952, 3211, 3287, 3560, 3640, 3927, 4011, 4312, 4400, 4715, 4807
Offset: 1

Views

Author

Mohamed Bouhamida, Nov 08 2007

Keywords

Comments

X values of solutions to the equation 9*X^3 + X^2 = Y^2.
The set of all m such that 9*m + 1 is a perfect square. - Gary Detlefs, Feb 22 2010
The concatenation of any term with 11..11 (1 repeated an even number of times, see A099814) belongs to the list. Example: 87 is a term, so also 8711, 871111, 87111111, 871111111111, ... are terms of this sequence. - Bruno Berselli, May 15 2017

Crossrefs

A205808 is the characteristic function.
Numbers of the form 9*n^2+k*n, for integer n: A016766 (k=0), this sequence (k=2), A185039 (k=4), A057780 (k=6), A218864 (k=8). - Jason Kimberley, Nov 09 2012
For similar sequences of numbers m such that 9*m+k is a square, see list in A266956.

Programs

Formula

a(2*k) = k*(9*k-2), a(2*k+1) = k*(9*k+2).
a(n) = n^2 - n + 5*floor(n/2)^2. - Gary Detlefs, Feb 23 2010
From R. J. Mathar, Mar 17 2010: (Start)
a(n) = +a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
G.f.: x^2*(7 + 4*x + 7*x^2)/((1 + x)^2*(1 - x)^3). (End)
a(n) = (2*n - 1 + (-1)^n)*(9*(2*n - 1) + (-1)^n)/16. - Luce ETIENNE, Sep 13 2014
Sum_{n>=2} 1/a(n) = 9/4 - cot(2*Pi/9)*Pi/2. - Amiram Eldar, Mar 15 2022

Extensions

Simpler definition and minor edits from N. J. A. Sloane, Feb 03 2012
Since this is a list, offset changed to 1 and formulas translated by Jason Kimberley, Nov 18 2012

A272232 Smallest k > 0 such that R_k//n//R_k is prime, where R_k is the repunit A002275(k) of length k and // denotes concatenation; or -1 if no such k exists.

Original entry on oeis.org

1, 9, -1, 1, 2, 1, 10, 3, 1, 1, 3, -1, 2, 3, 33, 1, 2, 1, 1, 21, 1, 2, -1, 1, 7, 48, 292, 4, 3, 1, 1, 2, 1, -1, 135, -1, 1, -1, 1, 34, 3, 3, 40, 2, -1, 1, 3, 1, 1, 32, 61, 1, 2, 1, 137, -1, 3, 1, 2, 42, 1, 14, 1, 262, 2, 22, -1, 3, 9, 2, 33, 73, 1, 3, 1, 2, 3, -1, 2, 2, 1
Offset: 0

Views

Author

Felix Fröhlich, Apr 23 2016

Keywords

Comments

a(2) = -1 (see second comment in A258372).
a(n) = -1 if n > 0 is in A099814 (see fourth comment in A004022).
a(n) = -1 if n is of the form A000042(i)*10^j+A000042(i) for some j > i > 0, since the resulting number is divisible by A002275(k)//A000042(i).
a(n) = -1 if n is a term of A010785 with an even number of digits, since any number of the form 1..1d..d1..1 with an even number of digits d is divisible by 11.
a(n) = 1 if there exists an integer x such that n = (A002275(A004023(x))-A011557(x)-1)/10.
From Chai Wah Wu, Nov 07 2019: (Start)
a(n) = -1 if n has an even number of digits and is a multiple of 11. In particular, a(n) = -1 if n is a term of A056524.
a(n) = -1 if n = (10^k+1)(10^m-1)/9 for some m > 0, k >= 0.
(End)
a(140) > 20000. - Hans Havermann, May 21 2022

Examples

			a(0) = 1 since 101 is prime; a(1) refers to the prime 1111111111111111111.
a(124) = -1 because R_k//124//R_k is divisible by 125*10^k-1.
		

Crossrefs

Programs

  • Mathematica
    Table[SelectFirst[Range[10^4], PrimeQ@ FromDigits@ Flatten@ {#, IntegerDigits@ n, #} &@ Table[1, {#}] &], {n, 0, 91}] /. k_ /; MissingQ@ k -> 0 (* Michael De Vlieger, Apr 25 2016, Version 10.2 *)
  • PARI
    a(n) = my(k=1); while(!ispseudoprime(eval(Str((10^k-1)/9, n, (10^k-1)/9))), k++); k

Extensions

a(35)-a(80) from Giovanni Resta, May 01 2016
Escape clausae value changed to -1 by N. J. A. Sloane, May 17 2022

A274755 Repunits with even indices multiplied by 99, i.e., 99*(11, 1111, 111111, 11111111, ...).

Original entry on oeis.org

1089, 109989, 10999989, 1099999989, 109999999989, 10999999999989, 1099999999999989, 109999999999999989, 10999999999999999989, 1099999999999999999989, 109999999999999999999989, 10999999999999999999999989, 1099999999999999999999999989
Offset: 1

Views

Author

Rodolfo A. Fiorini, Jul 04 2016

Keywords

Comments

The reciprocals of the terms give a sequence of even growing periods, starting from 22, with delta = 22 (i.e., 22,44,66,88,110,132,...).

Examples

			a(3) = 101*109989 - 100*1089 = 10999989.
		

Crossrefs

Programs

  • Magma
    [11*(10^(2*n) - 1): n in [1..20]];
    
  • Maple
    A274755:= n-> 11*(10^(2*n) - 1) : seq(A274755(n), n=1..20);
  • Mathematica
    Array[99(10^(2 #)- 1)/9&, 15]
    LinearRecurrence[{101, -100}, {1089, 109989}, 20] (* Vincenzo Librandi, Jul 07 2016 *)
  • PARI
    Vec(1089*x/((1-x)*(1-100*x)) + O(x^99)) \\ Altug Alkan, Jul 06 2016

Formula

a(n) = 101*a(n-1) - 100*a(n-2), with a(1)= 1089 and a(2)= 109989.
G.f.: 1089*x/((1 - x)*(1 - 100*x)). - Ilya Gutkovskiy, Jul 04 2016
a(n) = 99*A099814(n). - Michel Marcus, Jul 04 2016
a(n) = 11*(10^(2*n)-1). - Robert Israel, Jul 06 2016
E.g.f.: 11*exp(x)*(exp(99*x) - 1). - Elmo R. Oliveira, Jun 09 2025

A267595 Binary representation of the n-th iteration of the "Rule 173" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 10, 1111, 111111, 11111111, 1111111111, 111111111111, 11111111111111, 1111111111111111, 111111111111111111, 11111111111111111111, 1111111111111111111111, 111111111111111111111111, 11111111111111111111111111, 1111111111111111111111111111
Offset: 0

Views

Author

Robert Price, Jan 18 2016

Keywords

Comments

a(n) is an irregularly chopped version of row n in triangle A267594. - R. J. Mathar, Aug 07 2025

Crossrefs

Programs

  • Mathematica
    rule=173; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]],{k,1,rows}]   (* Binary Representation of Rows *)

Formula

Conjectures from Colin Barker, Jan 18 2016 and Apr 20 2019: (Start)
a(n) = 101*a(n-1)-100*a(n-2) for n>3.
G.f.: (1-91*x+201*x^2-100*x^3) / ((1-x)*(1-100*x)).
(End)

A361820 Palindromes in A329150.

Original entry on oeis.org

0, 2, 3, 5, 7, 11, 22, 33, 55, 77, 202, 222, 232, 252, 272, 303, 313, 323, 333, 353, 373, 505, 525, 535, 555, 575, 707, 717, 727, 737, 757, 777, 1111, 2002, 2112, 2222, 2332, 2552, 2772, 3003, 3113, 3223, 3333, 3553, 3773, 5005, 5115, 5225, 5335, 5555, 5775, 7007, 7117
Offset: 1

Views

Author

Bernard Schott, Mar 25 2023

Keywords

Comments

If m is a palindrome with no digit greater than 5 in A118597, then A329147(m) is a term, but there exist terms that are not of this form as 313, 717, ...

Examples

			232 is a term which has two preimages since A329147(91) = A329147(121) = 232.
313 = A329147(26) is a term whose preimage is not in A118597.
2002 is a term since A329147(1001) = 2002.
2112 is a term since A329147(151) = 2112.
27172 = A329147(1471) is a term whose preimage is not in A118597.
		

Crossrefs

Intersection of A002113 and A329150.

Programs

  • Mathematica
    p[n_] := If[n > 0, Prime[n], 0]; seq[ndigmax_] := Module[{t = Table[FromDigits[ Flatten@ IntegerDigits@ (p /@ IntegerDigits[n])], {n, 0, 10^ndigmax - 1}]}, Union@ Select[t, # < 10^ndigmax && PalindromeQ[#] &]]; seq[4] (* Amiram Eldar, Mar 26 2023 *)
  • PARI
    ispal(n) = my(d=digits(n)); d==Vecrev(d);
    f(n) = if (n, fromdigits(concat(apply(d -> if (d, digits(prime(d)), [0]), digits(n)))), 0); \\ A329147
    lista(nn) = my(list = List(), m); for (n=0, nn, m = f(n); if ((m <= nn) && ispal(m), listput(list, m));); vecsort(Set(list)); \\ Michel Marcus, Mar 26 2023
Showing 1-8 of 8 results.