A213227
G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^6)).
Original entry on oeis.org
1, 1, 2, 8, 35, 181, 1042, 6301, 39435, 249744, 1585386, 10027385, 62696192, 385398251, 2322152120, 13727653882, 80274175978, 472701550856, 2883417403654, 18796497074750, 132728456810968, 995480740265410, 7605881152587204, 56821415293287735, 403362682583930224
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 35*x^4 + 181*x^5 + 1042*x^6 +...
Related expansions:
A(x)^6 = 1 + 6*x + 27*x^2 + 128*x^3 + 645*x^4 + 3462*x^5 + 19823*x^6 +...
1/A(-x*A(x)^6) = 1 + x + 5*x^2 + 20*x^3 + 108*x^4 + 638*x^5 + 3889*x^6 +...
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A, x, -x*subst(A^6, x, x+x*O(x^n)))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A214769
G.f. satisfies: A(x) = 1/A(-x*A(x)^9).
Original entry on oeis.org
1, 2, 20, 220, 2280, 25920, 443744, 10057408, 215047552, 3841564160, 57161584256, 757459114112, 10427052678656, 166827795710208, 2728593278189568, 38108069305433088, 521570277192555520, 14195894062729323520, 594582326909611536384, 21399757674339677249536
Offset: 0
G.f.: A(x) = 1 + 2*x + 20*x^2 + 220*x^3 + 2280*x^4 + 25920*x^5 + 443744*x^6 +...
A(x)^5 = 1 + 10*x + 140*x^2 + 1980*x^3 + 26680*x^4 + 362432*x^5 + 5617920*x^6 +...
A(x)^9 = 1 + 18*x + 324*x^2 + 5532*x^3 + 88776*x^4 + 1386432*x^5 + 22460832*x^6 +...
-
{a(n)=local(A=1+2*x);for(i=0,n,A=(A+1/subst(A,x,-x*A^9+x*O(x^n)))/2);polcoeff(A,n)}
for(n=0,31,print1(a(n),", "))
A365181
G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x*A(x)^2).
Original entry on oeis.org
1, 1, 5, 32, 237, 1905, 16160, 142392, 1290613, 11955947, 112697701, 1077438356, 10422562156, 101827196684, 1003312506776, 9958506719664, 99479743121349, 999370184665407, 10090067735619023, 102330789530653912, 1041997707624103589, 10648963961114066129
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*n+2*k+1, k)*binomial(k, n-k)/(2*n+2*k+1));
A371753
a(n) = Sum_{k=0..floor(n/2)} binomial(5*n-2*k-1,n-2*k).
Original entry on oeis.org
1, 4, 37, 376, 4013, 44064, 492871, 5585080, 63901421, 736575316, 8540549322, 99503540008, 1163910870767, 13660217796736, 160782910480936, 1897131524755896, 22433316399634669, 265775992115557076, 3154067508987675679, 37487016824453703920, 446148092364247390618
Offset: 0
-
A371753 := proc(n)
add( binomial(5*n-2*k-1,n-2*k),k=0..floor(n/2)) ;
end proc:
seq(A371753(n),n=0..50) ; # R. J. Mathar, Sep 27 2024
-
a(n) = sum(k=0, n\2, binomial(5*n-2*k-1, n-2*k));
A385632
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(5*n+1,k).
Original entry on oeis.org
1, 8, 81, 872, 9669, 109128, 1246419, 14359304, 166512285, 1940885504, 22717923586, 266833238328, 3143237113479, 37119019790016, 439290932937672, 5208668386199112, 61861932606093901, 735804601177846968, 8763478151940329859, 104498114621004830160, 1247410783999193335434
Offset: 0
A163455
a(n) = binomial(5*n-1,n).
Original entry on oeis.org
1, 4, 36, 364, 3876, 42504, 475020, 5379616, 61523748, 708930508, 8217822536, 95722852680, 1119487075980, 13136858812224, 154603005527328, 1824010149372864, 21566576904406820, 255485622301674660, 3031718514166879020, 36030431772522503316
Offset: 0
a(1)=4 because there are 4 terms in A163142 with 1 zero in binary representation {23,27,29,30}_10 ={10111,11011,11101,11110}_2
a(2)=36 because there are 36 terms in A163142 with 2 zeros in binary representation: {639,703,735,751,759,763,765,766,831,863,879,887,891,893,894,927,943,951,955,957,958,975,983,987,989,990,999,1003,1005,1006,1011,1013,1014,1017,1018,1020}_10={1001111111,...,1111111100}_2
a(3)=364 terms in A163142 from 18431 to 32760 with 3 zeros in binary representation 18431_10=100011111111111_2 and 32760_10=111111111111000_2
a(4)=3876 terms in A163142 from 557055 to 1048560 with 4 zeros in binary representation, etc.
-
[Binomial(5*n-1, n): n in [0..30]]; // Vincenzo Librandi, Aug 07 2014
-
Table[(5*n-1)!/ n!/(4*n-1)!,{n,20}]
Table[Binomial[5 n - 1, n], {n, 0, 20}] (* Vincenzo Librandi, Aug 07 2014 *)
-
B(x):=sum(binomial(5*n-2,n-1)/(n)*x^n,n,1,30);
taylor(x*diff(B(x),x,1)/B(x),x,0,10);
-
a(n) = binomial(5*n-1,n); \\ Michel Marcus, Oct 06 2015
A163456
a(n) = binomial(5*n,n)/5.
Original entry on oeis.org
1, 9, 91, 969, 10626, 118755, 1344904, 15380937, 177232627, 2054455634, 23930713170, 279871768995, 3284214703056, 38650751381832, 456002537343216, 5391644226101705, 63871405575418665, 757929628541719755
Offset: 1
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 2nd ed. 1994.
A227035
a(n) = Sum_{k=0..floor(n/4)} binomial(n,4*k)*binomial(5*k,k)/(4*k+1).
Original entry on oeis.org
1, 1, 1, 1, 2, 6, 16, 36, 76, 172, 436, 1156, 3006, 7606, 19202, 49466, 130156, 345356, 915196, 2421532, 6427001, 17163581, 46087911, 124133531, 334850208, 904691576, 2449891276, 6651540676, 18100561856, 49344295152, 134719523056, 368350942416, 1008680051756
Offset: 0
-
Table[Sum[Binomial[n,4*k]*Binomial[5*k,k]/(4*k+1),{k,0,Floor[n/4]}],{n,0,20}]
-
a(n)=sum(k=0,n\4,binomial(n,4*k)*binomial(5*k,k)/(4*k+1)) \\ Charles R Greathouse IV, Jun 28 2013
A345368
a(n) = Sum_{k=0..n} binomial(5*k,k) / (4*k + 1).
Original entry on oeis.org
1, 2, 7, 42, 327, 2857, 26608, 258488, 2588933, 26539288, 277082658, 2936050788, 31494394563, 341325970323, 3731742758203, 41108999917483, 455850863463768, 5084213586320193, 56997201842602368, 641906808539396253, 7258985455500009623, 82393287049581399283
Offset: 0
-
Table[Sum[Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 21}]
nmax = 21; A[] = 0; Do[A[x] = 1/(1 - x) + x (1 - x)^4 A[x]^5 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
-
a(n) = sum(k=0, n, binomial(5*k, k)/(4*k+1)); \\ Michel Marcus, Jul 28 2021
A365341
a(n) = (5*n)!/(4*n+1)!.
Original entry on oeis.org
1, 1, 10, 210, 6840, 303600, 17100720, 1168675200, 93963542400, 8691104822400, 909171781056000, 106137499051584000, 13679492361575040000, 1929327666754295808000, 295570742023171270656000, 48877281133334949335040000, 8677556868736487617966080000
Offset: 0
Comments