cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 69 results. Next

A016644 Decimal expansion of log(21).

Original entry on oeis.org

3, 0, 4, 4, 5, 2, 2, 4, 3, 7, 7, 2, 3, 4, 2, 2, 9, 9, 6, 5, 0, 0, 5, 9, 7, 9, 8, 0, 3, 6, 5, 7, 0, 5, 4, 3, 4, 2, 8, 4, 5, 7, 5, 2, 8, 7, 4, 0, 4, 6, 1, 0, 6, 4, 0, 1, 9, 4, 0, 8, 4, 4, 8, 3, 5, 7, 5, 0, 7, 4, 1, 5, 5, 9, 7, 0, 6, 7, 8, 2, 3, 4, 6, 6, 1, 2, 7, 4, 2, 5, 3, 4, 0, 1, 6, 0, 3, 6, 1
Offset: 1

Views

Author

Keywords

Examples

			3.044522437723422996500597980365705434284575287404610640194084483575074....
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A016449 (continued fraction).

Programs

  • Mathematica
    RealDigits[Log[21], 10, 120][[1]] (* Harvey P. Dale, Sep 04 2012 *)
  • PARI
    default(realprecision, 20080); x=log(21); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b016644.txt", n, " ", d)); \\ Harry J. Smith, May 17 2009, corrected May 20 2009

Formula

Eqals A016630 + A002391. - R. J. Mathar, Jul 22 2025

A175475 Decimal expansion of the Dickman function evaluated at 1/3.

Original entry on oeis.org

0, 4, 8, 6, 0, 8, 3, 8, 8, 2, 9, 1, 1, 3, 1, 5, 6, 6, 9, 0, 7, 1, 8, 3, 0, 3, 9, 3, 4, 3, 4, 0, 7, 4, 2, 1, 3, 5, 4, 3, 2, 9, 5, 8, 0, 4, 7, 8, 1, 4, 0, 5, 4, 2, 3, 1, 6, 8, 0, 5, 2, 8, 5, 0, 5, 1, 4, 8, 8, 2, 3, 5, 7, 3, 5, 9, 3, 2, 4, 7, 2, 0, 0, 4, 0, 9, 1, 2, 9, 3, 3, 7, 1, 1, 6, 7, 7, 0, 7, 9, 6, 8, 0, 4, 4
Offset: 0

Views

Author

R. J. Mathar, May 25 2010

Keywords

Comments

Density of the cube root-smooth numbers, see A090081. - Charles R Greathouse IV, Jul 14 2014

Examples

			F(1/3) = 0.04860838829113156690718...
		

Crossrefs

Programs

  • Mathematica
    N[1 - Log[3] + Log[3]^2/2 - Pi^2/12 + PolyLog[2, 1/3], 105] // RealDigits // First // Prepend[#, 0]& (* Jean-François Alcover, Feb 05 2013 *)
  • PARI
    1-log(3)+log(3)^2/2-Pi^2/12+polylog(2,1/3) \\ Charles R Greathouse IV, Jul 14 2014

Formula

Equals 1 - log(3) + log^2(3)/2 - Pi^2/12 + Sum_{n>=1} 1/(n^2*3^n), where Sum_{n>=1} 1/(n^2*3^n) = 0.3662132299770634876167462976642627638...

A191907 Square array read by antidiagonals up: T(n,k) = -(n-1) if n divides k, else 1.

Original entry on oeis.org

0, 1, 0, 1, -1, 0, 1, 1, 1, 0, 1, 1, -2, -1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, -3, 1, -1, 0, 1, 1, 1, 1, 1, -2, 1, 0, 1, 1, 1, 1, -4, 1, 1, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, -5, 1, -3, -2, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, -6, 1, 1, 1, 1, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, -4, 1, -2, 1, 0, 1, 1, 1, 1, 1, 1, 1, -7, 1, 1, 1, -3, 1, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0
Offset: 1

Views

Author

Mats Granvik, Jun 19 2011

Keywords

Comments

Apart from the top row, the same as A177121.
Sum_{k>=1} T(n,k)/k = log(n); this has been pointed out by Jaume Oliver Lafont in A061347 and A002162.

Examples

			Table starts:
0..0..0..0..0..0..0..0..0...
1.-1..1.-1..1.-1..1.-1..1...
1..1.-2..1..1.-2..1..1.-2...
1..1..1.-3..1..1..1.-3..1...
1..1..1..1.-4..1..1..1..1...
1..1..1..1..1.-5..1..1..1...
1..1..1..1..1..1.-6..1..1...
1..1..1..1..1..1..1.-7..1...
1..1..1..1..1..1..1..1.-8...
		

Crossrefs

Programs

  • Mathematica
    Clear[t, n, k];
    nn = 30;
    t[n_, k_] := t[n, k] = If[Mod[n, k] == 0, -(k - 1), 1]
    MatrixForm[Transpose[Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}]]]
  • PARI
    N=20; M=matrix(N,N,n,k, if(n%k==0,1-k,1))~

Formula

If n divides k then T(n,k) = -(n-1) else 1.

A322334 Factorial expansion of log(3) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

1, 0, 0, 2, 1, 5, 0, 0, 0, 4, 3, 0, 0, 9, 6, 1, 11, 4, 13, 8, 9, 0, 16, 2, 14, 24, 9, 22, 5, 26, 4, 2, 31, 15, 17, 15, 8, 31, 18, 17, 20, 36, 20, 3, 41, 12, 7, 44, 44, 2, 38, 20, 44, 47, 3, 44, 19, 40, 9, 14, 1, 24, 15, 46, 0, 60, 37, 67, 63, 24, 64, 51, 30, 31, 59, 18, 68, 63, 22, 16, 45, 29, 43, 24, 13, 26, 77, 30, 37, 41, 3, 29, 25, 88, 12, 93, 56, 60, 60, 13
Offset: 1

Views

Author

G. C. Greubel, Dec 03 2018

Keywords

Examples

			log(3) = 1 + 0/2! + 0/3! + 2/4! + 1/5! + 5/6! + 0/7! + 0/8! + ...
		

Crossrefs

Cf. A002391 (decimal expansion), A016731 (continued fraction).
Cf. A067882 (log(2)), A322333 (log(5)), A068460 (log(7)), A068461 (log(11)).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor(Log(3))] cat [Floor(Factorial(n)*Log(3)) - n*Floor(Factorial((n-1))*Log(3)) : n in [2..80]];
    
  • Mathematica
    With[{b = Log[3]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]]
  • PARI
    default(realprecision, 250); b = log(3); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
    
  • Sage
    def a(n):
        if (n==1): return floor(log(3))
        else: return expand(floor(factorial(n)*log(3)) - n*floor(factorial(n-1)*log(3)))
    [a(n) for n in (1..80)]

A016731 Continued fraction for log(3).

Original entry on oeis.org

1, 10, 7, 9, 2, 2, 1, 3, 1, 32, 2, 17, 1, 15, 1, 1, 7, 3, 1, 35, 1, 1, 1, 2, 5, 3, 2, 1, 4, 2, 1, 3, 1, 5, 3, 13, 1, 1, 1, 6, 2, 3, 1, 152, 1, 2, 3, 1, 7, 9, 2, 1, 3, 19, 2, 2, 2, 3, 2, 5, 1, 1, 4, 1, 19, 5, 4, 2, 1, 2, 7, 4, 2, 1, 6, 3, 2, 2, 4, 1, 1, 1, 4, 1
Offset: 0

Views

Author

Keywords

Examples

			1.09861228866810969139524523... = 1 + 1/(10 + 1/(7 + 1/(9 + 1/(2 + ...)))). - _Harry J. Smith_, May 16 2009
		

Crossrefs

Cf. A002391 (decimal expansion).

Programs

  • Magma
    ContinuedFraction(Log(3)); // G. C. Greubel, Sep 15 2018
  • Mathematica
    ContinuedFraction[Log[3], 100] (* G. C. Greubel, Sep 15 2018 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(log(3)); for (n=1, 20000, write("b016731.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 16 2009
    

Extensions

Offset changed by Andrew Howroyd, Jul 10 2024

A059543 Beatty sequence for log(3).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96
Offset: 1

Views

Author

Mitch Harris, Jan 22 2001

Keywords

Comments

Differs from A160542 at indices n=81, 91, 101, 111, 121, 131, 141, 151, 152, 161 etc. - R. J. Mathar, May 20 2009

Crossrefs

Beatty complement is A059544.
Cf. A002391 (log(3)).
Cf. A160542.

Programs

  • Maple
    A059543 := proc(n)
        floor(n*log(3)) ;
    end proc:
    seq(A059543(n),n=1..100) ; # R. J. Mathar, Jun 26 2023
  • Mathematica
    Floor[Range[100]*Log[3]] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    { default(realprecision, 100); b=log(3); for (n = 1, 2000, write("b059543.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009

Formula

a(n) = floor(n*A002391). - Paolo Xausa, Jul 05 2024

A113209 Decimal expansion of log(5)/log(3).

Original entry on oeis.org

1, 4, 6, 4, 9, 7, 3, 5, 2, 0, 7, 1, 7, 9, 2, 7, 1, 6, 7, 1, 9, 7, 0, 4, 0, 4, 0, 7, 6, 7, 8, 6, 4, 0, 3, 9, 6, 3, 0, 7, 9, 3, 2, 3, 6, 6, 6, 6, 6, 0, 4, 9, 6, 8, 9, 0, 5, 2, 8, 9, 0, 3, 9, 4, 7, 9, 5, 4, 9, 2, 2, 7, 6, 1, 9, 1, 0, 2, 5, 8, 2, 3, 6, 5, 5, 5, 9, 3, 1, 1, 3, 7, 5, 9, 5, 2, 9, 4, 9, 1, 4, 3
Offset: 1

Views

Author

Eric W. Weisstein, Oct 17 2005

Keywords

Comments

Capacity dimension of the box fractal.
Hausdorff dimension of the graph of Bourbaki's function. McCollum: We examine Bourbaki's function, an easily-constructed continuous but nowhere-differentiable function, and explore properties including functional identities, the antiderivative, and the Hausdorff dimension of the graph. - Jonathan Vos Post, Sep 15 2010

Examples

			1.4649735207179...
		

Crossrefs

Cf. A152914.

Programs

Formula

Equals A016628 divided by A002391. - R. J. Mathar, Sep 08 2013

A145960 Decimal expansion of 2*log(5/3) used in BBP Pi formula.

Original entry on oeis.org

1, 0, 2, 1, 6, 5, 1, 2, 4, 7, 5, 3, 1, 9, 8, 1, 3, 6, 6, 4, 1, 1, 0, 2, 8, 1, 9, 2, 6, 0, 7, 3, 2, 3, 8, 6, 9, 7, 5, 6, 2, 2, 1, 5, 9, 2, 8, 9, 1, 5, 3, 6, 5, 4, 0, 3, 5, 5, 9, 0, 7, 1, 1, 5, 6, 7, 3, 3, 6, 9, 3, 8, 8, 9, 7, 8, 0, 9, 7, 5, 9, 5, 5, 1, 3, 0, 3, 6, 2, 4, 6, 5, 5, 8, 8, 9, 5, 0, 4, 4
Offset: 1

Views

Author

Artur Jasinski, Oct 25 2008

Keywords

Comments

BBP formula for Pi = 4*A145963 - (1/2)*A145960 - (1/2)*(A145961-A145962).

Examples

			1.021651247531981366411...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[2 Log[5/3], 10, 100]]
  • PARI
    2*log(5/3) \\ Michel Marcus, Apr 05 2015

Formula

Equals 2*log(5/3) = 2*(log(5)-log(3)) = 2*(A016628 - A002391) = log(25/9) = 4*arctanh(1/4).
Equals Hypergeometric2F1(1, 1/2, 3/2, 1/16).
Equals Sum_{k>=0} (1/16)^k*(1/(2k+1)).

A254619 a(n) = 4^n*(2*n + 1)!/n!.

Original entry on oeis.org

1, 24, 960, 53760, 3870720, 340623360, 35424829440, 4250979532800, 578133216460800, 87876248902041600, 14763209815542988800, 2716430606059909939200, 543286121211981987840000, 117349802181788109373440000
Offset: 0

Views

Author

Peter Bala, Feb 03 2015

Keywords

Crossrefs

Programs

  • Maple
    seq(4^n*(2*n + 1)!/n!, n = 0..13);
  • Mathematica
    Table[4^n (2n+1)!/n!,{n,0,20}] (* Harvey P. Dale, Oct 02 2021 *)

Formula

E.g.f.: 1/(1 - 16*x)^(3/2) = 1 + 24*x + 960*x^2/2! + 53760*x^3/3! + ....
Recurrence equation: a(n) = 8*(2*n + 1)*a(n-1) with a(0) = 1.
2nd order recurrence equation: a(n) = (20*n + 6)*a(n-1) - 16*(2*n - 1)^2*a(n-2) with a(0) = 1, a(1) = 24.
Define a sequence b(n) := a(n)*sum {k = 0..n} 1/((2*k + 1)*4^k) beginning [1, 26, 1052, 59032, 4251984, 374204832, 38917967808, ...]. It is not difficult to check that b(n) also satisfies the previous 2nd order recurrence equation (and so is an integer sequence). From this observation we can obtain the continued fraction expansion
log(3) = Sum {k >= 0} 1/((2*k + 1)*4^k) = 1 + 2/(24 - 16*3^2/(46 - 16*5^2/(66 - ... - 16*(2*n - 1)^2/((20*n + 6) - ... )))).
Alternative 2nd order recurrence equation: a(n) = (12*n + 10)*a(n-1) + 16*(2*n - 1)^2*a(n-2) with a(0) = 1, a(1) = 24.
Define now a sequence c(n) := a(n)*sum {k = 0..n} (-1)^k/((2*k + 1)*4^k) beginning [1, 22, 892, 49832, 3589584, 315853152, 32849393088, ...], which, along with a(n), satisfies the alternative 2nd order recurrence equation. From this observation we find the continued fraction expansion 2*arctan(1/2) = Sum {k >= 0} (-1)^k/((2*k + 1)*4^k) = 1 - 2/(24 + 16*3^2/(34 + 16*5^2/(46 + ... + 16*(2*n - 1)^2/((12*n + 10) + ... )))). Cf. A254381 and A254620.

A379324 Decimal expansion of log(6)^(log(5)^(log(4)^(log(3)^log(2)))).

Original entry on oeis.org

3, 1, 4, 1, 5, 7, 7, 3, 8, 7, 1, 6, 9, 1, 9, 0, 5, 3, 3, 6, 5, 7, 4, 4, 4, 9, 8, 1, 3, 4, 8, 6, 7, 6, 8, 1, 0, 5, 4, 5, 3, 1, 0, 5, 6, 1, 9, 3, 9, 4, 8, 9, 2, 5, 4, 5, 0, 3, 8, 2, 5, 2, 8, 5, 7, 9, 7, 3, 9, 5, 6, 7, 8, 9, 3, 7, 6, 1, 8, 9, 1, 6, 4, 2, 1, 9, 5, 2, 9, 3
Offset: 1

Views

Author

Paolo Xausa, Dec 20 2024

Keywords

Comments

This is an approximation to Pi accurate to 5 digits.

Examples

			3.1415773871691905336574449813486768105453105619...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Log[6]^Log[5]^Log[4]^Log[3]^Log[2], 10, 100]]

Formula

Previous Showing 21-30 of 69 results. Next